1
|
Cavalcanti NV, Palmeira P, Jatene MB, de Barros Dorna M, Carneiro-Sampaio M. Early Thymectomy Is Associated With Long-Term Impairment of the Immune System: A Systematic Review. Front Immunol 2021; 12:774780. [PMID: 34899730 PMCID: PMC8656688 DOI: 10.3389/fimmu.2021.774780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Congenital heart diseases (CHDs) are diagnosed in approximately 9 in 1,000 newborns, and early cardiac corrective surgery often requires partial or complete thymectomy. As the long-term effect of early thymectomy on the subsequent development of the immune system in humans has not been completely elucidated, the present study aimed to evaluate the effects of thymus removal on the functional capacity of the immune system after different periods. Methods A systematic review of the literature was performed using MEDLINE, EMBASE, LILACS and Scopus. The inclusion criteria were original studies that analyzed any component of the immune system in patients with CHD who had undergone thymectomy during cardiac surgery in the first years of life. The results were evaluated for the quality of evidence. Results Twenty-three studies were selected and showed that patients who underwent a thymectomy in the first years of life tended to exhibit important alterations in the T cell compartment, such as fewer total T cells, CD4+, CD8+, naïve and CD31+ T cells, lower TRECs, decreased diversity of the TCR repertoire and higher peripheral proliferation (increased Ki-67 expression) than controls. However, the numbers of memory T cells and Treg cells differed across the selected studies. Conclusions Early thymectomy, either partial or complete, may be associated with a reduction in many T cell subpopulations and TCR diversity, and these alterations may persist during long-term follow-up. Alternative solutions should be studied, either in the operative technique with partial preservation of the thymus or through the autograft of fragments of the gland. Systematic Review Registration Prospero [157188].
Collapse
Affiliation(s)
- Nara Vasconcelos Cavalcanti
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Patrícia Palmeira
- Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Marcelo Biscegli Jatene
- Pediatric Cardiovascular Surgery Department, Heart Institute, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Mayra de Barros Dorna
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil.,Laboratory of Clinical Investigation LIM-36, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
2
|
The Presence of a Marked Imbalance Between Regulatory T Cells and Effector T Cells Reveals That Tolerance Mechanisms Could Be Compromised in Heart Transplant Children. Transplant Direct 2021; 7:e693. [PMID: 33928185 PMCID: PMC8078462 DOI: 10.1097/txd.0000000000001152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Treg) are crucial for the induction and maintenance of graft tolerance. In pediatric heart transplant procedures, the thymus is routinely excised, removing the primary source of T-cell replenishment. Consequently, thymectomy joined to the effects of immunosuppression on the T-cell compartment may have a detrimental impact on Treg values, compromising the intrinsic tolerance mechanisms and the protective role of Treg preventing graft rejection in heart transplant children.
Collapse
|
3
|
Elyahu Y, Monsonego A. Thymus involution sets the clock of the aging T-cell landscape: Implications for declined immunity and tissue repair. Ageing Res Rev 2021; 65:101231. [PMID: 33248315 DOI: 10.1016/j.arr.2020.101231] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Aging is generally characterized as a gradual increase in tissue damage, which is associated with senescence and chronic systemic inflammation and is evident in a variety of age-related diseases. The extent to which such tissue damage is a result of a gradual decline in immune regulation, which consequently compromises the capacity of the body to repair damages, has not been fully explored. Whereas CD4 T lymphocytes play a critical role in the orchestration of immunity, thymus involution initiates gradual changes in the CD4 T-cell landscape, which may significantly compromise tissue repair. In this review, we describe the lifespan accumulation of specific dysregulated CD4 T-cell subsets and their coevolution with systemic inflammation in the process of declined immunity and tissue repair capacity with age. Then, we discuss the process of thymus involution-which appears to be most pronounced around puberty-as a possible driver of the aging T-cell landscape. Finally, we identify individualized T cell-based early diagnostic biomarkers and therapeutic strategies for age-related diseases.
