1
|
Liu J, Xiao X, Liao Y, Xu X, Liu Y, Tang A, Zeng X, Yang P. Allergen specific immunotherapy regulates macrophage property in the airways. Arch Biochem Biophys 2024; 755:109984. [PMID: 38588908 DOI: 10.1016/j.abb.2024.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Allergen specific immunotherapy (AIT) has been widely used in allergy clinics. The therapeutic effects of it are to be improved. Macrophages occupy the largest proportion of airway immune cells. The aim of this study is to measure the effects of nasal instillation AIT (nAIT) on airway allergy by regulating macrophage functions. METHODS An airway allergy mouse model was established with the ovalbumin-alum protocol. nAIT was conducted for mice with airway allergy through nasal instillation. The effects of nAIT were compared with subcutaneous injection AIT (SCIT) and sublingual AIT (SLIT). RESULTS Mice with airway allergy showed the airway allergic response, including lung inflammation, airway hyper responsiveness, serum specific IgE, increase in the amounts of eosinophil peroxidase, mouse mast cell protease-1, and Th2 cytokines in bronchoalveolar lavage fluid. nAIT had a much better therapeutic effect on the airway allergic response than SCIT and SLIT. Mechanistically, we observed better absorption of allergen in macrophages, better production of IL-10 by macrophages, and better immune suppressive functions in macrophages in mice received nAIT than SCIT and SLIT. CONCLUSIONS The nAIT has a much better therapeutic effect on suppressing the airway allergic response, in which macrophages play a critical role.
Collapse
Affiliation(s)
- Jiangqi Liu
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Xiaojun Xiao
- Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yun Liao
- Shenzhen Clinical College, Guangzhou Chinese Traditional Medical & Pharmaceutical University, Guangzhou, China
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yu Liu
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Practical Medicine, Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Xianhai Zeng
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China
| | - Pingchang Yang
- Department of Allergy, Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Institute of Allergy & Immunology of Shenzhen University & State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
2
|
Yadav S, Singh S, Mandal P, Tripathi A. Immunotherapies in the treatment of immunoglobulin E‑mediated allergy: Challenges and scope for innovation (Review). Int J Mol Med 2022; 50:95. [PMID: 35616144 DOI: 10.3892/ijmm.2022.5151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 11/05/2022] Open
Abstract
Immunoglobulin E (IgE)‑mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergen‑specific immunotherapy (AIT) is the only therapeutic strategy that can provide a longer‑lasting symptomatic and clinical break from medications in IgE‑mediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatment‑associated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergen‑specific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'component‑resolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Saurabh Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR‑Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| |
Collapse
|
3
|
Veazey RS, Siddiqui A, Klein K, Buffa V, Fischetti L, Doyle-Meyers L, King DF, Tregoning JS, Shattock RJ. Evaluation of mucosal adjuvants and immunization routes for the induction of systemic and mucosal humoral immune responses in macaques. Hum Vaccin Immunother 2016; 11:2913-22. [PMID: 26697975 DOI: 10.1080/21645515.2015.1070998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delivering vaccine antigens to mucosal surfaces is potentially very attractive, especially as protection from mucosal infections may be mediated by local immune responses. However, to date mucosal immunization has had limited successes, with issues of both safety and poor immunogenicity. One approach to improve immunogenicity is to develop adjuvants that are effective and safe at mucosal surfaces. Differences in immune responses between mice and men have overstated the value of some experimental adjuvants which have subsequently performed poorly in the clinic. Due to their closer similarity, non-human primates can provide a more accurate picture of adjuvant performance. In this study we immunised rhesus macaques (Macaca mulatta) using a unique matrix experimental design that maximised the number of adjuvants screened while reducing the animal usage. Macaques were immunised by the intranasal, sublingual and intrarectal routes with the model protein antigens keyhole limpet haemocyanin (KLH), β-galactosidase (β-Gal) and ovalbumin (OVA) in combination with the experimental adjuvants Poly(I:C), Pam3CSK4, chitosan, Thymic Stromal Lymphopoietin (TSLP), MPLA and R848 (Resiquimod). Of the routes used, only intranasal immunization with KLH and R848 induced a detectable antibody response. When compared to intramuscular immunization, intranasal administration gave slightly lower levels of antigen specific antibody in the plasma, but enhanced local responses. Following intranasal delivery of R848, we observed a mildly inflammatory response, but no difference to the control. From this we conclude that R848 is able to boost antibody responses to mucosally delivered antigen, without causing excess local inflammation.
