1
|
Chronic allergic asthma alters m6A epitranscriptomic tagging of mRNAs and lncRNAs in the lung. Biosci Rep 2022; 42:231936. [PMID: 36250525 DOI: 10.1042/bsr20221395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
To evaluate the role of m6A methylation of mRNAs and long non-coding RNAs (lncRNAs) in chronic allergic asthma. Transcriptome-wide N6-methyladenosine (m6A) changes in BALB/c mice were profiled using immunoprecipitated methylated RNAs with microarrays in lung with chronic allergic asthma. Gene ontology (GO) and KEGG analyses were conducted. Target genes were verified by methylated RNA immunoprecipitation and real-time polymerase chain reaction (PCR). Specifically, the mRNA levels of m6A writers (METTL3, METTL14, and WTAP), and readers and erasers (FTO and ALKBH5) were estimated by real-time PCR analysis, using the SYBR-green method. IL17RB mRNA was also evaluated by PCR. Hematoxylin and eosin (H&E) staining showed that the airway and lung tissues in mice in the asthma group had extensive infiltration of inflammatory cells around the bronchioles, blood vessels, and alveoli. The lungs of those allergic asthma mice showed altered m6A epitranscriptome, whereby 1369 mRNAs and 176 lncRNAs were hypermethylated, and 197 mRNAs and 30 lncRNAs were hypomethylated (>1.5-fold vs control). Also, compared with the control group, IL17RB mRNA in lung of the asthmatic group was significantly hypermethylated (P<0.01). In the asthma group, the mRNA and the protein level of METTL14 (the key methyltransferase) and ALKBH5 (the major demethyltransferase) were significantly decreased compared with the control group (P<0.01). Chronic allergic asthma alters the lung m6A epitranscriptome, suggesting functional implications in the pathophysiology of refractory asthma. Data support methylated IL17RB mRNA possibly becoming a new therapeutic target for chronic allergic asthma.
Collapse
|
2
|
Currie C, Framroze B, Singh D, Lea S, Bjerknes C, Hermansen E. Assessing the Anti-Inflammatory Effects of an Orally Dosed Enzymatically Liberated Fish Oil in a House Dust Model of Allergic Asthma. Biomedicines 2022; 10:biomedicines10102574. [PMID: 36289834 PMCID: PMC9599594 DOI: 10.3390/biomedicines10102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Eosinophils are a major driver of inflammation in a number of human diseases, including asthma. Biologic therapies targeting IL-5 have enabled better control of severe eosinophilic asthma, but no such advances have been made for enhancing the control of moderate asthma. However, a number of moderate asthma sufferers remain troubled by unresolved symptoms, treatment side effects, or both. OmeGo, an enzymatically liberated fish oil, has demonstrated antioxidant and anti-inflammatory properties including the reduction of eosinophilia. A house dust mite model of induced asthma in mice was utilized in this study, and OmeGo showed a significant reduction in eosinophilic lung and systemic inflammation and reduced lung remodelling compared to cod liver oil. The CRTH2 antagonist fevipiprant showed an anti-inflammatory profile similar to that of OmeGo. OmeGo has the potential to be a pragmatic, cost-effective co-treatment for less severe forms of eosinophilic asthma. Proof-of-concept studies are planned.
Collapse
Affiliation(s)
- Crawford Currie
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway
- Correspondence:
| | - Bomi Framroze
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, UK
- The Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
| | - Simon Lea
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PL, UK
- The Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester M23 9QZ, UK
| | | | - Erland Hermansen
- Hofseth BioCare, Kipervikgata 13, 6003 Ålesund, Norway
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
3
|
Liu Q, Hua L, Bao C, Kong L, Hu J, Liu C, Li Z, Xu S, Liu X. Inhibition of Spleen Tyrosine Kinase Restores Glucocorticoid Sensitivity to Improve Steroid-Resistant Asthma. Front Pharmacol 2022; 13:885053. [PMID: 35600871 PMCID: PMC9117698 DOI: 10.3389/fphar.2022.885053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Regulation or restoration of therapeutic sensitivity to glucocorticoids is important in patients with steroid-resistant asthma. Spleen tyrosine kinase (Syk) is activated at high levels in asthma patients and mouse models, and small-molecule Syk inhibitors such as R406 show potent anti-inflammatory effects in the treatment of immune inflammatory diseases. Several downstream signaling molecules of Syk are involved in the glucocorticoid response, so we hypothesized that R406 could restore sensitivity to dexamethasone in severe steroid-resistant asthma. Objective: To discover the role of the Syk inhibitor R406 in glucocorticoid resistance in severe asthma. Methods: Steroid-resistant asthma models were induced by exposure of C57BL/6 mice to house dust mite (HDM) and β-glucan and by TNF-α administration to the bronchial epithelial cell line BEAS-2B. We evaluated the role of the Syk inhibitor R406 in dexamethasone (Dex)-insensitive airway inflammation. Pathological alterations and cytokines in the lung tissues and inflammatory cells in BALF were assessed. We examined the effects of Dex or R406 alone and in combination on the phosphorylation of MAPKs, glucocorticoid receptor (GR) and Syk, as well as the transactivation and transrepression induced by Dex in mouse lung tissues and BEAS-2B cells. Results: Exposure to HDM and β-glucan induced steroid-resistant airway inflammation. The Syk inhibitor R406 plus Dex significantly reduced airway inflammation compared with Dex alone. Additionally, TNF-α-induced IL-8 production in BEAS-2B cells was not completely inhibited by Dex, while R406 markedly promoted the anti-inflammatory effect of Dex. Compared with Dex alone, R406 enhanced Dex-mediated inhibition of the phosphorylation of MAPKs and GR-Ser226 induced by allergens or TNF-α in vivo and in vitro. Moreover, R406 also restored the impaired expression and nuclear translocation of GRα induced by TNF-α. Then, the activation of NF-κB and decreased HDAC2 activity in the asthmatic model were further regulated by R406, as well as the expression of GILZ. Conclusions: The Syk inhibitor R406 improves sensitivity to dexamethasone by modulating GR. This study provides a reference for the development of drugs to treat severe steroid-resistant asthma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Hua
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Bao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luxia Kong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory and Critical Care Medicine, Taikang Tongji (Wuhan) Hospital, Wuhan, China