Collapse
Affiliation(s)
- Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Zlotowski Neuroscience Center and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Deya-Martinez A, Flinn AM, Gennery AR. Neonatal thymectomy in children-accelerating the immunologic clock? J Allergy Clin Immunol 2020; 146:236-243. [PMID: 32169378 DOI: 10.1016/j.jaci.2020.02.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/25/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
Abstract
The thymus is critical for central tolerance and diverse T-lymphocyte repertoire development, to provide lifelong defense against pathogens while maintaining self-tolerance. Peak thymic output occurs in utero, during infancy, and in early childhood, diminishing throughout life. Infants with congenital heart disease requiring sternotomy often undergo thymectomy to clear the surgical field. The long-term effects of early thymectomy are just being appreciated. Many patients remain asymptomatic despite immunologic findings mirroring those of immunosenescence. Few develop increased infection or lymphoreticular malignancy risk. When considering the effects of infant thymectomy, patients with partial DiGeorge syndrome or hypomorphic recombination-activating gene (RAG) mutations may be instructive. These patients are lymphocytopenic, with increased early-onset infection and autoimmunity risk that is not seen in most patients who underwent thymectomy during infancy. The thymic structure of patients with partial DiGeorge syndrome or hypomorphic RAG is abnormal, with disrupted architecture inclining to perturbation of central tolerance. Similar findings may be seen in patients with myasthenia gravis, although disrupted peripheral tolerance may play a greater role in autoimmunity development. In conclusion, thymectomy during infancy may increase future risk of infection or autoimmunity, with premature immunosenescence mediated through disruption of central and peripheral tolerance mechanisms initiated by early cessation or diminution of thymic output. Ideally, some thymic tissue should be preserved at the time of surgery.
Collapse
Affiliation(s)
- Angela Deya-Martinez
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Aisling M Flinn
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Childrens' Hospital, Newcastle upon Tyne, United Kingdom; Primary Immunodeficiency Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
5
|
Shevyrev D, Tereshchenko V. Treg Heterogeneity, Function, and Homeostasis. Front Immunol 2020; 10:3100. [PMID: 31993063 PMCID: PMC6971100 DOI: 10.3389/fimmu.2019.03100] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
T-regulatory cells (Tregs) represent a unique subpopulation of helper T-cells by maintaining immune equilibrium using various mechanisms. The role of T-cell receptors (TCR) in providing homeostasis and activation of conventional T-cells is well-known; however, for Tregs, this area is understudied. In the last two decades, evidence has accumulated to confirm the importance of the TCR in Treg homeostasis and antigen-specific immune response regulation. In this review, we describe the current view of Treg subset heterogeneity, homeostasis and function in the context of TCR involvement. Recent studies of the TCR repertoire of Tregs, combined with single-cell gene expression analysis, revealed the importance of TCR specificity in shaping Treg phenotype diversity, their functions and homeostatic maintenance in various tissues. We propose that Tregs, like conventional T-helper cells, act to a great extent in an antigen-specific manner, which is provided by a specific distribution of Tregs in niches.
Collapse
Affiliation(s)
- Daniil Shevyrev
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| | - Valeriy Tereshchenko
- Research Institute for Fundamental and Clinical Immunology (RIFCI), Novosibirsk, Russia
| |
Collapse
|
6
|
Reid BM, Coe CL, Doyle CM, Sheerar D, Slukvina A, Donzella B, Gunnar MR. Persistent skewing of the T-cell profile in adolescents adopted internationally from institutional care. Brain Behav Immun 2019; 77:168-177. [PMID: 30639443 PMCID: PMC6496945 DOI: 10.1016/j.bbi.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/22/2023] Open
Abstract
The developing immune system is an adaptive system, primed by antigens, responsive to infectious pathogens, and can be affected by other aspects of the early rearing environment, including deviations from the normal provision of parental care. We investigated whether early rearing in an institutional setting, even when followed by years living in supportive and well-resourced families, would be associated with a persistent shift in T cell profiles. Immunophenotyping was used to enumerate CD4+ CD57+ and CD8+ CD57+ subsets, with gating strategies employed to differentiate naïve, central-memory, effector-memory, and terminally differentiated EM cells expressing CD45RA (TEMRA). Blood samples were collected from 96 adolescents, and PBMC isolated via Ficol gradient, followed by an optimized immunophenotypic characterization. CMV antibody titers were determined via ELISA. Adopted adolescents had lower CD4/CD8 ratios than did the control adolescents. Early rearing had a significant effect on the T cells, especially the CD8+ CD57+ CM, EM, and TEMRA cells and the CD4+ CD57+ EM cells. Adolescents who had spent their infancy in institutions before adoption were more likely to be seropositive for CMV, with higher antibody titers. CMV antibody titers were significantly correlated with the percentages of all CD8+ CD57+ cell subsets. In the statistical modeling, CMV antibody titer also completely mediated the relationship between institutional exposure and the ratio of CD4-to-CD8 cells, as well as the percentages of CD4+ CD57+ and CD8+ CD57+ subsets. These findings demonstrate that persistent immune differences are still evident even years after adoption by supportive American families. The shift in the T cells was associated with being a latent carrier of CMV and may reflect the role of specific T cell subsets in Herpes virus containment. In older adults, sustained CMV antigen persistence and immunoregulatory containment ultimately contributes to an accumulation of differentiated T cells with a decreased proliferative capacity and to immune senescence.
