1
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Busolin A, Vely F, Eymard-Duvernay G, Barlogis V, Fabre A. Systematic review of phenotypes and genotypes of patients with gastrointestinal defects and immunodeficiency syndrome-1 (GIDID1) (related to TTC7A). Intractable Rare Dis Res 2024; 13:89-98. [PMID: 38836179 PMCID: PMC11145403 DOI: 10.5582/irdr.2023.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 06/06/2024] Open
Abstract
The objective was to conduct a comprehensive review of the morbidity and mortality observed in published patients with gastrointestinal defects and immunodeficiency syndrome-1 (GIDID1) related to TTC7A abnormalities. This included phenotypic, genotypic, and therapeutic aspects. Twenty-seven articles were included, which represented a total of 83 patients. Mortality was of 65.8% of the cases with a mean death at 11.8 months. The mortality rate was 197.1 per 1,000 patients-years, which is significantly higher than other enteropathy types caused by defects in epithelial trafficking and polarity (such as MOY5B, STX3, EPCAM, SPINT2, TTC37 and SKIV2L). Prematurity was also significant, with an average gestational age of 34.8 weeks. Antenatal signs were observed in 30 patients, including 14 cases of hydramnios. Three distinct phenotypic associations were identified: immune deficiency and multiple intestinal atresia without enteropathy (ID/MI), immune deficiency and enteropathy without atresia (ID/E), and immune deficiency with multiple intestinal atresia and enteropathy (ID/ MIA/E). The mortality rates for these groups were 91.6%, 47.3% and 55.5%, respectively (p = 0.03), at earlier age of mortality for the ID/MIA phenotype and a later one for the ID/E phenotype. ELA syndrome (Enteropathy, Lymphopenia and Alopecia) was only observed in the ID/E group. Among the three genotypes (double variant Nonsense NS/NS, variant Missense/Nonsense MS/NS, double variant Missense MS/MS), NS/NS was significantly associated with the ID/MIA phenotype (77.8%), while MS/MS was associated with the ID/E phenotype (73.7%). Few therapies have been shown to be effective in treating enteropathy, particularly immunosuppressive therapies and hematopoietic stem cell transplants. The use of Leflunomide in one patient did not yield successful treatment outcomes. In conclusion, we confirm association between mortality and phenotype, which is itself linked to genotype.
Collapse
Affiliation(s)
- Amelie Busolin
- APHM, Multidisciplinary Pediatrics Departement, La Timone Children's Hospital, Marseille, France
| | - Frederic Vely
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Immunology Department, Marseille Immunopôle, Marseille, France
| | | | - Vincent Barlogis
- Pediatric Haematology Department, Timone Enfant, APHM, Aix-Marseille University, Marseille, France
| | - Alexandre Fabre
- APHM, Multidisciplinary Pediatrics Departement, La Timone Children's Hospital, Marseille, France
| |
Collapse
|
4
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
6
|
Chen J, Chen M, Lin Y, Li X. Meconium peritonitis in multiple intestinal atresia with combined immune deficiency caused by a TTC7A mutation: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241227129. [PMID: 38292879 PMCID: PMC10826389 DOI: 10.1177/2050313x241227129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
Multiple intestinal atresia with combined immune deficiency is a severe autosomal recessive disorder caused by the tetratricopeptide repeat domain 7A (TTC7A) gene deficiency, which is characterized by extensive intestinal defects with immune deficiency. This report describes a fetus with TTC7A deficiency who developed meconium peritonitis in utero. Evidence suggests that patients with TTC7A deficiency present with intestinal defects as early as in utero. In this case, intestinal abnormalities were considered during the prenatal examination at week 28, and chromosome and genetic tests were performed. The results indicated that the fetus had a TTC7A complex heterozygous mutation. The male infant underwent surgical treatment after birth and developed severe infection and sepsis, which confirmed the presence of multiple intestinal atresia with combined immune deficiency. Our case suggests an association between meconium peritonitis and the TTC7A gene deficiency, indicating the possibility of severe intestinal defects and immune deficiencies after birth and guiding subsequent fetal treatment choices.
Collapse
Affiliation(s)
- Jiongfei Chen
- Obstetric and Gynecologic, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Meiwen Chen
- Obstetric and Gynecologic, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ya Lin
- Obstetric and Gynecologic, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangjuan Li
- Obstetric and Gynecologic, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Mishra I, Gupta K, Mishra R, Chaudhary K, Sharma V. An Exploration of Organoid Technology: Present Advancements, Applications, and Obstacles. Curr Pharm Biotechnol 2024; 25:1000-1020. [PMID: 37807405 DOI: 10.2174/0113892010273024230925075231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. The capacity to research complex biological processes and disorders in a controlled setting is laid out by these miniature organ-like structures. OBJECTIVES This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. It aims to emphasize the pivotal role of organoids in disease modeling, drug discovery, developmental biology, precision medicine, and fundamental research. METHODS The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders, and infectious diseases. CONCLUSION The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Komal Gupta
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| | - Raghav Mishra
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Pharmacy, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vikram Sharma
- Department of Pharmacy, Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
8
|
Suresh S, Burke JE. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease. Adv Biol Regul 2023; 90:100996. [PMID: 37979461 DOI: 10.1016/j.jbior.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Jeffrey A, Coyle LA, Samaranayake D, Boyle T, Drummond J, Fernando SL. Central Nervous System (CNS) T-Cell Lymphoma as the Presenting Manifestation of Late-Onset Combined Immunodeficiency. Case Rep Hematol 2023; 2023:6650410. [PMID: 37886671 PMCID: PMC10599841 DOI: 10.1155/2023/6650410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023] Open
Abstract
Late-onset combined immunodeficiency (LOCID), considered now a subset of common variable immunodeficiency (CVID) disorders, is characterized by a predominantly T-cell immune defect. LOCID has a distinct phenotype from CVID with a greater risk of lymphoproliferative complications. As compared to the CVID cohort, LOCID patients also have increased rates of splenomegaly and granulomatous disease. We report a case of central nervous system (CNS) T-cell lymphoma in a 67-year-old male as the presenting manifestation of LOCID. The patient achieved a complete response to therapy after 4 cycles of MATRix (methotrexate, cytarabine, and thiotepa) and 2 cycles of ICE (etoposide, carboplatin, and ifosfamide) chemotherapy followed by CNS-directed autologous stem cell transplantation. Intravenous immunoglobulin replacement was commenced to address the underlying immunodeficiency. Pulmonary lesions consistent with a diagnosis of granulomatous and lymphocytic interstitial lung disease (GLILD) were identified as a second noninfectious complication of LOCID. The pulmonary lesions resolved after chemotherapy and immunoglobulin replacement. The patient remains well with no evidence of disease recurrence now more than 18 months after completion of therapy. This is the first reported case of T-cell lymphoma in an adult patient with LOCID. Further study is needed to elucidate the mechanisms of transformation of B- or T-cells to lymphoproliferation in primary immunodeficiency patients as well as research to inform evidence-based therapeutic strategies for this challenging cohort of patients.