| | - Jiannan Hu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziling Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Key Site of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Arthur GK, Cruse G. Regulation of Trafficking and Signaling of the High Affinity IgE Receptor by FcεRIβ and the Potential Impact of FcεRIβ Splicing in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms23020788. [PMID: 35054974 PMCID: PMC8776166 DOI: 10.3390/ijms23020788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Mast cells are tissue-resident immune cells that function in both innate and adaptive immunity through the release of both preformed granule-stored mediators, and newly generated proinflammatory mediators that contribute to the generation of both the early and late phases of the allergic inflammatory response. Although mast cells can be activated by a vast array of mediators to contribute to homeostasis and pathophysiology in diverse settings and contexts, in this review, we will focus on the canonical setting of IgE-mediated activation and allergic inflammation. IgE-dependent activation of mast cells occurs through the high affinity IgE receptor, FcεRI, which is a multimeric receptor complex that, once crosslinked by antigen, triggers a cascade of signaling to generate a robust response in mast cells. Here, we discuss FcεRI structure and function, and describe established and emerging roles of the β subunit of FcεRI (FcεRIβ) in regulating mast cell function and FcεRI trafficking and signaling. We discuss current approaches to target IgE and FcεRI signaling and emerging approaches that could target FcεRIβ specifically. We examine how alternative splicing of FcεRIβ alters protein function and how manipulation of splicing could be employed as a therapeutic approach. Targeting FcεRI directly and/or IgE binding to FcεRI are promising approaches to therapeutics for allergic inflammation. The characteristic role of FcεRIβ in both trafficking and signaling of the FcεRI receptor complex, the specificity to IgE-mediated activation pathways, and the preferential expression in mast cells and basophils, makes FcεRIβ an excellent, but challenging, candidate for therapeutic strategies in allergy and asthma, if targeting can be realized.
Collapse
Affiliation(s)
- Greer K. Arthur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA;
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA
- Correspondence: ; Tel.: +1-919-515-8865
| |
Collapse
|
5
|
Ding Y, Tang W, Pei F, Fu L, Ma P, Bai J, Lin M, Liu Y, Hou Q. Brusatol Derivative-34 Attenuates Allergic Airway Inflammation Via Inhibition of the Spleen Tyrosine Kinase Pathway. Front Pharmacol 2021; 12:587417. [PMID: 33859559 PMCID: PMC8042380 DOI: 10.3389/fphar.2021.587417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Brusatol derivative-34 (Bru-34), a derivative of brusatol, has been shown significantly anti-inflammatory activity in mice in our previously work. However, to our knowledge, there were very limited studies on how Bru-34 affected airway inflammation. Thus, in this present study, the effects and potential mechanisms of Bru-34 on allergic airway inflammation were examined both in vivo and in vitro. The results showed that Bru-34 attenuated the allergic airway inflammation in mice, with significant decreasing of the inflammatory cells and mediators in bronchoalveolar lavage fluids and attenuation of the histopathological alterations in the lung tissues. In addition, Bru-34 significantly inhibited the release of inflammatory cytokines in antigen induced rat basophilic leukemia -2H3 (RBL-2H3) cells. What’s more, Bru-34 significantly decreased the expression of spleen tyrosine kinase (Syk), p-Syk, cytoplasmic phospholipase A2 (cPLA2), p-cPLA2, nuclear factor-κB (NF-κB) and p-NF-κB both in allergic mice lung tissue and antigen induced RBL-2H3 cells. Furthermore, the collaborative effects of Bru-34 with inhibitors against Syk, cPLA2, and NF-κB, showed that Syk was an important target of Bru-34, and cPLA2 and NF-κB played important roles in the coordinated inflammatory response. In conclusion, Bru-34 could significantly modulate the allergic airway inflammation, and its potential mechanism was revealed at least partially via down-regulating of Syk-cPLA2 -NF-κB signaling.
Collapse
Affiliation(s)
- Yasi Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Weibin Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Fei Pei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Lixia Fu
- National Medical Products Administration, Center for Drug Evaluation, Beijing, China
| | - Pei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Jinye Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Materia Medica, Beijing, China
| |
Collapse
|
6
|
Wuniqiemu T, Qin J, Teng F, Nabijan M, Cui J, Yi L, Tang W, Zhu X, Abduwaki M, Nurahmat M, Wei Y, Dong JC. Quantitative proteomic profiling of targeted proteins associated with Loki Zupa Decoction Treatment in OVA-Induced asthmatic mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113343. [PMID: 32991972 DOI: 10.1016/j.jep.2020.113343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loki Zupa (LKZP) decoction is one of the herbal prescriptions in traditional Uyghur medicine, which is commonly used for treating airway abnormality. However, underlying pathological mechanism and pathways involved has not been well studied. OBJECTIVES In this paper, we aim to further confirmed the anti-inflammatory and anti-fibrotic role of LKZP decoction in airway, and uncover the passible mechanism involved via comprehensive quantitative proteomic DIA-MS analysis. MATERIALS AND METHODS Mice asthmatic model was established with sensitizing and challenging with OVA. Lung function, pathological status, and inflammatory cytokines were assessed. Total of nine lung tissues were analyzed using proteomic DIA-MS analysis and 18 lung tissues were subjected to PRM validation. RESULTS Total of 704 differentially expressed proteins (DEPs) (363 up regulated, 341 down regulated) were quantified in comparison of asthmatic and healthy mice, while 152 DEPs (91 up regulated, 61 down regulated) were quantified in LKZP decoction treated compared to asthmatic mice. Total of 21 proteins were overlapped between three groups. ECM-receptor interaction was significantly enriched and commonly shared between downregulated DEPs in asthma and upregulated DEPs in LKZP decoction treated mice. Total of 20 proteins were subjected to parallel reaction monitoring (PRM) analysis and 16 of which were quantified. At last, two proteins, RMB 10 and COL6A6, were validated with significant difference (P < 0.001) in protein abundance. CONCLUSIONS Our results suggest that attenuated airway inflammation and fibrosis caused by LKZP decoction may associated with ECM-receptor interaction and RMB 10 and COL6A6 may be targeted by LKZP decoction in OVA-induced asthmatic mice.