Collapse
Affiliation(s)
- Brie M Reid
- Institute of Child Development, University of Minnesota - Twin Cities, 51 E. River Road, Minneapolis, MN 55455, United States.
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin - Madison, 1202 W. Johnson Street, Madison, WI 53706, United States
| | - Colleen M Doyle
- Institute of Child Development, University of Minnesota - Twin Cities, 51 E. River Road, Minneapolis, MN 55455, United States
| | - Dagna Sheerar
- Department of Psychology, University of Wisconsin - Madison, 1202 W. Johnson Street, Madison, WI 53706, United States
| | - Alla Slukvina
- Department of Psychology, University of Wisconsin - Madison, 1202 W. Johnson Street, Madison, WI 53706, United States
| | - Bonny Donzella
- Institute of Child Development, University of Minnesota - Twin Cities, 51 E. River Road, Minneapolis, MN 55455, United States
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota - Twin Cities, 51 E. River Road, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Human naïve regulatory T-cells feature high steady-state turnover and are maintained by IL-7. Oncotarget 2017; 7:12163-75. [PMID: 26910841 PMCID: PMC4914276 DOI: 10.18632/oncotarget.7512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Naïve FoxP3-expressing regulatory T-cells (Tregs) are essential to control immune responses via continuous replenishment of the activated-Treg pool with thymus-committed suppressor cells. The mechanisms underlying naïve-Treg maintenance throughout life in face of the age-associated thymic involution remain unclear. We found that in adults thymectomized early in infancy the naïve-Treg pool is remarkably well preserved, in contrast to conventional naïve CD4 T-cells. Naïve-Tregs featured high levels of cycling and pro-survival markers, even in healthy individuals, and contrasted with other circulating naïve/memory CD4 T-cell subsets in terms of their strong γc-cytokine-dependent signaling, particularly in response to IL-7. Accordingly, ex-vivo stimulation of naïve-Tregs with IL-7 induced robust cytokine-dependent signaling, Bcl-2 expression, and phosphatidylinositol 3-kinase (PI3K)-dependent proliferation, whilst preserving naïve phenotype and suppressive capacity. Altogether, our data strongly implicate IL-7 in the thymus-independent long-term survival of functional naïve-Tregs, and highlight the potential of targeting the IL-7 pathway to modulate Tregs in different clinical settings.
Collapse
|
8
|
van den Broek T, Madi A, Delemarre EM, Schadenberg AWL, Tesselaar K, Borghans JAM, Nierkens S, Redegeld FA, Otten HG, Rossetti M, Albani S, Sorek R, Cohen IR, Jansen NJG, van Wijk F. Human neonatal thymectomy induces altered B-cell responses and autoreactivity. Eur J Immunol 2017; 47:1970-1981. [PMID: 28691750 PMCID: PMC5697610 DOI: 10.1002/eji.201746971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/19/2023]
Abstract
An association between T‐cell lymphopenia and autoimmunity has long been proposed, but it remains to be elucidated whether T‐cell lymphopenia affects B‐cell responses to autoantigens. Human neonatal thymectomy (Tx) results in a decrease in T‐cell numbers and we used this model to study the development of autoreactivity. Two cohorts of neonatally thymectomized individuals were examined, a cohort of young (1–5 years post‐Tx, n = 10–27) and older children (>10 years, n = 26), and compared to healthy age‐matched controls. T‐cell and B‐cell subsets were assessed and autoantibody profiling performed. Early post‐Tx, a decrease in T‐cell numbers (2.75 × 109/L vs. 0.71 × 109/L) and an increased proportion of memory T cells (19.72 vs. 57.43%) were observed. The presence of autoantibodies was correlated with an increased proportion of memory T cells in thymectomized children. No differences were seen in percentages of different B‐cell subsets between the groups. The autoantigen microarray showed a skewed autoantibody response after Tx. In the cohort of older individuals, autoantibodies were present in 62% of the thymectomized children, while they were found in only 33% of the healthy controls. Overall, our data suggest that neonatal Tx skews the autoantibody profile. Preferential expansion and preservation of Treg (regulatory T) cell stability and function, may contribute to preventing autoimmune disease development after Tx.