Collapse
Affiliation(s)
- Anthony Jeffrey
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Luke A. Coyle
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
- Department of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Dishan Samaranayake
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Therese Boyle
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, St Leonards, NSW, Australia
- Immunology Laboratory, Royal North Shore Hospital, New South Wales Health Pathology, St Leonards, NSW, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, Sydney, Australia
| | - Suran L. Fernando
- Department of Medicine, The University of Sydney, Sydney, NSW, Australia
- Department of Clinical Immunology and Allergy, Royal North Shore Hospital, St Leonards, NSW, Australia
- Immunology Laboratory, Royal North Shore Hospital, New South Wales Health Pathology, St Leonards, NSW, Australia
| |
Collapse
|
10
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
11
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
12
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Babcock SJ, Flores-Marin D, Thiagarajah JR. The genetics of monogenic intestinal epithelial disorders. Hum Genet 2023; 142:613-654. [PMID: 36422736 PMCID: PMC10182130 DOI: 10.1007/s00439-022-02501-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Monogenic intestinal epithelial disorders, also known as congenital diarrheas and enteropathies (CoDEs), are a group of rare diseases that result from mutations in genes that primarily affect intestinal epithelial cell function. Patients with CoDE disorders generally present with infantile-onset diarrhea and poor growth, and often require intensive fluid and nutritional management. CoDE disorders can be classified into several categories that relate to broad areas of epithelial function, structure, and development. The advent of accessible and low-cost genetic sequencing has accelerated discovery in the field with over 45 different genes now associated with CoDE disorders. Despite this increasing knowledge in the causal genetics of disease, the underlying cellular pathophysiology remains incompletely understood for many disorders. Consequently, clinical management options for CoDE disorders are currently limited and there is an urgent need for new and disorder-specific therapies. In this review, we provide a general overview of CoDE disorders, including a historical perspective of the field and relationship to other monogenic disorders of the intestine. We describe the genetics, clinical presentation, and known pathophysiology for specific disorders. Lastly, we describe the major challenges relating to CoDE disorders, briefly outline key areas that need further study, and provide a perspective on the future genetic and therapeutic landscape.
Collapse
Affiliation(s)
- Stephen J Babcock
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - David Flores-Marin
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Enders Rm 605, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Keane OM, Carthy TR, Hanrahan JP, Matthews D, McEwan JC, Rowe SJ, Kenneally J, Mee JF. Risk factors for, and genetic association with, intestinal atresia in dairy calves. Anim Genet 2023; 54:104-112. [PMID: 36639915 DOI: 10.1111/age.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/13/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Intestinal atresia is an under-diagnosed congenital defect in cattle. It results in complete occlusion of the intestinal lumen and, unless surgically corrected, results in death or euthanasia of the affected calf. There is limited information on the incidence of this condition or on risk factors, including predisposing alleles, associated with the defect. In this study, active surveillance of 39 dairy farms over 8 years identified 197 cases of intestinal atresia among 56 454 calves born, an incidence of 0.35%. The majority of cases (83%) had occlusion of the jejunum, although cases with blockage of the colon (14%) or anus (4%) were also identified. The defect was twice as common in male as in female calves (p < 0.0001), and was more common in progeny of older cows than in progeny of first or second lactation cows (p < 0.001). Year and farm of birth were also significantly associated with incidence (p < 0.05). The incidence of intestinal atresia was highest among the progeny of three related Jersey sires, suggesting that a gene for intestinal atresia was segregating within this family. Linkage analysis utilising 28 affected progeny of two half-sib putative carrier sires identified two putative quantitative trait loci associated with the defect, on chromosomes 14 and 26, although no clear candidate genes were identified. There was no evidence of a sire-effect among the progeny of Holstein-Friesian sires. However, a case-control genome-wide association study involving 91 cases and 375 healthy controls, identified 31 SNP in 18 loci as associated with the defect in this breed. These data suggest that intestinal atresia in dairy calves is not a simple Mendelian trait as previously reported but a complex multigenic disorder.
Collapse
Affiliation(s)
- Orla M Keane
- Animal & Bioscience Department, Teagasc, Dunsany, Co. Meath, Ireland
| | - Tara R Carthy
- Animal & Bioscience Department, Teagasc, Dunsany, Co. Meath, Ireland
| | - James P Hanrahan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Daragh Matthews
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - John C McEwan
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - Suzanne J Rowe
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | | | - John F Mee
- Animal & Bioscience Department, Teagasc, Fermoy, Co. Cork, Ireland
| |
Collapse
|
15
|
Bosticardo M, Notarangelo LD. Human thymus in health and disease: Recent advances in diagnosis and biology. Semin Immunol 2023; 66:101732. [PMID: 36863139 PMCID: PMC10134747 DOI: 10.1016/j.smim.2023.101732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
The thymus is the crucial tissue where thymocytes develop from hematopoietic precursors that originate from the bone marrow and differentiate to generate a repertoire of mature T cells able to respond to foreign antigens while remaining tolerant to self-antigens. Until recently, most of the knowledge on thymus biology and its cellular and molecular complexity have been obtained through studies in animal models, because of the difficulty to gain access to thymic tissue in humans and the lack of in vitro models able to faithfully recapitulate the thymic microenvironment. This review focuses on recent advances in the understanding of human thymus biology in health and disease obtained through the use of innovative experimental techniques (eg. single cell RNA sequencing, scRNAseq), diagnostic tools (eg. next generation sequencing), and in vitro models of T-cell differentiation (artificial thymic organoids) and thymus development (eg. thymic epithelial cell differentiation from embryonic stem cells or induced pluripotent stem cells).
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Mongkonsritragoon W, Huang J, Fredrickson M, Seth D, Poowuttikul P. Positive Newborn Screening for Severe Combined Immunodeficiency: What Should the Pediatrician Do? CLINICAL MEDICINE INSIGHTS: PEDIATRICS 2023; 17:11795565231162839. [PMID: 37025258 PMCID: PMC10071162 DOI: 10.1177/11795565231162839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 04/03/2023]
Abstract
Severe combined immunodeficiency (SCID) is a group of diseases characterized by low T-cell count and impaired T-cell function, resulting in severe cellular and humoral immune defects. If not diagnosed and treated promptly, infants affected by this condition can develop severe infections which will result in death. Delayed treatment can markedly reduce the survival outcome of infants with SCID. T-cell receptor excision circle (TREC) levels are measured on newborn screening to promptly identify infants with SCID. It is important for primary care providers and pediatricians to understand the approach to managing infants with positive TREC-based newborn screening as they may be the first contact for infants with SCID. Primary care providers should be familiar with providing anticipatory guidance to the family in regard to protective isolation, measures to minimize the risk of infection, and the coordination of care with the SCID coordinating center team of specialists. In this article, we use case-based scenarios to review the principles of TREC-based newborn screening, the genetics and subtypes of SCID, and management for an infant with a positive TREC-based newborn screen.
Collapse
Affiliation(s)
- Wimwipa Mongkonsritragoon
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Jenny Huang
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Mary Fredrickson
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
| | - Divya Seth
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Pavadee Poowuttikul
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
- Pavadee Poowuttikul, Division Chief of
Allergy/Immunology and Rheumatology, Training Program Director of
Allergy/Immunology, Medical Director of Primary Immunodeficiency Newborn
Screening Follow-up Coordinating Center, Central Michigan University, Children’s
Hospital of Michigan, 3950 Beaubien, 4th Floor, Pediatric Specialty Building,
Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Sabbatini S, Ganji N, Chusilp S, Balsamo F, Li B, Pierro A. Intestinal atresia and necrotizing enterocolitis: Embryology and anatomy. Semin Pediatr Surg 2022; 31:151234. [PMID: 36417784 DOI: 10.1016/j.sempedsurg.2022.151234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The primitive gut originates at week 3 of gestation from the endoderm, with posterior incorporation of the remaining embryo layers. Wnt, Notch and TLR4 pathways have been shown to play central roles in the correct development of the intestine. The classical hypothesis for intestinal atresia development consists of failure in bowel recanalization or a vascular accident with secondary bowel reabsorption. These have been challenged due to the high frequency of associated malformations, and furthermore, with the discovery of molecular pathways and genes involved in bowel formation and correlated defects producing atresia. Necrotizing enterocolitis (NEC) has a multifactorial pathogenesis with prematurity being the most important risk factor; therefore, bowel immaturity plays a central role in NEC. Some of the same molecular pathways involved in gut maturation have been found to correlate with the predisposition of the immature bowel to develop the pathological findings seen in NEC.