Collapse
Affiliation(s)
- Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mohammadtursun Nabijan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Muhammadjan Abduwaki
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Mammat Nurahmat
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jing Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Alzahrani KS, Nadeem A, Ahmad SF, Al-Harbi NO, Ibrahim KE, El-Sherbeeny AM, Alhoshani AR, Alshammari MA, Alotaibi MR, Al-Harbi MM. Inhibition of spleen tyrosine kinase attenuates psoriasis-like inflammation in mice through blockade of dendritic cell-Th17 inflammation axis. Biomed Pharmacother 2018; 111:347-358. [PMID: 30593001 DOI: 10.1016/j.biopha.2018.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022] Open
Abstract
Psoriasis is a debilitating autoimmune disease of the skin characterized by acanthosis and hyperkeratosis resulting from excessive growth of keratinocytes in the epidermis and inflammatory infiltrates in the dermis. Innate immune cells such as dendritic cells (DCs), perform a critical role in the pathophysiology of psoriasis by presenting inflammatory/costimulatory signals for differentiation of Th17 cells. Recent studies point to the involvement of spleen tyrosine kinase (SYK) in inflammatory signaling cascade of DCs. However, it is yet to be determined whether SYK inhibition in DCs would lead to diminishment of psoriatic inflammation. Therefore, our study evaluated the effects of SYK inhibitor, R406 on imiquimod (IMQ)-induced psoriasis-like inflammation, expression of costimulatory/inflammatory molecules in DCs and their relationship with Th17/Treg cells. Our data show that R406 causes attenuation of IMQ-induced dermal inflammation as shown by reduction in ear/back skin thickness, acanthosis and myeloperoxidase activity. This was concurrent with reduction in inflammatory cytokines and co-stimulatory molecules in CD11c + DCs such as IL-6, IL-23, MHCII, and CD40. This favoured the suppression of Th17 cells and upregulation of Treg cells in R406-treated mice with psoriasis-like inflammation. Direct activation of TLR7 by IMQ in splenocytic cultures led to increased SYK expression in CD11c + DCs and release of IL-23/IL-6. IMQ-induced IL-6/IL-23 levels were significantly diminished by SYK inhibitor, R406 in splenocytic cultures. In essence, our study shows that SYK inhibition supresses psoriasis-like inflammation by modifying DC function in mice. Further, it implies that SYK inhibition could be a prospective therapeutic approach for the treatment of psoriasis-like inflammation.
Collapse
Affiliation(s)
- Khalid S Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad M El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
A Synthetic Cross-Species CD200R1 Agonist Suppresses Inflammatory Immune Responses In Vivo. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:350-358. [PMID: 30195773 PMCID: PMC6037911 DOI: 10.1016/j.omtn.2018.05.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/10/2023]
Abstract
Functional aptamers displaying agonistic or antagonistic properties are showing great promise as modulators of immune responses. Here, we report the development of a polyethylene glycol-modified (PEGylated) DNA aptamer as a cross-species (murine and human) CD200R1 agonist that modulates inflammatory responses in vivo. Specifically, DNA aptamers were discovered by performing independent SELEX searches on recombinant murine and human CD200R1. Aptamer motifs identified by next generation sequencing (NGS) were subsequently compared, leading to the discovery of motifs common to both targets. The CD200R1 DNA aptamer CCS13 displayed the highest agonistic activity toward CD200R1 in terms of suppressing the induction of cytotoxic T-lymphocytes (CTLs) in both human and murine allogeneic-mixed lymphocyte cultures (allo-MLCs). A 20-kDa polyethylene glycol (PEG) chain was covalently attached to the 5′ end of this aptamer, and the resulting conjugate was shown to block inflammatory responses in murine models of skin graft rejection and house-dust-mite-induced allergic airway inflammation. Importantly, this agonistic aptamer does not suppress CTL induction in 5-day allo-MLCs with responder cells derived from CD200R1−/− mice, indicating that its mode of action is directly linked to CD200R1 activation. This study suggests that one can derive agonistic DNA aptamers that can be verified as immuno-modulators in murine models with outcomes potentially translatable to the treatment of human conditions.
Collapse
|
10
|
Kurai J, Watanabe M, Sano H, Iwata K, Hantan D, Shimizu E. A Muscarinic Antagonist Reduces Airway Inflammation and Bronchoconstriction Induced by Ambient Particulate Matter in a Mouse Model of Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061189. [PMID: 29882826 PMCID: PMC6025324 DOI: 10.3390/ijerph15061189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023]
Abstract
Ambient particulate matter (PM) can increase airway inflammation and induce bronchoconstriction in asthma. This study aimed to investigate the effect of tiotropium bromide, a long-acting muscarinic antagonist, on airway inflammation and bronchoconstriction induced by ambient PM in a mouse model of asthma. We compared the effect of tiotropium bromide to that of fluticasone propionate and formoterol fumarate. BALB/c mice were sensitized to ovalbumin (OVA) via the airways and then administered tiotropium bromide, fluticasone propionate, or formoterol fumarate. Mice were also sensitized to ambient PM via intranasal instillation. Differential leukocyte counts and the concentrations of interferon (IFN)-γ, interleukin (IL)-5, IL-6, IL-13, and keratinocyte-derived chemokine (KC/CXCL1) were measured in bronchoalveolar lavage fluid (BALF). Diacron-reactive oxygen metabolites (dROMs) were measured in the serum. Airway resistance and airway inflammation were evaluated in lung tissue 24 h after the OVA challenge. Ambient PM markedly increased neutrophilic airway inflammation in mice with OVA-induced asthma. Tiotropium bromide improved bronchoconstriction, and reduced neutrophil numbers, decreased the concentrations of IL-5, IL-6, IL-13, and KC/CXCL1 in BALF. However, tiotropium bromide did not decrease the levels of dROMs increased by ambient PM. Though eosinophilic airway inflammation was reduced with fluticasone propionate, neutrophilic airway inflammation was unaffected. Bronchoconstriction was improved with formoterol fumarate, but not with fluticasone propionate. In conclusion, tiotropium bromide reduced bronchoconstriction, subsequently leading to reduced neutrophilic airway inflammation induced by ambient PM.