Collapse
Affiliation(s)
- Theo van den Broek
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Asaf Madi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eveline M Delemarre
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Alvin W L Schadenberg
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands.,Department of Pediatric Intensive Care, Bristol Royal Hospital for Children, Bristol, UK
| | - Kiki Tesselaar
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - José A M Borghans
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Frank A Redegeld
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Maura Rossetti
- Duke-National University of Singapore Graduate Medical School, Singapore.,SingHealth Translational Immunology and Inflammation Centre, SingHealth, Singapore
| | - Salvatore Albani
- Duke-National University of Singapore Graduate Medical School, Singapore.,SingHealth Translational Immunology and Inflammation Centre, SingHealth, Singapore
| | | | - Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Pediatric Cardiothoracic Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
9
|
Silva SL, Albuquerque A, Amaral AJ, Li QZ, Mota C, Cheynier R, Victorino RMM, Pereira-Santos MC, Sousa AE. Autoimmunity and allergy control in adults submitted to complete thymectomy early in infancy. PLoS One 2017; 12:e0180385. [PMID: 28686710 PMCID: PMC5501530 DOI: 10.1371/journal.pone.0180385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
The contribution of the decline in thymic activity for the emergence of autoimmunity is still debatable. Immune-competent adults submitted to complete thymectomy early in life provide a unique model to address this question. We applied here strict criteria to identify adults lacking thymic activity based on sjTREC levels, to exclude thymic rebound and/or ectopic thymuses. In agreement, they featured severe naïve CD4 T-cell depletion and contraction of T-cell receptor diversity. Notwithstanding this, there was neither increased incidence of autoimmune disease in comparison with age-matched controls nor significant changes in their IgG/IgA/IgM/IgE autoreactivity profiles, as assessed through extensive arrays. We reasoned that the observed relative preservation of the regulatory T-cell compartment, including maintenance of naïve regulatory CD4 T-cells, may contribute to limit the emergence of autoimmunity upon thymectomy. Our findings have implications in other clinical settings with impaired thymic activity, and are particularly relevant to studies of autoimmunity in ageing.
Collapse
Affiliation(s)
- Susana L. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | - Adriana Albuquerque
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Andreia J. Amaral
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Catarina Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Medicina 2, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | - Rémi Cheynier
- Cytokines and Viral Infections, Immunology Infection and Inflammation department, Institut Cochin, INSERM, U1016, Paris, France
- Centre National de la Recherche Scientifique, UMR8104, Paris, France
- Université Paris Descartes, Paris, France
| | - Rui M. M. Victorino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- Clinica Universitária de Medicina 2, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte. Lisboa, Portugal
| | | | - Ana E. Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisboa, Portugal
- * E-mail:
| |
Collapse
|
10
|
Kohler S, Keil TOP, Hoffmann S, Swierzy M, Ismail M, Rückert JC, Alexander T, Meisel A. CD4 + FoxP3 + T regulatory cell subsets in myasthenia gravis patients. Clin Immunol 2017; 179:40-46. [DOI: 10.1016/j.clim.2017.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
|
11
|
Gudmundsdottir J, Óskarsdóttir S, Skogberg G, Lindgren S, Lundberg V, Berglund M, Lundell AC, Berggren H, Fasth A, Telemo E, Ekwall O. Early thymectomy leads to premature immunologic ageing: An 18-year follow-up. J Allergy Clin Immunol 2016; 138:1439-1443.e10. [DOI: 10.1016/j.jaci.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 12/11/2022]
|
12
|
van den Broek T, Delemarre EM, Janssen WJM, Nievelstein RAJ, Broen JC, Tesselaar K, Borghans JAM, Nieuwenhuis EES, Prakken BJ, Mokry M, Jansen NJG, van Wijk F. Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J Clin Invest 2016; 126:1126-36. [PMID: 26901814 DOI: 10.1172/jci84997] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