Collapse
Affiliation(s)
- Ronald S Veazey
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Asna Siddiqui
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Katja Klein
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,c Present affiliation: University of Western Ontario ; Ontario , Canada
| | - Viviana Buffa
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lucia Fischetti
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Lara Doyle-Meyers
- a Tulane National Primate Research Center; Tulane University School of Medicine ; Covington , LA USA
| | - Deborah F King
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK.,d Present affiliation: IAVI Human Immunology Lab; Chelsea and Westminster; Imperial College London ; London , UK
| | - John S Tregoning
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| | - Robin J Shattock
- b Mucosal Infection & Immunity Group; Section of Virology; Imperial College London; St. Mary's Campus ; London , UK
| |
Collapse
|
4
|
Mann JFS, Tregoning JS, Aldon Y, Shattock RJ, McKay PF. CD71 targeting boosts immunogenicity of sublingually delivered influenza haemagglutinin antigen and protects against viral challenge in mice. J Control Release 2016; 232:75-82. [PMID: 27094605 DOI: 10.1016/j.jconrel.2016.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/27/2022]
Abstract
The delivery of vaccines to the sublingual mucosa is an attractive prospect due to the ease and acceptability of such an approach. However, novel adjuvant and delivery approaches are required to optimally vaccinate at this site. We have previously shown that conjugation of protein antigen to the iron transport molecule, transferrin, can significantly enhance mucosal immune responses. We tested whether conjugating influenza haemagglutinin to transferrin could improve the immune response to sublingually delivered antigen. Transferrin conjugated haemagglutinin induced a significant antibody and T cell response in both naïve animals and previously immunized animals. The immune response generated was able to protect mice against influenza virus challenge. Sublingually administered antigen dispersed more widely through the gastro-intestinal tract than intranasally delivered antigen and transferrin conjugation had a more marked effect on sublingually delivered antigen than intranasal immunisation. From these studies we conclude that transferrin conjugation of antigen is effective at boosting immune responses to sublingually delivered antigen and may be an attractive approach for influenza vaccines, particularly when mass campaigns are required.
Collapse
Affiliation(s)
- Jamie F S Mann
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - John S Tregoning
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Yoann Aldon
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Robin J Shattock
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom
| | - Paul F McKay
- Imperial College London, Mucosal Infection and Immunity, Section of Virology, St Mary's Campus, London W2 1PG, United Kingdom.
| |
Collapse
|
5
|
Moingeon P. Update on immune mechanisms associated with sublingual immunotherapy: practical implications for the clinician. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:228-41. [PMID: 24565479 DOI: 10.1016/j.jaip.2013.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
Sublingual immunotherapy (SLIT) is established as a safe and efficacious treatment for patients with type I respiratory allergies. The ability of SLIT to elicit antigen (allergen)-specific tolerance is linked to the peculiar biology of oral antigen-presenting cells. In the absence of danger signals, Langerhans cells, myeloid dendritic cells, and macrophages located in oral tissues, tonsils, and draining cervical lymph nodes are biased toward the induction of T(H)1 and IL-10-producing CD4(+) regulatory T cells, thus supporting tolerance as opposed to inflammation. Sublingual administration does not lead to any detectable systemic exposure of intact allergens nor to IgE neosensitization. Oral tissues contain limited numbers of mast cells located in submucosal areas, thereby explaining the well-established safety profile of SLIT, with mostly local but rare systemic reactions. The induction of CD4(+) regulatory T cells and blocking anti-inflammatory IgGs or IgAs are considered important for tolerance induction after SLIT. Specific molecular signatures associated with tolerogenic dendritic cells were recently reported during the onset of SLIT efficacy in the peripheral blood of patients exhibiting clinical benefit. Collectively, these observations confirm the induction of strong allergen-specific suppressive/tolerogenic immune responses during SLIT and pave the ground for the identification of biomarkers of efficacy. Practical implications of this emerging scientific knowledge are presented (1) to support the rational design of second-generation sublingual vaccines based on purified allergens, vector systems and/or adjuvants and (2) to help the clinician in decision making during his/her practice.
Collapse
|
6
|
Therapeutic effects and biomarkers in sublingual immunotherapy: a review. J Allergy (Cairo) 2012; 2012:381737. [PMID: 22500184 PMCID: PMC3303629 DOI: 10.1155/2012/381737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/15/2011] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy is considered to be the only curative treatment for allergic diseases such as pollinosis, perennial rhinitis, asthma, and food allergy. The sublingual route is widely applied for immunotherapy for allergy, instead of the conventional administration by subcutaneous route. A recent meta-analysis of sublingual immunotherapy (SLIT) has shown that this approach is safe, has positive clinical effects, and provides prolonged therapeutic effects after discontinuation of treatment. However, the mechanism of SLIT and associated biomarkers are not fully understood. Biomarkers that change after or during SLIT have been reported and may be useful for response monitoring or as prognostic indicators for SLIT. In this review, we focus on the safety, therapeutic effects, including prolonged effects after treatment, and new methods of SLIT. We also discuss response monitoring and prognostic biomarkers for SLIT. Finally, we discuss immunological mechanisms of SLIT with a focus on oral dendritic cells and facilitated antigen presentation.