Collapse
Affiliation(s)
- Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University, 377-2 Ohnohigashi, Osakasayama, Osaka 589-0014, Japan.
| | - Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
- Mio Fertility Clinic, Reproductive Centre, 2-2-1 Kuzumo-Minami, Yonago, Tottori 683-0008, Japan.
| | - Degejirihu Hantan
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| |
Collapse
|
11
|
A 4-Week Model of House Dust Mite (HDM) Induced Allergic Airways Inflammation with Airway Remodeling. Sci Rep 2018; 8:6925. [PMID: 29720689 PMCID: PMC5932037 DOI: 10.1038/s41598-018-24574-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Animal models of allergic airways inflammation are useful tools in studying the pathogenesis of asthma and potential therapeutic interventions. The different allergic airways inflammation models available to date employ varying doses, frequency, duration and types of allergen, which lead to the development of different features of asthma; showing varying degrees of airways inflammation and hyper-responsiveness (AHR) and airways remodeling. Models that also exhibit airway remodeling, a key feature of asthma, in addition to AHR and airway inflammation typically require 5–12 weeks to develop. In this report, we describe a 4-week mouse model of house dust mite (HDM)-induced allergic airways inflammation, and compare the phenotypic features of two different doses of HDM exposures (10 µg and 25 µg) for 5 days/week with a well-characterized 8-week chronic HDM model. We found that 4 weeks of intranasal HDM (25 µg in 35 µl saline; 5 days/week) resulted in AHR, airway inflammation and airway remodeling that were comparable to the 8-week model. We conclude that this new 4-week HDM model is another useful tool in studies of human asthma that offers advantages of shorter duration for development and decreased costs when compared to other models that require longer durations of exposure (5–12 weeks) to develop.
Collapse
|
12
|
Maikawa CL, Zimmerman N, Ramos M, Shah M, Wallace JS, Pollitt KJG. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E429. [PMID: 29494515 PMCID: PMC5876974 DOI: 10.3390/ijerph15030429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
Abstract
Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Environmental Health Sciences, University of Massachusetts, 686 North Pleasant Street, Goessmann Laboratory Room 175, Amherst, MA 01003, USA.
| | - Naomi Zimmerman
- Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Manuel Ramos
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Mittal Shah
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK.
| | - James S Wallace
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
| | - Krystal J Godri Pollitt
- Environmental Health Sciences, University of Massachusetts, 686 North Pleasant Street, Goessmann Laboratory Room 175, Amherst, MA 01003, USA.
| |
Collapse
|
13
|
Patel D, Gaikwad S, Challagundla N, Nivsarkar M, Agrawal-Rajput R. Spleen tyrosine kinase inhibition ameliorates airway inflammation through modulation of NLRP3 inflammosome and Th17/Treg axis. Int Immunopharmacol 2017; 54:375-384. [PMID: 29202301 DOI: 10.1016/j.intimp.2017.11.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Repeated exposure to the fungal pathogen Aspergillus fumigates triggers spleen tyrosine kinase (SYK) signalling through dectin-1 activation, which is associated with deleterious airway inflammation. β-Glucan-induced dectin-1 signalling activates the NLRP3 inflammasome, which in turn rapidly produces IL-1β, a master regulator of inflammation. IL-1β expression results in Th17/Treg imbalance, pulmonary inflammation, and bystander tissue injury. This study reports that 3,4 methylenedioxy-β-nitrostyrene (MNS), a potent SYK inhibitor, markedly decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines in vitro. Furthermore, SYK inhibition markedly decreased β-glucan-induced IL-1β expression, suggesting that SYK is indispensable for NLRP3 inflammasome activation. Decreased IL-1β expression correlated with reduced Th17 response and enhanced immunosuppressive Treg response. Notably, SYK inhibition ameliorated inflammation caused by repeated intranasal β-glucan challenge in BALB/C mice. SYK inhibition also restored the Th17/Treg balance via decreased Th17 and increased Treg responses, as evidenced by decreased IL-17 and ror-γ levels. Additionally, inhibition of SYK increased IL-10 secreting CD4+FOXP3+ T cells that accompanied reduced T cell proliferation. Decreased IgA in the Bronchoalveolar lavage (BAL) fluid and serum also indicated the immunosuppressive potential of SYK inhibition. Histopathology data revealed that repeated β-glucan challenge caused substantial pulmonary damage, as indicated by septal thickening and interstitial lymphocytic, neutrophil and granulocyte recruitment. These processes were effectively prevented by SYK inhibition, resulting in lung protection. Collectively, our findings suggest that SYK inhibition ameliorates dectin-1- mediated detrimental pulmonary inflammation and subsequent tissue damage. Therefore, SYK can be a new target gene in the therapeutic approach against fungal induced airway inflammation.
Collapse
Affiliation(s)
- Divyesh Patel
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Sagar Gaikwad
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Naveen Challagundla
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Reena Agrawal-Rajput
- Department of Immunology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India.
