1
|
Gonzalez-Visiedo M, Li X, Munoz-Melero M, Kulis MD, Daniell H, Markusic DM. Single-dose AAV vector gene immunotherapy to treat food allergy. Mol Ther Methods Clin Dev 2022; 26:309-322. [PMID: 35990748 PMCID: PMC9361215 DOI: 10.1016/j.omtm.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Markusic
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Qiao YL, Jiao WE, Xu S, Kong YG, Deng YQ, Yang R, Hua QQ, Chen SM. Allergen immunotherapy enhances the immunosuppressive effects of Treg cells to alleviate allergic rhinitis by decreasing PU-1+ Treg cell numbers. Int Immunopharmacol 2022; 112:109187. [PMID: 36037652 DOI: 10.1016/j.intimp.2022.109187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the role of Tregs and their subtypes in the treatment of allergic rhinitis with allergen immunotherapy (AIT) as well as the underlying mechanism. METHODS 1. Thirty-one healthy controls, 29 Allergic rhinitis (AR) patients and 16 AR patients treated with AIT were recruited. The total nasal symptom scores (TNSSs) were calculated. The serum levels of IgE, IL-2, TNF-α, IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-17 were measured. 2. Changes in the proportions of CD4+ T cells, Treg cells, Treg subtypes and Th1/Th2/Th9/Th17/Tfh cells in the peripheral blood of the subjects in the three groups were measured. 3. The correlations of Treg cells, Treg subtypes and TNSS with the levels of various cytokines in the AR group and AIT group were analysed. RESULTS 1. Compared with the control group, the TNSS and IgE, IL-5 and IL-6 levels in the AR group were significantly increased, while the IL-2, IFN-γ and IL-10 levels were significantly decreased (P < 0.05). Compared with the AR group, the TNSS and IgE, IL-5 and IL-6 levels in the AIT group were significantly decreased, while the IL-2, IFN-γ and IL-10 levels were significantly increased (P < 0.05). 2. Compared with the control group, the proportions of Tregs, GATA3+ Tregs and Th1 cells in the AR group were significantly reduced, while the proportions of PU-1+ Tregs, T-bet+ Tregs and Th2 cells were significantly increased (P < 0.05). Compared with the AR group, the proportions of Tregs and Th1 cells in the AIT group were significantly increased, while the proportions of PU-1+ Tregs and Th2 cells were decreased (P < 0.05). 3. Correlation analysis showed that Treg cell proportions were negatively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but positively correlated with the IL-2 and IL-10 levels (P < 0.05). PU-1+ Treg cell proportions were positively correlated with the TNSS, sIgE levels, IL-5 levels and IL-6 levels but negatively correlated with the Treg cell proportions, IL-2 levels and IL-10 levels (P < 0.05). CONCLUSIONS AIT can reduce the proportions of PU-1+ Treg subtypes in AR patients. PU-1+ Treg cell numbers can potentially be used as an indicator to monitor the therapeutic effect of AIT on AR.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
3
|
Bcl6 and Blimp1 reciprocally regulate ST2 + Treg-cell development in the context of allergic airway inflammation. J Allergy Clin Immunol 2020; 146:1121-1136.e9. [PMID: 32179158 DOI: 10.1016/j.jaci.2020.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bcl6 is required for the development of T follicular helper cells and T follicular regulatory (Tfr) cells that regulate germinal center responses. Bcl6 also affects the function of regulatory T (Treg) cells. OBJECTIVE The goal of this study was to define the functions of Bcl6 in Treg cells, including Tfr cells, in the context of allergic airway inflammation. METHODS We used a model of house dust mite sensitization to challenge wild-type, Bcl6fl/fl Foxp3-Cre, and Prdm1 (Blimp1)fl/fl Foxp3-Cre mice to study the reciprocal roles of Bcl6 and Blimp1 in allergic airway inflammation. RESULTS In the house dust mite model, Tfr cells repress the production of IgE and Bcl6+ Treg cells suppress the generation of type 2 cytokine-producing cells in the lungs. In mice with Bcl6-deficient Treg cells, twice as many ST2+ (IL-33R+) Treg cells develop as are observed in wild-type mice. ST2+ Treg cells in the context of allergic airway inflammation are Blimp1 dependent, express type 2 cytokines, and share features of visceral adipose tissue Treg cells. Bcl6-deficient Treg cells are more susceptible, and Blimp1-deficient Treg cells are resistant, to acquiring the ST2+ Treg-cell phenotype in vitro and in vivo in response to IL-33. Bcl6-deficient ST2+ Treg cells, but not Bcl6-deficient ST2+ conventional T cells, strongly promote allergic airway inflammation when transferred into recipient mice. Lastly, ST2 is required for the exacerbated allergic airway inflammation in Bcl6fl/fl Foxp3-Cre mice. CONCLUSIONS During allergic airway inflammation, Bcl6 and Blimp1 play dual roles in regulating Tfr-cell activity in the germinal center and in the development of ST2+ Treg cells that promote type 2 cytokine responses.