Collapse
Affiliation(s)
- S Sabbatini
- Translational Medicine Program, The Hospital for Sick Children, Toronto
| | - N Ganji
- Translational Medicine Program, The Hospital for Sick Children, Toronto
| | - S Chusilp
- Translational Medicine Program, The Hospital for Sick Children, Toronto
| | - F Balsamo
- Translational Medicine Program, The Hospital for Sick Children, Toronto
| | - B Li
- Translational Medicine Program, The Hospital for Sick Children, Toronto
| | - A Pierro
- Translational Medicine Program, The Hospital for Sick Children, Toronto; Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto.
| |
Collapse
|
19
|
Barkat K. Prenatal imaging and whole-exome sequencing identify novel tetratricopeptide repeat domain 7A mutation in foetus with gastrointestinal atresia: a case report. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tetratricopeptide repeat domain 7A (TTC7A, chromosome 2p21) is a highly conserved structural motif essential for multiprotein scaffolding and cell survival. Fewer than 60 cases of TTC7A deficiency have been reported globally. It produces multisystemic disease phenotypes which are lethal in two-thirds of patients, with a median survival age of 12 months. It is predominantly detected postnatally, often rendering medical and surgical interventions futile.
Case presentation
We report the antenatal sonographic and magnetic resonance imaging characteristics of a novel phenotype of TTC7A-deficiency presenting with gastrointestinal atresia. This has never been previously documented. The diagnosis was confirmed via whole-exome next-generation sequencing, thus facilitating prompt initiation of management and prolonging viability.
Conclusions
Novel insight into the prenatal morphological characteristics of TTC7A-deficiency phenotypes expands knowledge of this rare condition. Furthermore, antenatal recognition facilitates targeted investigation, genetic counselling, and earlier multidisciplinary intervention to prolong viability of this predominantly lethal condition.
Collapse
|
20
|
Zhang K, Kang L, Zhang H, Bai L, Pang H, Liu Q, Zhang X, Chen D, Yu H, Lv Y, Gao M, Liu Y, Gai Z, Wang D, Li X. A synonymous mutation in PI4KA impacts the transcription and translation process of gene expression. Front Immunol 2022; 13:987666. [DOI: 10.3389/fimmu.2022.987666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol-4-kinase alpha (PI4KIIIα), encoded by the PI4KA gene, can synthesize phosphatidylinositol-4-phosphate (PI-4-P), which serves as a specific membrane marker and is instrumental in signal transduction. PI4KA mutations can cause autosomal recessive diseases involving neurological, intestinal, and immunological conditions (OMIM:619621, 616531, 619708). We detected sepsis, severe diarrhea, and decreased immunoglobulin levels in one neonate. Two novel compound heterozygous mutations, c.5846T>C (p.Leu1949Pro) and c.3453C>T (p.Gly1151=), were identified in the neonate from the father and the mother, respectively. Sanger sequencing and reverse transcription polymerase chain reaction (RT-PCR) for peripheral blood and minigene splicing assays showed a deletion of five bases (GTGAG) with the c.3453C>T variant at the mRNA level, which could result in a truncated protein (p.Gly1151GlyfsTer17). The missense mutation c.5846T>C (p.Leu1949Pro) kinase activity was measured, and little or no catalytic activity was detected. According to the clinical characteristics and gene mutations with functional verification, our pediatricians diagnosed the child with a combined immunodeficiency and intestinal disorder close to gastrointestinal defects and immunodeficiency syndrome 2 (GIDID2; OMIM: 619708). Medicines such as immunomodulators are prescribed to balance immune dysregulation. This study is the first report of a synonymous mutation in the PI4KA gene that influences alternative splicing. Our findings expand the mutation spectrum leading to PI4KIIIa deficiency-related diseases and provide exact information for genetic counseling.
Collapse
|
21
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
22
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Chen YE, Chen J, Guo W, Zhang Y, Li J, Xie H, Shen T, Ge Y, Huang Y, Zheng W, Lu M. Clinical Characteristics, In Silico Analysis, and Intervention of Neonatal-Onset Inflammatory Bowel Disease With Combined Immunodeficiency Caused by Novel TTC7A Variants. Front Genet 2022; 13:921808. [PMID: 35783276 PMCID: PMC9243236 DOI: 10.3389/fgene.2022.921808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 02/03/2023] Open
Abstract
We aimed to explore the genotypic and phenotypic characteristics of neonatal-onset inflammatory bowel disease (IBD) with combined immunodeficiency due to TTC7A mutation. We examined the clinical manifestations, imaging results, endoscopic and histological findings, interventions, and prognosis of a proband with neonatal-onset IBD and performed biochemical analyses, whole-exome sequencing (WES), and in silico analysis. Our proband developed severe early-onset diarrhea, malnutrition, electrolyte imbalance, dehydration, and recurrent infections after birth. Radiographic and ultrasonic images showed no specific manifestations. Endoscopic and histological examination revealed chronic inflammation. Immune function examination indicated immunodeficiency. WES identified compound heterozygous TTC7A mutations (c.2355+4A>G, c.643G>T) in the proband. In the expression analysis, no abnormal splicing in the TTC7A sequence was observed due to the c.2355+4A>G mutation; however, the mRNA expression was reduced. The proband’s condition did not improve after treatment with methylprednisolone or leflunomide. The proband died when treatment was stopped at the age of 5 months and 19 days. Compound heterozygous mutations (c.2355+4A>G, c.643G>T) in the TTC7A gene are described and verified for the first time. Our report expands the phenotypic spectrum of TTC7A mutations and the genotypic spectrum of very early-onset IBD with combined immunodeficiency.
Collapse
Affiliation(s)
- Yun-e Chen
- Department of Pediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jingfang Chen
- Department of Gastroenterology, Xiamen Branch of the Children’s Hospital of Fudan University (Xiamen Children’s Hospital), Xiamen, China
| | - Wenxing Guo
- Department of Pediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yanhong Zhang
- Department of Ultrasound Medicine, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Jialing Li
- Department of Gastroenterology, Xiamen Branch of the Children’s Hospital of Fudan University (Xiamen Children’s Hospital), Xiamen, China
| | - Hui Xie
- Department of Pediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Tong Shen
- Department of Pediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yunsheng Ge
- Prenatal Diagnostic Center Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yanru Huang
- Prenatal Diagnostic Center Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Yanru Huang, ; Mei Lu,
| | - Wenying Zheng
- Genokon Institute of Medical Science and Laboratory, Xiamen, China
| | - Mei Lu
- Department of Pediatrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Yanru Huang, ; Mei Lu,
| |
Collapse
|
24
|
Dannheim K, Ouahed J, Field M, Snapper S, Raphael BP, Glover SC, Bishop PR, Bhesania N, Kamin D, Thiagarajah JR, Goldsmith JD. Pediatric Gastrointestinal Histopathology in Patients With Tetratricopeptide Repeat Domain 7A (TTC7A) Germline Mutations: A Rare Condition Leading to Multiple Intestinal Atresias, Severe Combined Immunodeficiency, and Congenital Enteropathy. Am J Surg Pathol 2022; 46:846-853. [PMID: 34985046 PMCID: PMC9106838 DOI: 10.1097/pas.0000000000001856] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene are a rare cause of congenital enteropathy that can result in significant morbidity. TTC7A deficiency leads to disruption of the intestinal epithelium. The histopathology of this condition has been partly described in case reports and clinical studies. This manuscript describes an in-depth investigation of the pediatric gastrointestinal pathology of the largest histologically examined cohort with confirmed TTC7A mutations reported to date and, for the first time, compared the findings to age-matched and sex-matched control patients with intestinal atresia not thought to be associated with TTC7A mutations. Hematoxylin and eosin-stained slides of endoscopically obtained mucosal biopsies and surgical resection specimens from 7 patients with known TTC7A mutations were examined retrospectively. The microscopic findings were found to be on a spectrum from atresia-predominant to those with predominantly epithelial abnormalities. Several unique histopathologic characteristics were observed when compared with controls. These included neutrophilic colitis and prominent lamina propria eosinophilia throughout the gastrointestinal tract. Striking architectural abnormalities of the epithelium were observed in 4 of the 7 patients. The 5 patients with intestinal atresia demonstrated hypertrophy and disorganization of the colonic muscularis mucosae accompanied by bland spindle cell nodules within the intestinal wall. The components of the latter were further elucidated using immunohistochemistry, and we subsequently hypothesize that they represent obliterated mucosa with remnants of the muscularis mucosae. Finally, atrophic gastritis was noted in 4 patients. In conclusion, the unique histopathologic characteristics of TTC7A mutation-associated enteropathy described herein more fully describe this novel disease entity in infants who present with congenital enteropathy or enterocolitis.