| |
Collapse
|
14
|
Tabeling C, Herbert J, Hocke AC, Lamb DJ, Wollin SL, Erb KJ, Boiarina E, Movassagh H, Scheffel J, Doehn JM, Hippenstiel S, Maurer M, Gounni AS, Kuebler WM, Suttorp N, Witzenrath M. Spleen tyrosine kinase inhibition blocks airway constriction and protects from Th2-induced airway inflammation and remodeling. Allergy 2017; 72:1061-1072. [PMID: 27906453 DOI: 10.1111/all.13101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Spleen tyrosine kinase (Syk) is an intracellular nonreceptor tyrosine kinase, which has been implicated as central immune modulator promoting allergic airway inflammation. Syk inhibition has been proposed as a new therapeutic approach in asthma. However, the direct effects of Syk inhibition on airway constriction independent of allergen sensitization remain elusive. METHODS Spectral confocal microscopy of human and murine lung tissue was performed to localize Syk expression. The effects of prophylactic or therapeutic Syk inhibition on allergic airway inflammation, hyperresponsiveness, and airway remodeling were analyzed in allergen-sensitized and airway-challenged mice. The effects of Syk inhibitors BAY 61-3606 or BI 1002494 on airway function were investigated in isolated lungs of wild-type, PKCα-deficient, mast cell-deficient, or eNOS-deficient mice. RESULTS Spleen tyrosine kinase expression was found in human and murine airway smooth muscle cells. Syk inhibition reduced allergic airway inflammation, airway hyperresponsiveness, and pulmonary collagen deposition. In naïve mice, Syk inhibition diminished airway responsiveness independently of mast cells, or PKCα or eNOS expression and rapidly reversed established bronchoconstriction independently of NO. Simultaneous inhibition of Syk and PKC revealed additive dilatory effects, whereas combined inhibition of Syk and rho kinase or Syk and p38 MAPK did not cause additive bronchodilation. CONCLUSIONS Spleen tyrosine kinase inhibition directly attenuates airway smooth muscle cell contraction independent of its protective immunomodulatory effects on allergic airway inflammation, hyperresponsiveness, and airway remodeling. Syk mediates bronchoconstriction in a NO-independent manner, presumably via rho kinase and p38 MAPK, and Syk inhibition might present a promising therapeutic approach in chronic asthma as well as acute asthma attacks.
Collapse
Affiliation(s)
- C. Tabeling
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - J. Herbert
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - A. C. Hocke
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - D. J. Lamb
- Respiratory Diseases Research; Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach Germany
| | - S. L. Wollin
- Respiratory Diseases Research; Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach Germany
| | - K. J. Erb
- Respiratory Diseases Research; Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach Germany
| | - E. Boiarina
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - H. Movassagh
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - J. Scheffel
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. M. Doehn
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - S. Hippenstiel
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - M. Maurer
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. S. Gounni
- Department of Immunology; University of Manitoba; Winnipeg MB Canada
| | - W. M. Kuebler
- Department of Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
- The Keenan Research Centre for Biomedical Science of St. Michael's; University of Toronto; Toronto ON Canada
- Departments of Physiology and Surgery; University of Toronto; Toronto ON Canada
| | - N. Suttorp
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| | - M. Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine; Charité - Universitätsmedizin Berlin; Biberach Germany
| |
Collapse
|
15
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
16
|
Wang X, Hui Y, Zhao L, Hao Y, Guo H, Ren F. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 2017; 12:e0171721. [PMID: 28199353 PMCID: PMC5310903 DOI: 10.1371/journal.pone.0171721 10.1371/journal.pone.0171721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study investigated allergy immunotherapy potential of Lactobacillus paracasei L9 to prevent or mitigate the particulate matter 2.5 (PM2.5) enhanced pre-existing asthma in mice. Firstly, we used a mouse model of asthma (a 21-day ovalbumin (OVA) sensitization and challenge model) followed by PM2.5 exposure twice on the same day of the last challenge. PM2.5 was collected from the urban area of Beijing and underwent analysis for metals and polycyclic aromatic hydrocarbon contents. The results showed that PM2.5 exposure enhanced airway hyper-responsiveness (AHR) and lead to a mixed Th2/ IL-17 response in asthmatic mice. Secondly, the PM2.5 exposed asthmatic mice were orally administered with L9 (4×107, 4×109 CFU/mouse, day) from the day of first sensitization to the endpoint, for 20 days, to investigate the potential mitigative effect of L9 on asthma. The results showed that L9 ameliorated PM2.5 exposure enhanced AHR with an approximate 50% decrease in total airway resistance response to methacholine (48 mg/ml). L9 also prevented the exacerbated eosinophil and neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and decreased the serum level of total IgE and OVA-specific IgG1 by 0.44-fold and 0.3-fold, respectively. Additionally, cytokine production showed that L9 significantly decreased T-helper cell type 2 (Th2)-related cytokines (IL-4, -5, -13) and elevated levels of Th1 related IFN-γ in BALF. L9 also reduced the level of IL-17A and increased the level of TGF-β. Taken together, these results indicate that L9 may exert the anti-allergic benefit, possibly through rebalancing Th1/Th2 immune response and modulating IL-17 pro-inflammatory immune response. Thus, L9 is a promising candidate for preventing PM exposure enhanced pre-existing asthma.
Collapse
Affiliation(s)
- Xifan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
17
|
Wang X, Hui Y, Zhao L, Hao Y, Guo H, Ren F. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 2017; 12:e0171721. [PMID: 28199353 PMCID: PMC5310903 DOI: 10.1371/journal.pone.0171721] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigated allergy immunotherapy potential of Lactobacillus paracasei L9 to prevent or mitigate the particulate matter 2.5 (PM2.5) enhanced pre-existing asthma in mice. Firstly, we used a mouse model of asthma (a 21-day ovalbumin (OVA) sensitization and challenge model) followed by PM2.5 exposure twice on the same day of the last challenge. PM2.5 was collected from the urban area of Beijing and underwent analysis for metals and polycyclic aromatic hydrocarbon contents. The results showed that PM2.5 exposure enhanced airway hyper-responsiveness (AHR) and lead to a mixed Th2/ IL-17 response in asthmatic mice. Secondly, the PM2.5 exposed asthmatic mice were orally administered with L9 (4×107, 4×109 CFU/mouse, day) from the day of first sensitization to the endpoint, for 20 days, to investigate the potential mitigative effect of L9 on asthma. The results showed that L9 ameliorated PM2.5 exposure enhanced AHR with an approximate 50% decrease in total airway resistance response to methacholine (48 mg/ml). L9 also prevented the exacerbated eosinophil and neutrophil infiltration in bronchoalveolar lavage fluid (BALF), and decreased the serum level of total IgE and OVA-specific IgG1 by 0.44-fold and 0.3-fold, respectively. Additionally, cytokine production showed that L9 significantly decreased T-helper cell type 2 (Th2)-related cytokines (IL-4, -5, -13) and elevated levels of Th1 related IFN-γ in BALF. L9 also reduced the level of IL-17A and increased the level of TGF-β. Taken together, these results indicate that L9 may exert the anti-allergic benefit, possibly through rebalancing Th1/Th2 immune response and modulating IL-17 pro-inflammatory immune response. Thus, L9 is a promising candidate for preventing PM exposure enhanced pre-existing asthma.