Collapse
|
4
|
Russkamp D, Aguilar‐Pimentel A, Alessandrini F, Gailus‐Durner V, Fuchs H, Ohnmacht C, Chaker A, Angelis MH, Ollert M, Schmidt‐Weber CB, Blank S. IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma. Allergy 2019; 74:1549-1560. [PMID: 30829405 DOI: 10.1111/all.13759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only causal treatment for allergy. However, success rates vary depending on the type of allergy and disease background of the patient. Hence, strategies targeting an increased therapeutic efficacy are urgently needed. Here, the effects of blockade of IL-4 and IL-13 signaling on different phases of AIT were addressed. METHODS The impact of the recombinantly produced IL-4 and IL-13 antagonist IL-4 mutein (IL-4M) on allergic sensitization and AIT outcome in experimental allergic asthma were analyzed in a murine model. The effects of IL-4M administration were assessed prior/during sensitization, immediately after AIT under allergen challenge, and two weeks post-treatment. RESULTS Intervention with IL-4M prior/during sensitization led to strong induction of IgG1, IgG2a, IgG2b, and IgG3, decrease of specific and total IgE, as well as of IL-5 in serum. Similar effects on the serum immunoglobulin levels were observed immediately after IL4M-supplemented AIT during allergen challenge. Additionally, IL4M markedly suppressed type-2 cytokine secretion of splenocytes beyond the effect of AIT alone. These effects were equaled to those of AIT alone two weeks post-treatment. Intriguingly, here, IL-4M induced a sustained decrease of Th2-biased Tregs (ST2+ FOXP3+ GATA3intermediate ). CONCLUSIONS IL-4 and IL-13 blockade during experimental AIT demonstrates beneficial effects on immunological key parameters such as immunoglobulin and cytokine secretion immediately after AIT. Although two weeks later these effects were dropped to those of AIT alone, the number of potentially disease-triggering Th2-biased Tregs was further significantly decreased by IL-4M treatment. Hence, IL-4/IL13-targeting therapies prime the immune memory in therapy success-favoring manner.
Collapse
Affiliation(s)
- D. Russkamp
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - A. Aguilar‐Pimentel
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - F. Alessandrini
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - V. Gailus‐Durner
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - H. Fuchs
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - C. Ohnmacht
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - A. Chaker
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
- Department of Otolaryngology Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - M. H. Angelis
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
- Chair of Experimental Genetics School of Life Science Weihenstephan Technical University of Munich Freising Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - M. Ollert
- Luxembourg Institute of Health (LIH) Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Center for AnaphylaxisUniversity of Southern Denmark Odense Denmark
| | - C. B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - S. Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
5
|
Van Gool F, Nguyen MLT, Mumbach MR, Satpathy AT, Rosenthal WL, Giacometti S, Le DT, Liu W, Brusko TM, Anderson MS, Rudensky AY, Marson A, Chang HY, Bluestone JA. A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity 2019; 50:362-377.e6. [PMID: 30709738 PMCID: PMC6476426 DOI: 10.1016/j.immuni.2018.12.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/25/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022]
Abstract
Regulatory T (Treg) cells maintain immune tolerance through the master transcription factor forkhead box P3 (FOXP3), which is crucial for Treg cell function and homeostasis. We identified an IPEX (immune dysregulation polyendocrinopathy enteropathy X-linked) syndrome patient with a FOXP3 mutation in the domain swap interface of the protein. Recapitulation of this Foxp3 variant in mice led to the development of an autoimmune syndrome consistent with an unrestrained T helper type 2 (Th2) immune response. Genomic analysis of Treg cells by RNA-sequencing, Foxp3 chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-sequencing), and H3K27ac-HiChIP revealed a specific de-repression of the Th2 transcriptional program leading to the generation of Th2-like Treg cells that were unable to suppress extrinsic Th2 cells. Th2-like Treg cells showed increased intra-chromosomal interactions in the Th2 locus, leading to type 2 cytokine production. These findings identify a direct role for Foxp3 in suppressing Th2-like Treg cells and implicate additional pathways that could be targeted to restrain Th2 trans-differentiated Treg cells.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Child