Collapse
Affiliation(s)
- Katelyn Dannheim
- Department of Pathology, Rhode Island and Hasbro Children’s Hospitals, Providence, RI
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
| | | | - Sarah C. Glover
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Phyllis R. Bishop
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Natalie Bhesania
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Daniel Kamin
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Jeffrey D. Goldsmith
- Department of Pathology, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
25
|
Diociaiuti A, Caruso R, Ricci S, De Vito R, Strocchio L, Castiglia D, Zambruno G, El Hachem M. Prominent Follicular Keratosis in Multiple Intestinal Atresia with Combined Immune Deficiency Caused by a TTC7A Homozygous Mutation. Genes (Basel) 2022; 13:genes13050821. [PMID: 35627206 PMCID: PMC9141598 DOI: 10.3390/genes13050821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/04/2022] Open
Abstract
Multiple intestinal atresia with combined immune deficiency (MIA-CID) is an autosomal recessive syndrome due to mutations in the TTC7A gene implicated in the polarization of intestinal and thymic epithelial cells. MIA-CID is lethal in the first year of life in the majority of patients. Dermatological manifestations have been reported in a few cases. We describe a child affected with MIA-CID due to a previously unreported TTC7A homozygous missense mutation. Surgery for bowel occlusion was performed in the first days of life. The patient was totally dependent on parenteral nutrition since birth and presented severe diarrhea and recurrent infections. He underwent hematopoietic stem cell transplantation at 17 months with complete donor engraftment and partial immunity improvement. In the second year of life, he progressively developed diffuse papular follicular keratoses on ichthyosiform skin, nail clubbing, and subungual hyperkeratosis. Histopathology showed hyperkeratosis with follicular plugging and scattered apoptotic keratinocytes, visualized at an ultrastructural examination. Our findings expand the spectrum of dermatological manifestations which can develop in MIA-CID patients. Examination of further patients will allow defining whether keratinocyte apoptosis is also a disease feature.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-0668592197
| | - Roberta Caruso
- Department of Pediatric Oncohematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.C.); (L.S.)
| | - Silvia Ricci
- Immunology Unit, Department of Health Sciences, Meyer Children’s University Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Rita De Vito
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - Luisa Strocchio
- Department of Pediatric Oncohematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy; (R.C.); (L.S.)
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI, IRCCS, Via Monti di Creta 104, 00167 Rome, Italy;
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy;
| |
Collapse
|
26
|
Intestinal atresias and intestinal failure in patients with TTC7A mutations. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2022. [DOI: 10.1016/j.epsc.2022.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Mou W, Yang S, Guo R, Fu L, Zhang L, Guo W, Du J, He J, Ren Q, Hao C, Gui J, Huang J. A Novel Homozygous TTC7A Missense Mutation Results in Familial Multiple Intestinal Atresia and Combined Immunodeficiency. Front Immunol 2022; 12:759308. [PMID: 34975848 PMCID: PMC8714664 DOI: 10.3389/fimmu.2021.759308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Rare autosomal-recessive variants in tetratricopeptide repeat domain 7A (TTC7A) gene have been shown to cause intestinal and immune disorders of variable severity. Missense mutations in TTC7A gene, usually retaining most of the functional motifs, is associated with relative milder clinical presentations. In this study, we reported a patient who was suffering from severe multiple intestinal atresia (MIA) with combined immunodeficiency (CID) that led to the pyloric diaphragm, ileum atresia, colon stenosis, and multiple episodes of sepsis. In spite of several surgeries and supportive treatment, the patient died of severe sepsis and multiple organ failure at age of 3 months. The whole exome sequencing (WES) of peripheral blood samples identified a novel homozygous TTC7A missense mutation (c. 206T>C, p. L69P), inherited from his parents with consanguineous marriage. In silico analysis revealed that a hydrogen bond present between Gly65 and Leu69 in the wild-type TTC7A was disrupted by the Leu69Pro mutation. Moreover, this homozygous missense mutation led to a reduced TTC7A expression in lymphocytes and intestinal tissues, accompanied by impeded lymphocyte development. Further studies demonstrated that the PI4K-FAM126A-EFR3A pathway was impaired in colon tissues. Our data strongly support the linkage of severe MIA-CID with the missense mutation in TTC7A gene. More knowledge of the TTC7A protein functions will have important therapeutic implications for patients with MIA-CID.
Collapse
Affiliation(s)
- Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shen Yang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Ministry Of Education (MOE) Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Libing Fu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Zhang
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-Ministry Of Education (MOE), School of Statistics, East China Normal University, Shanghai, China
| | - Weihong Guo
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingbin Du
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jianxin He
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qinghua Ren
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Ministry Of Education (MOE) Key Laboratory of Major Diseases in Children; Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinshi Huang
- Department of Neonatal Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
28
|
Li QQ, Zhang HH, Dai SX. New Insights and Advances in Pathogenesis and Treatment of Very Early Onset Inflammatory Bowel Disease. Front Pediatr 2022; 10:714054. [PMID: 35299671 PMCID: PMC8921506 DOI: 10.3389/fped.2022.714054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is characterized by multifactorial chronic recurrent intestinal inflammation. Compared with elderly patients, those with VEO-IBD have a more serious condition, not responsive to conventional treatments, with a poor prognosis. Recent studies found that genetic and immunologic abnormalities are closely related to VEO-IBD. Intestinal immune homeostasis monogenic defects (IIHMDs) are changed through various mechanisms. Recent studies have also revealed that abnormalities in genes and immune molecular mechanisms are closely related to VEO-IBD. IIHMDs change through various mechanisms. Epigenetic factors can mediate the interaction between the environment and genome, and genetic factors and immune molecules may be involved in the pathogenesis of the environment and gut microbiota. These discoveries will provide new directions and ideas for the treatment of VEO-IBD.
Collapse
Affiliation(s)
- Qi-Qi Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hui-Hong Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shi-Xue Dai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
29
|
AlBassam BN, Al-Shammari AA, AlQahtani SA, Hassan E. Case Report: Jejunoileal Atresia With Persistent Poor Bowel Function Can Occur After Surgical Correction for Hirschsprung Disease. Front Pediatr 2022; 10:907179. [PMID: 35669397 PMCID: PMC9165582 DOI: 10.3389/fped.2022.907179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Jejunoileal atresia (JIA) is one of the common etiologies of intestinal obtrusion in neonates. However, cases of concomitant ileal atresia and Hirschsprung disease (HD) rarely occur. We report the case of a male infant who had JIA concomitantly with HD that was re-anastomosed. The patient underwent an exploratory laparotomy to resect the dilated terminal ileum. Subsequently, owing to a significantly dilated proximal bowel, he underwent a second exploratory laparotomy. However, he continued to have feeding intolerance postoperatively. He had colonic aganglionosis and was diagnosed with HD. A third laparotomy was then performed. Additionally, he had recurrent episodes of gram-negative bacteremia, especially candida parapsilosis fungemia, despite receiving antibiotics and antifungal, and there were no identifiable underlying genetic or immunological causes. Finally, the patient had recurrent episodes of hypoglycemia, central hypothyroidism, and multiple organ failure and died at the age of 7 months. The concomitant ileal atresia and HD was thought to be due to a common intrauterine vascular accident, together with loss of bowel, thereby acting as a barrier for the caudal migration of neuromeric cells and leading to colonic aganglionosis. In this case, ileal atresia was associated with colonic aganglionosis, central hypothyroidism, and persistent bacteremia, which is a unique finding. In cases of JIA, persistent poor bowel function after surgical correction of concomitant HD should be considered.