Collapse
Affiliation(s)
- Xifan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Co-constructed by ministry of Education and Beijing Government, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Ye J, Salehi S, North ML, Portelli AM, Chow CW, Chan AWH. Development of a Novel Simulation Reactor for Chronic Exposure to Atmospheric Particulate Matter. Sci Rep 2017; 7:42317. [PMID: 28169367 PMCID: PMC5294446 DOI: 10.1038/srep42317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023] Open
Abstract
Epidemiological studies have shown that air pollution is associated with the morbidity and mortality from cardiopulmonary diseases. Currently, limited experimental models are available to evaluate the physiological and cellular pathways activated by chronic multi-pollutant exposures. This manuscript describes an atmospheric simulation reactor (ASR) that was developed to investigate the health effects of air pollutants by permitting controlled chronic in vivo exposure of mice to combined particulate and gaseous pollutants. BALB/c mice were exposed for 1 hr/day for 3 consecutive days to secondary organic aerosol (SOA, a common particulate air pollutant) at 10-150 μg/m3, SOA (30 μg/m3) + ozone (65 ppb) or SOA + ozone (65 ppb) + nitrogen dioxide (NO2; 100 ppb). Daily exposure to SOA alone led to increased airway hyperresponsiveness (AHR) to methacholine with increasing SOA concentrations. Multi-pollutant exposure with ozone and/or NO2 in conjunction with a sub-toxic concentration of SOA resulted in additive effects on AHR to methacholine. Inflammatory cell recruitment to the airways was not observed in any of the exposure conditions. The ASR developed in this study allows us to evaluate the chronic health effects of relevant multi-pollutant exposures at 'real-life' levels under controlled conditions and permits repeated-exposure studies.
Collapse
Affiliation(s)
- Jianhuai Ye
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Sepehr Salehi
- Division of Respirology and Multi-Organ Transplantation Programme, University Health Network, University of Toronto, Canada
| | - Michelle L. North
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Anjelica M. Portelli
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| | - Chung-Wai Chow
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
- Division of Respirology and Multi-Organ Transplantation Programme, University Health Network, University of Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Canada.
| | - Arthur W. H. Chan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
| |
Collapse
|
19
|
Salehi S, Wang X, Juvet S, Scott JA, Chow CW. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation. PLoS One 2017; 12:e0163614. [PMID: 28107345 PMCID: PMC5249072 DOI: 10.1371/journal.pone.0163614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma.
Collapse
Affiliation(s)
- Sepehr Salehi
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaomin Wang
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Jeremy A. Scott
- Division of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- Southern Ontario Center for Atmospheric Aerosol Research, Faculty of Applied Sciences, University of Toronto, Toronto, Ontario, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Health Sciences, Faculty of Health and Behavioural Sciences, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chung-Wai Chow
- Division of Respirology, Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Southern Ontario Center for Atmospheric Aerosol Research, Faculty of Applied Sciences, University of Toronto, Toronto, Ontario, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Multi-Organ Transplant Programme, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Arthur G, Bradding P. New Developments in Mast Cell Biology: Clinical Implications. Chest 2016; 150:680-93. [PMID: 27316557 DOI: 10.1016/j.chest.2016.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.
Collapse
Affiliation(s)
- Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, England.
| |
Collapse
|
21
|
Kumar RK, Herbert C, Foster PS. Mouse models of acute exacerbations of allergic asthma. Respirology 2016; 21:842-9. [PMID: 26922049 DOI: 10.1111/resp.12760] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/29/2015] [Accepted: 01/23/2016] [Indexed: 12/24/2022]
Abstract
Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney
| | - Paul S Foster
- Centre for Asthma and Respiratory Disease, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
22
|
Matsuda Y, Wang X, Oishi H, Guan Z, Saito M, Liu M, Keshavjee S, Chow CW. Spleen Tyrosine Kinase Modulates Fibrous Airway Obliteration and Associated Lymphoid Neogenesis After Transplantation. Am J Transplant 2016; 16:342-52. [PMID: 26308240 DOI: 10.1111/ajt.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction, the major cause of death following lung transplantation, usually manifests as irreversible airflow obstruction associated with obliterative bronchiolitis (OB), a lesion characterized by chronic inflammation, lymphoid neogenesis, fibroproliferation and small airway obliteration. Spleen tyrosine kinase (Syk), a tyrosine kinase that regulates B cell function and innate immunity, has been implicated in the pathogenesis of chronic inflammation and tissue repair. This study evaluated the role of Syk in development of OB, using an intrapulmonary tracheal transplant model of OB with the conditional Syk-knockout Syk(flox/flox) //rosa26-CreER(T2) mice and a Syk-selective inhibitor, GSK2230413. BALB/c trachea allografts were transplanted into Syk-knockout (Syk(del/del) ) mice or wild-type C57BL/6 recipients treated with GSK2230413. At day 28, histological analysis revealed that in the Syk(del/del) and GSK2230413-treated C57BL/6 recipients, the graft lumen remained open compared with allografts transplanted into Syk-expressing (Syk(flox/flox) ) and placebo control-treated C57BL/6 recipients. Immunofluorescence showed lymphoid neogenesis with distinct B and T cell zones in control mice. In contrast, lymphoid neogenesis was absent and few B or T cells were found in Syk(del/del) and GSK2230413-treated mice. These observations suggest that inhibition of Syk may be a potential therapeutic strategy for the management of OB following lung transplantation.