- Cytokines/genetics
- Cytokines/immunology
- Cytokines/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Polyendocrinopathies, Autoimmune/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Frédéric Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle L T Nguyen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy L Rosenthal
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Simone Giacometti
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Duy T Le
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weihong Liu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Ozdemir C, Kucuksezer UC, Akdis M, Akdis CA. Mechanisms of Aeroallergen Immunotherapy: Subcutaneous Immunotherapy and Sublingual Immunotherapy. Immunol Allergy Clin North Am 2016; 36:71-86. [PMID: 26617228 DOI: 10.1016/j.iac.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Allergen immunotherapy (AIT) is an effective way to treat allergic disorders, targeting the underlying mechanisms and altering the disease course by inducing a long-lasting clinical and immune tolerance to allergens. Although sublingual and subcutaneous routes are used in daily practice, many novel ways to decrease side effects and duration and increase efficacy have been pursued. Further studies are needed to develop biomarkers for the identification of AIT responder patients and also to use the developed knowledge in allergy prevention studies. Future directions in AIT include treatments for autoimmune diseases, chronic infections, organ transplantation, and breaking immune tolerance to cancer cells.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Department of Pediatric Allergy, Memorial Atasehir Hospital, Memorial Health Group, Vedat Gunyol Cad. 28-30, Istanbul 34758, Turkey
| | - Umut Can Kucuksezer
- Department of Immunology, Institute of Experimental Medicine (DETAE), Vakif Gureba Cad, Istanbul University, Istanbul 34093, Turkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere Strasse, CH-7270, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Obere Strasse, CH-7270, Davos, Switzerland.
| |
Collapse
|
7
|
Groeme R, Airouche S, Kopečný D, Jaekel J, Savko M, Berjont N, Bussieres L, Le Mignon M, Jagic F, Zieglmayer P, Baron-Bodo V, Bordas-Le Floch V, Mascarell L, Briozzo P, Moingeon P. Structural and Functional Characterization of the Major Allergen Amb a 11 from Short Ragweed Pollen. J Biol Chem 2016; 291:13076-87. [PMID: 27129273 DOI: 10.1074/jbc.m115.702001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/21/2023] Open
Abstract
Allergy to the short ragweed (Ambrosia artemisiifolia) pollen is a major health problem. The ragweed allergen repertoire has been recently expanded with the identification of Amb a 11, a new major allergen belonging to the cysteine protease family. To better characterize Amb a 11, a recombinant proform of the molecule with a preserved active site was produced in Escherichia coli, refolded, and processed in vitro into a mature enzyme. The enzymatic activity is revealed by maturation following an autocatalytic processing resulting in the cleavage of both N- and C-terminal propeptides. The 2.05-Å resolution crystal structure of pro-Amb a 11 shows an overall typical C1A cysteine protease fold with a network of molecular interactions between the N-terminal propeptide and the catalytic triad of the enzyme. The allergenicity of Amb a 11 was confirmed in a murine sensitization model, resulting in airway inflammation, production of serum IgEs, and induction of Th2 immune responses. Of note, inflammatory responses were higher with the mature form, demonstrating that the cysteine protease activity critically contributes to the allergenicity of the molecule. Collectively, our results clearly demonstrate that Amb a 11 is a bona fide cysteine protease exhibiting a strong allergenicity. As such, it should be considered as an important molecule for diagnosis and immunotherapy of ragweed pollen allergy.