Collapse
Affiliation(s)
- Bassam N AlBassam
- Department of Pediatrics, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.,Department of Paediatrics, King Fahd Hospital of the University, Al-Khobar, Saudi Arabia
| | - Ahmad A Al-Shammari
- Department of Pediatrics, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.,Department of Paediatrics, King Fahd Hospital of the University, Al-Khobar, Saudi Arabia
| | - Saleh A AlQahtani
- Department of Pediatrics, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.,Department of Paediatrics, King Fahd Hospital of the University, Al-Khobar, Saudi Arabia
| | - Elham Hassan
- Department of Paediatrics, King Fahd Hospital of the University, Al-Khobar, Saudi Arabia
| |
Collapse
|
30
|
Common and Unique Genetic Background between Attention-Deficit/Hyperactivity Disorder and Excessive Body Weight. Genes (Basel) 2021; 12:genes12091407. [PMID: 34573389 PMCID: PMC8464917 DOI: 10.3390/genes12091407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Comorbidity studies show that children with ADHD have a higher risk of being overweight and obese than healthy children. This study aimed to assess the genetic alternations that differ between and are shared by ADHD and excessive body weight (EBW). The sample consisted of 743 Polish children aged between 6 and 17 years. We analyzed a unique set of genes and polymorphisms selected for ADHD and/or obesity based on gene prioritization tools. Polymorphisms in the KCNIP1, SLC1A3, MTHFR, ADRA2A, and SLC6A2 genes proved to be associated with the risk of ADHD in the studied population. The COMT gene polymorphism was one that specifically increased the risk of EBW in the ADHD group. Using the whole-exome sequencing technique, we have shown that the ADHD group contains rare and protein-truncating variants in the FBXL17, DBH, MTHFR, PCDH7, RSPH3, SPTBN1, and TNRC6C genes. In turn, variants in the ADRA2A, DYNC1H1, MAP1A, SEMA6D, and ZNF536 genes were specific for ADHD with EBW. In this way, we confirmed, at the molecular level, the existence of genes specifically predisposing to EBW in ADHD patients, which are associated with the biological pathways involved in the regulation of the reward system, intestinal microbiome, and muscle metabolism.
Collapse
|
31
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
32
|
Immune function and infectious complications in children with jejunoileal atresia. J Pediatr Surg 2021; 56:454-458. [PMID: 32624206 DOI: 10.1016/j.jpedsurg.2020.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Little is known about differences in immune function among children with multiple intestinal atresia (MIA) and those with isolated intestinal atresia (IA), and how such differences may manifest as infectious complications and patient outcomes. This study aimed to investigate the immune function and its impact on patient outcomes in IA and MIA children. METHODS A single-center retrospective cohort study included children aged 0-19 years with intestinal atresia who were referred to a multidisciplinary intestinal rehabilitation program from 1/2000 to 12/2016. Data were collected for patient characteristics, surgical history, immunologic work-up, and infection-related hospitalizations. Groups of IA and MIA children were compared using chi-square test or Fisher's exact test for categorical variables and using Mann-Whitney test for continuous variables, as appropriate. RESULTS Twenty-seven children (18 IA, 9 MIA) were included. More than half of the patients had low CD counts for age in IA and MIA groups: CD3 58.3% vs. 66.7% (p = 1.0), CD4 50.0% vs. 66.7% (p = 0.7), CD8 67.7% vs. 88.9% (p = 0.3), respectively. Six out of 12 IA children and 3 out of 8 MIA children had hypogammaglobulinemia (p = 0.7). Three out of 10 IA patients and 3 out of 5 MIA children had frequent bacteremia (≥5/year). Eight children (6 IA and 2 MIA) underwent intestinal and/or liver transplant; MIA children had a worse posttransplant outcome. CONCLUSIONS IA children may have an immunodeficiency and associated infectious complications requiring hospitalization. We suggest performing immunologic evaluation not only in MIA but also in IA children presenting to an intestinal rehabilitation program to identify immunodeficiency. Early immunodeficiency screening may help initiate appropriate intervention and improve patient outcomes. LEVEL OF EVIDENCE Level III.
Collapse
|
33
|
Diamanti A, Calvitti G, Martinelli D, Santariga E, Capriati T, Bolasco G, Iughetti L, Pujia A, Knafelz D, Maggiore G. Etiology and Management of Pediatric Intestinal Failure: Focus on the Non-Digestive Causes. Nutrients 2021; 13:nu13030786. [PMID: 33673586 PMCID: PMC7997222 DOI: 10.3390/nu13030786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Intestinal failure (IF) is defined as reduction in functioning gut mass below the minimal amount necessary for adequate digestion and absorption. In most cases, IF results from intrinsic diseases of the gastrointestinal tract (digestive IF) (DIF); few cases arise from digestive vascular components, gut annexed (liver and pancreas) and extra-digestive organs or from systemic diseases (non-digestive IF) (NDIF). The present review revised etiology and treatments of DIF and NDIF, with special focus on the pathophysiological mechanisms, whereby NDIF develops. Methods: We performed a comprehensive search of published literature from January 2010 to the present by selecting the following search strings: “intestinal failure” OR “home parenteral nutrition” OR “short bowel syndrome” OR “chronic pseudo-obstruction” OR “chronic intestinal pseudo-obstruction” OR “autoimmune enteropathy” OR “long-term parenteral nutrition”. Results: We collected overall 1656 patients with well-documented etiology of IF: 1419 with DIF (86%) and 237 with NDIF (14%), 55% males and 45% females. Among DIF cases, 66% had SBS and among NDIF cases 90% had malabsorption/maldigestion. Conclusions: The improved availability of diagnostic and therapeutic tools has increased prevalence and life expectancy of rare and severe diseases responsible for IF. The present review greatly expands the spectrum of knowledge on the pathophysiological mechanisms through which the diseases not strictly affecting the intestine can cause IF. In view of the rarity of the majority of pediatric IF diseases, the development of IF Registries is strongly required; in fact, through information flow within the network, the Registries could improve IF knowledge and management.
Collapse
Affiliation(s)
- Antonella Diamanti
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
- Correspondence: ; Tel.: +39-0668592189
| | - Giacomo Calvitti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy; (G.C.); (L.I.)
| | - Diego Martinelli
- Metabolic Diseases Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy;
| | - Emma Santariga
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (E.S.); (A.P.)
| | - Teresa Capriati
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Giulia Bolasco
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41121 Modena, Italy; (G.C.); (L.I.)
| | - Arturo Pujia
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (E.S.); (A.P.)
| | - Daniela Knafelz
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
| | - Giuseppe Maggiore
- Hepatology Gastroenterology and Nutrition Unit, “Bambino Gesù” Children Hospital, 00165 Rome, Italy; (T.C.); (G.B.); (D.K.); (G.M.)