Collapse
|
7
|
Mascarell L, Saint-Lu N, Moussu H, Zimmer A, Louise A, Lone Y, Ladant D, Leclerc C, Tourdot S, Van Overtvelt L, Moingeon P. Oral macrophage-like cells play a key role in tolerance induction following sublingual immunotherapy of asthmatic mice. Mucosal Immunol 2011; 4:638-47. [PMID: 21775981 DOI: 10.1038/mi.2011.28] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sublingual allergen-specific immunotherapy (SLIT) is a safe and efficacious treatment for type 1 respiratory allergies. Herein, we investigated the key subset(s) of antigen-presenting cells (APCs) involved in antigen/allergen capture and tolerance induction during SLIT. Following sublingual administration, fluorochrome-labeled ovalbumin (OVA) is predominantly captured by oral CD11b⁺CD11c⁻ cells that migrate to cervical lymph nodes (CLNs) and present the antigen to naive CD4⁺ T cells. Conditional depletion with diphtheria toxin of CD11b⁺, but not CD11c⁺ cells, in oral tissues impairs CD4⁺ T-cell priming in CLNs. In mice with established asthma to OVA, specific targeting of the antigen to oral CD11b⁺ cells using the adenylate cyclase vector system reduces airway hyperresponsiveness (AHR), eosinophil recruitment in bronchoalveolar lavages (BALs), and specific Th2 responses in CLNs and lungs. Oral CD11b⁺CD11c⁻ cells resemble tolerogenic macrophages found in the lamina propria (LP) of the small intestine in that they express the mannose receptor CD206, as well as class-2 retinaldehyde dehydrogenase (RALDH2), and they support the differentiation of interferon-γ/interleukin-10 (IFNγ/IL-10)-producing Foxp3⁺ CD4⁺ regulatory T cells. Thus, among the various APC subsets present in oral tissues of mice, macrophage-like cells play a key role in tolerance induction following SLIT.
Collapse
Affiliation(s)
- L Mascarell
- Research and Development, Stallergènes SA, Antony, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Platts-Mills TAE, Woodfolk JA. Allergens and their role in the allergic immune response. Immunol Rev 2011; 242:51-68. [PMID: 21682738 DOI: 10.1111/j.1600-065x.2011.01021.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Allergens are recognized as the proteins that induce immunoglobulin E (IgE) responses in humans. The proteins come from a range of sources and, not surprisingly, have many different biological functions. However, the delivery of allergens to the nose is exclusively on particles, which carry a range of molecules in addition to the protein allergens. These molecules include pathogen-associated molecular patterns (PAMPs) that can alter the response. Although the response to allergens is characterized by IgE antibodies, it also includes other isotypes (IgG, IgA, and IgG4), as well as T cells. The challenge is to identify the characteristics of these exposures that favor the production of this form of response. The primary features of the exposure appear to be the delivery in particles, such as pollen grains or mite feces, containing both proteins and PAMPs, but with overall low dose. Within this model, there is a simple direct relationship between the dose of exposure to mite or grass pollen and the prevalence of IgE responses. By contrast, the highest levels of exposure to cat allergen are associated with a lower prevalence of IgE responses. Although the detailed mechanisms for this phenomenon are not clear, it appears that enhanced production of interleukin-10 in response to specific Fel d 1 peptides could influence the response. However, it is striking that the animal sources that are most clearly associated with decreased responses at high allergen dose are derived from animals from which humans evolved more recently (∼65 million years ago). Although the nose is still recognized as the primary route for sensitization to inhalant allergens, there is increasing evidence that the skin is also an important site for the generation of IgE antibody responses. By contrast, it is now evident that delivery of foreign proteins by the oral route or sublingually will favor the generation of tolerance.
Collapse
Affiliation(s)
- Thomas A E Platts-Mills
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA 22908-1355, USA.
| | | |
Collapse
|
9
|
Abstract
Within the last 100 years of allergen-specific immunotherapy, many clinical and scientific efforts have been made to establish alternative noninvasive allergen application strategies. Thus, intra-oral allergen delivery to the sublingual mucosa has been proven to be safe and effective. As a consequence, to date, sublingual immunotherapy (SLIT) is widely accepted by most allergists as an alternative to conventional subcutaneous immunotherapy. Although immunological mechanisms remain to be elucidated in detail, several studies in mice and humans within recent years provided deeper insights into local as well as systemic immunological features in response to SLIT. First of all, it was shown that the target organ, the oral mucosa, harbours a sophisticated immunological network as an important prerequisite for SLIT, which contains among other cells, local antigen-presenting cells (APC), such as dendritic cells (DCs), with a constitutive disposition to enforce tolerogenic mechanisms. Further on, basic research on local DCs within the oral mucosa gave rise to possible alternative strategies to deliver the allergens to other mucosal regions than sublingual tissue, such as the vestibulum oris. Moreover, characterization of oral DCs led to the identification of target structures for both allergens as well as adjuvants, which could be applied during SLIT. Altogether, SLIT came a long way since its very beginning in the last century and some, but not all questions about SLIT could be answered so far. However, recent research efforts as well as clinical approaches paved the way for another exciting 100 years of SLIT.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
10
|
One hundred years of allergen immunotherapy: time to ring the changes. J Allergy Clin Immunol 2011; 127:3-7. [PMID: 21211638 DOI: 10.1016/j.jaci.2010.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
|