Collapse
Affiliation(s)
- Rachel Groeme
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | - Sabi Airouche
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | - David Kopečný
- the Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Judith Jaekel
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | - Martin Savko
- the SOLEIL Synchrotron, PROXIMA 2A, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France
| | - Nathalie Berjont
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | | | - Maxime Le Mignon
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | - Franck Jagic
- the Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Route de St-Cyr, 78026 Versailles, France, and
| | - Petra Zieglmayer
- the Vienna Challenge Chamber, Allergy Center Vienna West, A-1150 Vienna, Austria
| | | | | | - Laurent Mascarell
- From Research and Development, Stallergenes Greer, 92160 Antony, France
| | - Pierre Briozzo
- the Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Route de St-Cyr, 78026 Versailles, France, and
| | - Philippe Moingeon
- From Research and Development, Stallergenes Greer, 92160 Antony, France,
| |
Collapse
|
8
|
Poswar FDO, Farias LC, Fraga CADC, Bambirra W, Brito-Júnior M, Sousa-Neto MD, Santos SHS, de Paula AMB, D'Angelo MFSV, Guimarães ALS. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J Endod 2015; 41:877-83. [PMID: 25873079 DOI: 10.1016/j.joen.2015.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Bioinformatics has emerged as an important tool to analyze the large amount of data generated by research in different diseases. In this study, gene expression for radicular cysts (RCs) and periapical granulomas (PGs) was characterized based on a leader gene approach. METHODS A validated bioinformatics algorithm was applied to identify leader genes for RCs and PGs. Genes related to RCs and PGs were first identified in PubMed, GenBank, GeneAtlas, and GeneCards databases. The Web-available STRING software (The European Molecular Biology Laboratory [EMBL], Heidelberg, Baden-Württemberg, Germany) was used in order to build the interaction map among the identified genes by a significance score named weighted number of links. Based on the weighted number of links, genes were clustered using k-means. The genes in the highest cluster were considered leader genes. Multilayer perceptron neural network analysis was used as a complementary supplement for gene classification. RESULTS For RCs, the suggested leader genes were TP53 and EP300, whereas PGs were associated with IL2RG, CCL2, CCL4, CCL5, CCR1, CCR3, and CCR5 genes. CONCLUSIONS Our data revealed different gene expression for RCs and PGs, suggesting that not only the inflammatory nature but also other biological processes might differentiate RCs and PGs.
Collapse
Affiliation(s)
| | | | | | - Wilson Bambirra
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Manoel Brito-Júnior
- Department of Dentistry, Universidade Estadual de Montes Claros, Minas Gerais, Brazil
| | - Manoel Damião Sousa-Neto
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio Henrique Souza Santos
- Department of Physiopathology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil; Department of Computer Science, Universidade Estadual de Montes Claros, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
9
|
Peden DB, Bush RK. Advances in environmental and occupational disorders in 2013. J Allergy Clin Immunol 2014; 133:1265-9. [PMID: 24766874 DOI: 10.1016/j.jaci.2014.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
In this review of articles published in the Journal in 2013, we report on the significant advances in environmental and occupational disorders. Research advances have led to the identification and defined the structure and function of several major allergens. A meta-analysis confirmed the importance of mold exposure in patients with allergic rhinitis, and a new immunologic classification of aspergillosis emerged. Insights into the role of diesel exhaust particles in patients with severe asthma were clarified. Improvements in stinging insect allergy diagnostics were reported. Genetic, immunologic, and biomarker studies advanced the understanding of adverse drug reactions. New practice parameters for cockroach allergen control were presented. The pathologic role of viruses and bacterial agents in patients with asthma and chronic obstructive pulmonary disease were further defined. An excellent review of allergen bronchoprovocation testing was reported. The roles of bronchoprovocation and bronchodilator responsiveness in asthma diagnosis were further clarified. A biomarker for neutrophilic asthma was identified. Therapeutic advances in asthma research include the inhibition of IL-13 by lebrikizumab, use of montelukast in asthmatic smokers, and a thorough review of bronchial thermoplasty in patients with severe asthma. Lastly, maternal asthma was linked to a number of adverse neonatal outcomes.
Collapse
Affiliation(s)
- David B Peden
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - Robert K Bush
- Section of Allergy, Immunology, Pulmonary, Critical Care, and Sleep Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|