- Medical Sciences Department Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
34
|
Hale JE, Platt CD, Bonilla FA, Hay BN, Sullivan JL, Johnston AM, Pasternack MS, Hesterberg PE, Meissner HC, Cooper ER, Barmettler S, Farmer JR, Fisher D, Walter JE, Yang NJ, Sahai I, Eaton RB, DeMaria A, Notarangelo LD, Pai SY, Comeau AM. Ten Years of Newborn Screening for Severe Combined Immunodeficiency (SCID) in Massachusetts. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2060-2067.e2. [PMID: 33607339 DOI: 10.1016/j.jaip.2021.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Massachusetts began newborn screening (NBS) for severe combined immunodeficiency (SCID) using measurement of T-cell receptor excision circles (TRECs) from dried blood spots. OBJECTIVE We describe developments and outcomes from the first 10 years of this program (February 1, 2009, to January 31, 2019). METHODS TREC values, diagnostic, and outcome data from all patients screened for SCID were evaluated. RESULTS NBS of 720,038 infants prompted immunologic evaluation of 237 (0.03%). Of 237, 9 were diagnosed with SCID/leaky SCID (4% of referrals vs 0.001% general population). Another 7 were diagnosed with other combined immunodeficiencies, and 3 with athymia. SCID/leaky SCID incidence was approximately 1 in 80,000, whereas approximately 1 in 51,000 had severe T-cell lymphopenia for which definitive treatment was indicated. All patients with SCID/leaky SCID underwent hematopoietic cell transplant or gene therapy with 100% survival. One patient with athymia underwent successful thymus transplant. No known cases of SCID were missed. Compared with outcomes from the 10 years before SCID NBS, survival trended higher (9 of 9 vs 4 of 7), likely due to a lower rate of infection before treatment. CONCLUSIONS Our data support a single NBS testing-and-referral algorithm for all gestational ages. Despite lower median TREC values in premature infants, the majority for all ages are well above the TREC cutoff and the algorithm, which selects urgent (undetectable TREC) and repeatedly abnormal TREC values, minimizes referral. We also found that low naïve T-cell percentage is associated with a higher risk of SCID/CID, demonstrating the utility of memory/naïve T-cell phenotyping as part of follow-up flow cytometry.
Collapse
Affiliation(s)
- Jaime E Hale
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Francisco A Bonilla
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Northeast Allergy, Asthma & Immunology, Leominster, Mass
| | - Beverly N Hay
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - John L Sullivan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Mass
| | - Alicia M Johnston
- Harvard Medical School, Boston, Mass; Division of Infectious Disease, Boston Children's Hospital, Boston, Mass
| | - Mark S Pasternack
- Harvard Medical School, Boston, Mass; Pediatric Infectious Disease Unit, MassGeneral Hospital for Children, Boston, Mass
| | - Paul E Hesterberg
- Division of Allergy and Immunology, MassGeneral Hospital for Children, Boston, Mass
| | - H Cody Meissner
- Department of Pediatrics, Tufts Children's Hospital, Tufts University School of Medicine, Boston, Mass
| | - Ellen R Cooper
- Division of Pediatric Infectious Diseases, Boston Medical Center, Boston University School of Medicine, Boston, Mass
| | - Sara Barmettler
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Donna Fisher
- Division of Pediatric Infectious Diseases, Baystate Children's Hospital, University of Massachusetts Medical School-Baystate, Springfield, Mass
| | - Jolan E Walter
- Division of Allergy and Immunology, MassGeneral Hospital for Children, Boston, Mass; Division of Allergy & Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Nancy J Yang
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Inderneel Sahai
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - Roger B Eaton
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass
| | - Alfred DeMaria
- Bureau of Infectious Disease and Laboratory Sciences, Massachusetts Department of Public Health, Boston, Mass
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Sung-Yun Pai
- Harvard Medical School, Boston, Mass; Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Mass.
| | - Anne Marie Comeau
- New England Newborn Screening Program, Commonwealth Medicine, University of Massachusetts Medical School, Worcester, Mass; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Mass.
| |
Collapse
|
35
|
Gut Microbiota-Host Interactions in Inborn Errors of Immunity. Int J Mol Sci 2021; 22:ijms22031416. [PMID: 33572538 PMCID: PMC7866830 DOI: 10.3390/ijms22031416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Inborn errors of immunity (IEI) are a group of disorders that are mostly caused by genetic mutations affecting immune host defense and immune regulation. Although IEI present with a wide spectrum of clinical features, in about one third of them various degrees of gastrointestinal (GI) involvement have been described and for some IEI the GI manifestations represent the main and peculiar clinical feature. The microbiome plays critical roles in the education and function of the host's innate and adaptive immune system, and imbalances in microbiota-immunity interactions can contribute to intestinal pathogenesis. Microbial dysbiosis combined to the impairment of immunosurveillance and immune dysfunction in IEI, may favor mucosal permeability and lead to inflammation. Here we review how immune homeostasis between commensals and the host is established in the gut, and how these mechanisms can be disrupted in the context of primary immunodeficiencies. Additionally, we highlight key aspects of the first studies on gut microbiome in patients affected by IEI and discuss how gut microbiome could be harnessed as a therapeutic approach in these diseases.
Collapse
|
36
|
Alipour Tehrany Y, Marois L, Colmant C, Marchand V, Kokta V, Coulombe J, Marcoux D, Haddad E, McCuaig C. Refractory pruritus responds to dupilumab in a patient with TTC7A mutation. JAAD Case Rep 2020; 8:9-12. [PMID: 33457482 PMCID: PMC7797900 DOI: 10.1016/j.jdcr.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Louis Marois
- Division of Immunology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Caroline Colmant
- Division of Dermatology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Valérie Marchand
- Division of Gastroenterology, Department of Pediatrics, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Victor Kokta
- Department of Pathology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Jérôme Coulombe
- Division of Dermatology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Danielle Marcoux
- Division of Dermatology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Elie Haddad
- Division of Immunology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| | - Catherine McCuaig
- Division of Dermatology, Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec, Canada
| |
Collapse
|
37
|
Kreins AY, Maio S, Dhalla F. Inborn errors of thymic stromal cell development and function. Semin Immunopathol 2020; 43:85-100. [PMID: 33257998 PMCID: PMC7925491 DOI: 10.1007/s00281-020-00826-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefano Maio
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
38
|
The E3 ubiquitin ligase UBR5 interacts with TTC7A and may be associated with very early onset inflammatory bowel disease. Sci Rep 2020; 10:18648. [PMID: 33122718 PMCID: PMC7596066 DOI: 10.1038/s41598-020-73482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Very early onset inflammatory bowel disease (VEOIBD) denotes children with onset of IBD before six years of age. A number of monogenic disorders are associated with VEOIBD including tetratricopeptide repeat domain 7A (TTC7A) deficiency. TTC7A-deficiency is characterized by apoptotic colitis in milder cases with severe intestinal atresia and immunodeficiency in cases with complete loss of protein. We used whole exome sequencing in a VEOIBD patient presenting with colitis characterized by colonic apoptosis and no identified known VEOIBD variants, to identify compound heterozygous deleterious variants in the Ubiquitin protein ligase E3 component N-recognin 5 (UBR5) gene. Functional studies demonstrated that UBR5 co-immunoprecipitates with the TTC7A and the UBR5 variants had reduced interaction between UBR5 and TTC7A. Together this implicates UBR5 in regulating TTC7A signaling in VEOIBD patients with apoptotic colitis.
Collapse
|
39
|
Intestinal stem cells and intestinal organoids. J Genet Genomics 2020; 47:289-299. [PMID: 32883604 DOI: 10.1016/j.jgg.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 01/15/2023]
Abstract
The intestinal epithelium is one of the most rapidly renewing tissues, which is fueled by stem cells at the base of the crypts. Strategies of genetic lineage tracing and organoids, which capture major features of original tissues, are powerful avenues for exploring the biology of intestinal stem cells in vivo and in vitro, respectively. The combination of intestinal organoid-culturing system and genetic modification approaches provides an attractive platform to uncover the mechanism of colorectal cancer and genetic disorders in the human minigut. Here, we will provide a comprehensive overview of studies on intestinal epithelium and intestinal stem cells. We will also review the applications of organoids and genetic markers in intestinal research studies. Furthermore, we will discuss the advantages and drawbacks of organoids as disease models compared with mice models and cell lines.