Collapse
Affiliation(s)
- Y Matsuda
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - X Wang
- Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - H Oishi
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Z Guan
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Saito
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - M Liu
- Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - S Keshavjee
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Latner Thoracic Surgery Laboratories, Division of Thoracic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - C-W Chow
- The Toronto Lung Transplant Program, University of Toronto, Toronto, Canada.,Division of Respirology, Department of Medicine, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Wang X, Khanna N, Wu J, Godri Pollitt K, Evans GJ, Chow CW, Scott JA. Syk mediates airway contractility independent of leukocyte function. Allergy 2015; 70:429-35. [PMID: 25556883 DOI: 10.1111/all.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Syk, an immune regulatory tyrosine kinase, plays a role in inflammatory disease processes. We recently reported a role for epithelial expression of Syk in the airways hyper-responsiveness in response to air pollution in a mouse model of asthma. The aim of this study was to further investigate the role of Syk in airway contractility in response to methacholine (MCh) and particulate matter (PM) air pollutants, in the absence of underlying inflammation. METHODS We used Syk(flox/flox) //rosa26CreER(T) (2) conditional Syk knockout mice to evaluate respiratory mechanics and MCh responsiveness following PM exposure in vivo using the ventilator-based flexiVent system. RESULTS While total and differential cell counts in bronchoalveolar lavage fluid were similar between the Syk(flox/flox) and Syk(del/del) mice, central airways respiratory resistance (RN ) to MCh was significantly augmented following PM exposure between Syk-intact (Syk(flox/flox) ) and Syk-deficient (Syk(del/del) ) mice (RN (max) : 2.06 ± 0.29 vs. 1.29 ± 0.10, respectively; p < 0.05, n = 8-10/group). We employed live videomicroscopy to investigate changes in airway luminal diameter using ex vivo lung slices, which were devoid of circulating leukocytes. MCh reduced the airway luminal area of Syk(flox/flox) mice to 81.1 ± 1.4% of baseline, which was virtually abrogated in Syk(del/del) mice (luminal area = 93.2 ± 0.5%, n = 5/group, p < 0.05). In response to PM exposure, Syk(flox/flox) airways contracted to 73.8 ± 2.7% of baseline luminal diameter, whereas Syk(del/del) airways exhibited minimal contractility to PM and MCh (90.0 ± 1.3% of baseline, n = 5/group, p < 0.05). CONCLUSIONS These observations suggest that Syk mediates airway contractility in the normal and allergic airways, independent of its role and function in leukocytes, and supports a paracrine role for airway epithelial Syk in modulating airway smooth muscle activity.
Collapse
Affiliation(s)
- X. Wang
- Division of Respirology; Department of Medicine; Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - N. Khanna
- Division of Respirology; Department of Medicine; Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - J. Wu
- Division of Respirology; Department of Medicine; Faculty of Medicine; University of Toronto; Toronto ON Canada
| | - K. Godri Pollitt
- Faculty of Applied Science and Engineering; Southern Ontario Center for Atmospheric Aerosol Research; University of Toronto; Toronto ON Canada
| | - G. J. Evans
- Faculty of Applied Science and Engineering; Southern Ontario Center for Atmospheric Aerosol Research; University of Toronto; Toronto ON Canada
| | - C.-W. Chow
- Division of Respirology; Department of Medicine; Faculty of Medicine; University of Toronto; Toronto ON Canada
- Faculty of Applied Science and Engineering; Southern Ontario Center for Atmospheric Aerosol Research; University of Toronto; Toronto ON Canada
- Multi-Organ Transplant Programme; University Health Network; Toronto ON Canada
- Division of Occupational and Environmental Health; Faculty of Medicine; Dalla Lana School of Public Health; University of Toronto; Toronto ON Canada
| | - J. A. Scott
- Faculty of Applied Science and Engineering; Southern Ontario Center for Atmospheric Aerosol Research; University of Toronto; Toronto ON Canada
- Division of Occupational and Environmental Health; Faculty of Medicine; Dalla Lana School of Public Health; University of Toronto; Toronto ON Canada
- Department of Health Sciences; Faculty of Health and Behavioural Sciences; Lakehead University; Thunder Bay ON Canada
- Division of Medical Sciences; Northern Ontario School of Medicine; Thunder Bay ON Canada
| |
Collapse
|
24
|
Bibi H, Reany O, Waisman D, Keinan E. Prophylactic treatment of asthma by an ozone scavenger in a mouse model. Bioorg Med Chem Lett 2014; 25:342-6. [PMID: 25499435 DOI: 10.1016/j.bmcl.2014.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
Our hypothesis that inflammation in asthma involves production of ozone by white blood cells and that ozone could be an inflammatory mediator suggests that scavengers of reactive oxygen species (ROS), for example, electron-rich olefins, could serve for prophylactic treatment of asthma. Olefins could provide chemical protection against either exogenous or endogenous ozone and other ROS. BALB/c mice pretreated by inhalation of d-limonene before an ovalbumin challenge exhibited significant attenuation of the allergic asthma symptoms. Diminution of the inflammatory process was evident by reduced levels of aldehydes, reduced counts of neutrophils in the BAL fluid and by histological tests. A surprising systemic effect was observed by decreased levels of aldehydes in the spleen, suggesting that the examination of tissues and organs that are remote from the inflammation foci could provide valuable information on the distribution of the oxidative stress and may serve as guide for targeted treatment.
Collapse
Affiliation(s)
- Haim Bibi
- Department of Pediatrics, Barzilai Medical Center, Hahistadrout St. 2, Ashkelon 78278, Israel; Faculty of Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Reany
- Department of Natural Sciences, The Open University of Israel, 1 University Road, PO Box 808, Ra'anana 43537, Israel
| | - Dan Waisman
- Department of Neonatology, Carmel Medical Center, Michal St. 7, Haifa 3436212, Israel; Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ehud Keinan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
25
|
Small-molecule inhibitors of spleen tyrosine kinase as therapeutic agents for immune disorders: will promise meet expectations? Future Med Chem 2014; 6:1811-27. [DOI: 10.4155/fmc.14.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following on the heels of the US FDA approval of tofacitinib (Xeljanz, Pfizer, USA), an inhibitor of the JAK family members, and ibrutinib (Imbruvica, Janssen, Belgium), an inhibitor of BTK, for the treatment of rheumatoid arthritis and chronic lymphocytic leukemia, respectively, there is now renewed interest in the biopharmaceutical industry in the development of orally active small-molecule agents targeting key protein kinases implicated in immune regulation. One such ‘immunokinase’ target is SYK, a non-receptor tyrosine protein kinase critical for transducing intracellular signaling cascades for various immune recognition receptors, such as the B-cell receptor and the Fc receptor. Here, we review and discuss the progress and challenges in the development of small-molecule inhibitors of SYK and their potential as a new class of disease-modifying immunosuppressive agents for certain inflammatory and autoimmune disorders.