Collapse
|
40
|
Jamee M, Zaki-Dizaji M, Lo B, Abolhassani H, Aghamahdi F, Mosavian M, Nademi Z, Mohammadi H, Jadidi-Niaragh F, Rojas M, Anaya JM, Azizi G. Clinical, Immunological, and Genetic Features in Patients with Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) and IPEX-like Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2747-2760.e7. [PMID: 32428713 DOI: 10.1016/j.jaip.2020.04.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare inborn error of immunity caused by mutations in the forkhead box P3 (FOXP3) gene. OBJECTIVE In this study, we conducted a systematic review of patients with IPEX and IPEX-like syndrome to delineate differences in these 2 major groups. METHODS The literature search was performed in PubMed, Web of Science, and Scopus databases, and demographic, clinical, immunologic, and molecular data were compared between the IPEX and IPEX-like groups. RESULTS A total of 459 patients were reported in 148 eligible articles. Major clinical differences between patients with IPEX and IPEX-like syndrome were observed in rates of pneumonia (11% vs 31%, P < .001), bronchiectasis (0.3% vs 14%, P < .001), diarrhea (56% vs 42%, P = .020), and organomegaly (10% vs 23%, P = .001), respectively. Eosinophilia (95% vs 100%), low regulatory T-cell count (68% vs 50%), and elevated IgE (87% vs 61%) were the most prominent laboratory findings in patients with IPEX and IPEX-like syndrome, respectively. In the IPEX group, a lower mortality rate was observed among patients receiving hematopoietic stem cell transplantation (HSCT) (24%) compared with other patients (43%), P = .008; however, in the IPEX-like group, it was not significant (P = .189). CONCLUSIONS Patients with IPEX syndrome generally suffer from enteropathy, autoimmunity, dermatitis, eosinophilia, and elevated serum IgE. Despite similarities in their clinical presentations, patients with IPEX-like syndrome are more likely to present common variable immunodeficiency-like phenotype such as respiratory tract infections, bronchiectasis, and organomegaly. HSCT is currently the only curative therapy for both IPEX and IPEX-like syndrome and may result in favorable outcome.
Collapse
Affiliation(s)
- Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fatemeh Aghamahdi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mosavian
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zohreh Nademi
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle, United Kingdom
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
41
|
Abstract
There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.
Collapse
|
42
|
Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:9-20. [PMID: 31767987 DOI: 10.1038/s41575-019-0228-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IBD treatment is undergoing a transformation with an expanding repertoire of drugs targeting different aspects of the immune response. Three novel classes of drugs have emerged in the past decade that target leukocyte trafficking to the gut (vedolizumab), neutralize key cytokines with antibodies (ustekinumab) and inhibit cytokine signalling pathways (tofacitinib). In advanced development are other drugs for IBD, including therapies targeting other cytokines such as IL-23 and IL-6. However, all agents tested so far are hampered by primary and secondary loss of response, so it is desirable to develop personalized strategies to identify which patients should be treated with which drugs. Stratification of patients with IBD by clinical parameters alone lacks sensitivity, and alternative modalities are now needed to deliver precision medicine in IBD. High-resolution profiling of immune response networks in individual patients is a promising approach and different technical platforms, including in vivo real-time molecular endoscopy, tissue transcriptomics and germline genetics, are promising tools to help predict responses to specific therapies. However, important challenges remain regarding the clinical utility of these technologies, including their scalability and accessibility. This Review focuses on unravelling some of the complexity of mucosal immune responses in IBD pathogenesis and how current and emerging analytical platforms might be harnessed to effectively stratify and individualise IBD therapy.
Collapse
Affiliation(s)
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nick Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK. .,Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
43
|
El-Daher MT, Lemale J, Bruneau J, Leveau C, Guerin F, Lambert N, Diana JS, Neven B, Sepulveda FE, Coulomb-L'Hermine A, Molina T, Picard C, Fischer A, de Saint Basile G. Chronic Intestinal Pseudo-Obstruction and Lymphoproliferative Syndrome as a Novel Phenotype Associated With Tetratricopeptide Repeat Domain 7A Deficiency. Front Immunol 2019; 10:2592. [PMID: 31787977 PMCID: PMC6853864 DOI: 10.3389/fimmu.2019.02592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene cause very early onset inflammatory bowel diseases (VOIBD) or multiple intestinal atresia associated with immune deficiency of various severities, ranging from combined immune deficiency to mild lymphopenia. In this manuscript, we report the clinical, biological and molecular features of a patient born from consanguineous parents, presenting with recurrent lymphoproliferative syndrome and pan-hypergammaglobulinemia associated with chronic intestinal pseudo obstruction (CIPO). Genetic screening revealed the novel c.974G>A (p.R325Q) mutation in homozygosity in the TTC7A gene. The patient's phenotype differs significantly from that previously associated with TTC7A deficiency in humans. It becomes closer to the one reported in the ttc7a-deficient mice that invariably develop a proliferative lymphoid and myeloid disorder. Functional studies showed that the extreme variability in the clinical phenotype couldn't be explained by the cellular phenotype. Indeed, the patient's TTC7A mutation, as well as the murine-ttc7 mutant, have the same functional impact on protein expression, DNA instability and chromatin compaction, as the other mutations that lead to classical TTC7A-associated phenotypes. Co-inheritance of genetic variants may also contribute to the unique nature of the patient's phenotype. The present case report shows that the clinical spectrum of TTC7A deficiency is much broader than previously suspected. Our findings should alert the physicians to consider screening of TTC7A mutations in patients with lymphoproliferative syndrome and hypergammaglobulinemia and/or chronic intestinal pseudo-obstruction.
Collapse
Affiliation(s)
- Marie-Thérèse El-Daher
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR 1163, Paris, France.,Imagine Institute, Université de Paris, Paris, France
| | - Julie Lemale
- Pediatric Nutrition and Gastroenterology Department, Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Julie Bruneau
- Imagine Institute, Université de Paris, Paris, France.,Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Claire Leveau
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR 1163, Paris, France.,Imagine Institute, Université de Paris, Paris, France
| | - Frédéric Guerin
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR 1163, Paris, France.,Imagine Institute, Université de Paris, Paris, France
| | - Nathalie Lambert
- Center for the Study of Primary Immunodeficiencies, Necker Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jean-Sébastien Diana
- Pediatric Hematology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR 1163, Paris, France
| | - Bénédicte Neven
- Pediatric Hematology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR 1163, Paris, France
| | - Fernando E Sepulveda
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR 1163, Paris, France.,Imagine Institute, Université de Paris, Paris, France.,Centre Nationale de la Recherche Scientifique - CNRS, Villejuif, France
| | - Aurore Coulomb-L'Hermine
- Department of Pathology, Hôpital A Trousseau, Assistance-Publique des Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Thierry Molina
- Imagine Institute, Université de Paris, Paris, France.,Department of Pathology, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Capucine Picard
- Imagine Institute, Université de Paris, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France
| | - Alain Fischer
- Imagine Institute, Université de Paris, Paris, France.,Pediatric Hematology Department, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR 1163, Paris, France.,Collège de France, Paris, France
| | - Geneviève de Saint Basile
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM UMR 1163, Paris, France.,Imagine Institute, Université de Paris, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| |
Collapse
|
44
|
Luong P, Li Q, Chen PF, Wrighton PJ, Chang D, Dwyer S, Bayer MT, Snapper SB, Hansen SH, Thiagarajah JR, Goessling W, Lencer WI. A quantitative single-cell assay for retrograde membrane traffic enables rapid detection of defects in cellular organization. Mol Biol Cell 2019; 31:511-519. [PMID: 31774722 PMCID: PMC7202069 DOI: 10.1091/mbc.e19-07-0375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Retrograde membrane trafficking from plasma membrane to Golgi and endoplasmic reticulum typifies one of the key sorting steps emerging from the early endosome that affects cell surface and intracellular protein dynamics underlying cell function. While some cell surface proteins and lipids are known to sort retrograde, there are few effective methods to quantitatively measure the extent or kinetics of these events. Here we took advantage of the well-known retrograde trafficking of cholera toxin and newly defined split fluorescent protein technology to develop a quantitative, sensitive, and effectively real-time single-cell flow cytometry assay for retrograde membrane transport. The approach can be applied in high throughput to elucidate the underlying biology of membrane traffic and how endosomes adapt to the physiologic needs of different cell types and cell states.
Collapse
Affiliation(s)
- Phi Luong
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Qian Li
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai 200000, China
| | - Pin-Fang Chen
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Denis Chang
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Sean Dwyer
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Marie-Theres Bayer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Scott B Snapper
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Steen H Hansen
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115
| | - Jay R Thiagarajah
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| | - Wolfram Goessling
- Harvard Stem Cell Institute, Cambridge, MA 02138.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Wayne I Lencer
- Department of Pediatrics, Harvard Medical School, and.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115.,Harvard Digestive Disease Center, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
45
|
Genetics on early onset inflammatory bowel disease: An update. Genes Dis 2019; 7:93-106. [PMID: 32181280 PMCID: PMC7063406 DOI: 10.1016/j.gendis.2019.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is more common in adults than in children. Onset of IBD before 17 years of age is referred as pediatric onset IBD and is further categorized as very early onset IBD (VEO-IBD) for children who are diagnosed before 6 years of age, infantile IBD who had the disease before 2 years of age and neonatal onset IBD for children less than 28 days of life. Children presenting with early onset disease may have a monogenic basis. Knowledge and awareness of the clinical manifestations facilitates early evaluation and diagnosis. Next generation sequencing is helpful in making the genetic diagnosis. Treatment of childhood IBD is difficult; targeted therapies and hematopoietic stem cell transplantation form the mainstay. In this review we aim to summarize the genetic defects associated with IBD phenotype. We describe genetic location and functions of various genetic defect associated with VEO-IBD with their key clinical manifestations. We also provide clinical clues to suspect these conditions and approaches to the diagnosis of these disorders and suitable treatment options.
Collapse
|
46
|
Saunders JR, Lehman A, Turvey SE, Pan J, Rajcan-Separovic E, Muise AM, Bush JW. Novel Exonic Deletions in TTC7A in a Newborn with Multiple Intestinal Atresia and Combined Immunodeficiency. J Clin Immunol 2019; 39:616-619. [PMID: 31342292 DOI: 10.1007/s10875-019-00669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica R Saunders
- Department of Pathology and Laboratory Medicine, The University of British Columbia, 10125-2775 Laurel St., Vancouver, BC, V5Z 1M9, Canada
| | - Anna Lehman
- Department of Medical Genetics, British Columbia Children's and Women's Hospital, The University of British Columbia, 4480 Oak St., Vancouver, BC, V6H 3N1, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 4480 Oak St., Vancouver, BC, V6H3Na, Canada
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine, British Columbia Children's and Women's Hospital, The University of British Columbia, 4480 Oak St, Vancouver, BC, V6H3N1, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Departments of Pediatrics, Institute of Medical Science and Biochemistry, The University of Toronto, Toronto, ON, Canada
| | - Jonathan W Bush
- Department of Pathology and Laboratory Medicine, British Columbia Children's and Women's Hospital, The University of British Columbia, 4480 Oak St, Vancouver, BC, V6H3N1, Canada.
| |
Collapse
|
47
|
Pediatric inflammatory bowel disease: continuous lessons for adult inflammatory bowel disease. Curr Opin Gastroenterol 2019; 35:265-274. [PMID: 31021923 DOI: 10.1097/mog.0000000000000548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW Prospective and inception inflammatory bowel disease (IBD) cohorts offer excellent opportunities to develop risk stratification strategies, use relevant tissue to explore the biology of IBD progression, and study the natural history of IBD in the era of biological therapy. Adult IBD care can learn important lessons from recent pediatric IBD studies. RECENT FINDINGS A recent multicenter inception cohort of pediatric IBD patients examining genetic, serologic, and microbiome data at diagnosis has been able to create a model for prediction of disease complications, describe compositional changes in gut microbiota associated with disease severity, identify markers of intestinal fibrosis, and confirm how important early life environmental exposures affect disease severity and phenotype. Analysis of gene and protein expression in mucosal samples has been shown to offer both diagnostic information about differentiation of ulcerative colitis (UC) vs. crohn's disease as well as implications for treatment efficacy. Important developments in treatment of growth failure with antitumor necrosis factor therapy, the effect of oral medication noncompliance, and dietary IBD therapy are outlined. SUMMARY Pediatric IBD research has been focusing on better phenotyping at diagnosis, and development of molecular signatures of future disease behavior by using relevant intestinal tissue rather than blood. This has moved IBD from being a heterogeneous group of diseases with an unknown disease course to a better-defined condition in which patients are accurately risk stratified and treated based on individualized distinct biological and clinical information.
Collapse
|
48
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
49
|
Combined Immunodeficiency With Inflammatory Bowel Disease in a Patient With TTC7A Deficiency. ACG Case Rep J 2019; 6:e00061. [PMID: 31616743 PMCID: PMC6658069 DOI: 10.14309/crj.0000000000000061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Tetratricopeptide repeat domain-7A (TTC7A) deficiency causing combined immunodeficiency with inflammatory bowel disease (IBD) is rare. This case report alerts physicians to the possibility of TTC7A deficiency causing combined immunodeficiency with IBD and also highlights some of the current treatment options. We describe a 19-year-old patient with a compound heterozygote TTC7A mutation causing combined immunodeficiency, IBD, and multiple intestinal atresia. Compound heterozygote TTC7A mutations are known to cause combined immunodeficiency and IBD. Although rare, clinicians should be alerted to this variant and should understand the general approach to treatment.
Collapse
|
50
|
Clinical and genetic spectrum of children with congenital diarrhea and enteropathy in China. Genet Med 2019; 21:2224-2230. [PMID: 30894704 DOI: 10.1038/s41436-019-0488-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Genetic sequencing for children with congenital diarrhea and enteropathy (CODE) has important implications for the diagnosis, prognosis, and implementation of precision medicine. METHODS We performed exome sequencing or targeted panel sequencing on 137 children with CODE. Endoscopic, imaging, histological, and immunological assessments were also applied. Patients were divided into three subgroups: watery, fatty, and bloody diarrhea. RESULTS The median age of onset among patients was 28.0 (interquartile range: 7.5-120.0) days. Genetic diagnosis was achieved in 88/137 (64.2%) of patients. The diagnostic rate was significantly higher in the neonatal group than in the group of patients who had disease onset within 2 years of age (p = 0.033). The diagnostic rates were 71.9% (46/64) for targeted gene panel sequencing and 57.5% (42/73) for exome sequencing (p = 0.081). We identified pathogenic variants in 17 genes. Based on genetic sequencing, 59.9% of patients were diagnosed with medically actionable disorders. Precision medicine was carried out by means of hematopoietic stem cell transplantation for patients with IL10RA, CYBB, or FOXP3 deficiency; pancreatic enzyme replacement for patients with SBDS or UBR1 deficiency; and a special diet for patients with SLC5A1 deficiency. The overall mortality rate was 14.6%. CONCLUSION Single-gene disorders are common among CODE patients. Genetic diagnosis can improve therapy by enabling precision medicine.
Collapse
|