Collapse
|
26
|
Borriello F, Granata F, Varricchi G, Genovese A, Triggiani M, Marone G. Immunopharmacological modulation of mast cells. Curr Opin Pharmacol 2014; 17:45-57. [PMID: 25063971 DOI: 10.1016/j.coph.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/31/2022]
Abstract
Mast cells produce a wide spectrum of mediators and they have been implicated in several physiopathological conditions (e.g. allergic reactions and certain tumors). Pharmacologic agents that modulate the release of mediators from mast cells has helped to elucidate the biochemical mechanisms by which immunological and non-immunological stimuli activate these cells. Furthermore, the study of surface receptors and signaling pathways associated with mast cell activation revealed novel pharmacologic targets. Thus, the development of pharmacologic agents based on this new wave of knowledge holds promise for the treatment of several mast cell-mediated disorders.
Collapse
Affiliation(s)
- Francesco Borriello
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, School of Medicine, Salerno, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, School of Medicine, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
27
|
Geahlen RL. Getting Syk: spleen tyrosine kinase as a therapeutic target. Trends Pharmacol Sci 2014; 35:414-22. [PMID: 24975478 DOI: 10.1016/j.tips.2014.05.007] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic protein tyrosine kinase well known for its ability to couple immune cell receptors to intracellular signaling pathways that regulate cellular responses to extracellular antigens and antigen-immunoglobulin (Ig) complexes of particular importance to the initiation of inflammatory responses. Thus, Syk is an attractive target for therapeutic kinase inhibitors designed to ameliorate the symptoms and consequences of acute and chronic inflammation. Its more recently recognized role as a promoter of cell survival in numerous cancer cell types ranging from leukemia to retinoblastoma has attracted considerable interest as a target for a new generation of anticancer drugs. This review discusses the biological processes in which Syk participates that have made this kinase such a compelling drug target.
Collapse
Affiliation(s)
- Robert L Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 210 South University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
28
|
Norman P. Spleen tyrosine kinase inhibitors: a review of the patent literature 2010 - 2013. Expert Opin Ther Pat 2014; 24:573-95. [PMID: 24555683 DOI: 10.1517/13543776.2014.890184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The non-receptor tyrosine kinase, spleen tyrosine kinase (Syk), is primarily expressed in haematopoietic cells and appears to be particularly important in B cells. Syk is involved in signal transduction processes and appears to regulate allergic, inflammatory and autoimmune responses. It also appears to play a significant role in the development of haematological malignancies. Inhibitors of Syk are potentially useful in treating asthma, rheumatoid arthritis, lupus, chronic lymphocytic leukaemia and lymphomas. AREAS COVERED This article reviews the increasing number of patent filings between 2010 and 2013 claiming Syk inhibitors and focuses on the multiple structural classes of Syk inhibitors disclosed. It also comments on recent developments with Syk inhibitors, both clinical results and licensing deals. EXPERT OPINION The increased interest in the identification of Syk inhibitors has seen a sharp increase in patent filings claiming such compounds. However, the number of these is well below that of filings relating to other pro-inflammatory kinases (p38, JAK). These filings have also claimed an increasingly diverse range of chemical classes moving away from the 2,4-diaminopyrimidine motif present in drugs such as fostamatinib and PRT-06207. Many of the claimed compounds are Syk inhibitors with potencies considerably better than fostamatinib. However, good kinase selectivity is also likely to be essential if a Syk inhibitor is to prove useful enough to emulate the JAK inhibitor tofacitinib in gaining marketing authorisation. Recent clinical failures with Syk inhibitors are expected to result in a decrease in the rate of patent filings claiming Syk inhibitors.
Collapse
Affiliation(s)
- Peter Norman
- Norman Consulting , 18 Pink Lane, Burnham, Bucks, SL1 8JW , UK
| |
Collapse
|
29
|
Moy LY, Jia Y, Caniga M, Lieber G, Gil M, Fernandez X, Sirkowski E, Miller R, Alexander JP, Lee HH, Shin JD, Ellis JM, Chen H, Wilhelm A, Yu H, Vincent S, Chapman RW, Kelly N, Hickey E, Abraham WM, Northrup A, Miller T, Houshyar H, Crackower MA. Inhibition of spleen tyrosine kinase attenuates allergen-mediated airway constriction. Am J Respir Cell Mol Biol 2014; 49:1085-92. [PMID: 23889698 DOI: 10.1165/rcmb.2013-0200oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a key activator of signaling pathways downstream of multiple surface receptors implicated in asthma. SYK function has been extensively studied in mast cells downstream of the high-affinity IgE receptor, FcεR1. Preclinical studies have demonstrated a role for SYK in models of allergic inflammation, but a role in airway constriction has not been demonstrated. Here, we have used a potent and selective pharmacological inhibitor of SYK to determine the role of SYK in allergen-mediated inflammation and airway constriction in preclinical models. Attenuation of allergic airway responses was evaluated in a rat passive anaphylaxis model and rat and sheep inhaled allergen challenge models, as well as an ex vivo model of allergen-mediated airway constriction in rats and cynomolgus monkeys. Pharmacological inhibition of SYK dose-dependently blocked IgE-mediated tracheal plasma extravasation in rats. In a rat ovalbumin-sensitized airway challenge model, oral dosing with an SYK inhibitor led to a dose-dependent reduction in lung inflammatory cells. Ex vivo analysis of allergen-induced airway constriction in ovalbumin-sensitized brown Norway rats showed a complete attenuation with treatment of a SYK inhibitor, as well as a complete block of allergen-induced serotonin release. Similarly, allergen-mediated airway constriction was attenuated in ex vivo studies from nonhuman primate lungs. Intravenous administration of an SYK inhibitor attenuated both early- and late-phase allergen-induced increases in airway resistance in an Ascaris-sensitive sheep allergen challenge model. These data support a key role for SYK signaling in mediating allergic airway responses.
Collapse
|