The generation of naive T cells is dependent on thymic output, but in adults, the naive T cell pool is primarily maintained by peripheral proliferation. Naive T cells have long been regarded as relatively quiescent cells; however, it was recently shown that IL-8 production is a signatory effector function of naive T cells, at least in newborns. How this functional signature relates to naive T cell dynamics and aging is unknown. Using a cohort of children and adolescents who underwent neonatal thymectomy, we demonstrate that the naive CD4+ T cell compartment in healthy humans is functionally heterogeneous and that this functional diversity is lost after neonatal thymectomy. Thymic tissue regeneration later in life resulted in functional restoration of the naive T cell compartment, implicating the thymus as having functional regenerative capacity. Together, these data shed further light on functional differentiation within the naive T cell compartment and the importance of the thymus in human naive T cell homeostasis and premature aging. In addition, these results affect and alter our current understanding on the identification of truly naive T cells and recent thymic emigrants.
Collapse
|
13
|
Silva SL, Sousa AE. Establishment and Maintenance of the Human Naïve CD4 + T-Cell Compartment. Front Pediatr 2016; 4:119. [PMID: 27843891 PMCID: PMC5086629 DOI: 10.3389/fped.2016.00119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
The naïve CD4+ T-cell compartment is considered essential to guarantee immune competence throughout life. Its replenishment with naïve cells with broad diverse receptor repertoire, albeit with reduced self-reactivity, is ensured by the thymus. Nevertheless, cumulative data support a major requirement of post-thymic proliferation both for the establishment of the human peripheral naïve compartment during the accelerated somatic growth of childhood, as well as for its lifelong maintenance. Additionally, a dynamic equilibrium is operating at the cell level to fine-tune the T-cell receptor threshold to activation and survival cues, in order to counteract the continuous naïve cell loss by death or conversion into memory/effector cells. The main players in these processes are low-affinity self-peptide/MHC and cytokines, particularly IL-7. Moreover, although naïve CD4+ T-cells are usually seen as a homogeneous population regarding stage of maturation and cell differentiation, increasing evidence points to a variety of phenotypic and functional subsets with distinct homeostatic requirements. The paradigm of cells committed to a distinct lineage in the thymus are the naïve regulatory T-cells, but other functional subpopulations have been identified based on their time span after thymic egress, phenotypic markers, such as CD31, or cytokine production, namely IL-8. Understanding the regulation of these processes is of utmost importance to promote immune reconstitution in several clinical settings, namely transplantation, persistent infections, and aging. In this mini review, we provide an overview of the mechanisms underlying human naïve CD4+ T-cell homeostasis, combining clinical data, experimental studies, and modeling approaches.
Collapse
Affiliation(s)
- Susana L Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal; Clinica Universitária de Imunoalergologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal; Centro de Imunodeficiências Primárias, Lisboa, Portugal
| |
Collapse
|
14
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2014. J Allergy Clin Immunol 2015; 135:1132-41. [PMID: 25956014 DOI: 10.1016/j.jaci.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Genetic identification of immunodeficiency syndromes has become more efficient with the availability of whole-exome sequencing, expediting the identification of relevant genes and complementing traditional linkage analysis and homozygosity mapping. New genes defects causing immunodeficiency include phophoglucomutase 3 (PGM3), cytidine 5' triphosphate synthase 1 (CTPS1), nuclear factor κB-inducing kinase (NIK), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10), phosphoinositide-3 kinase regulatory subunit 1 (PIK3R1), IL21, and Jagunal homolog 1 (JAGN1). New case reports expanded the clinical spectrum of gene defects. For example, a specific recombination-activating gene 1 variant protein with partial recombinant activity might produce Omenn syndrome or a common variable immunodeficiency phenotype. Central and peripheral B-cell tolerance was investigated in patients with several primary immunodeficiencies, including common variable immunodeficiency and Wiskott-Aldrich syndrome, to explain the occurrence of autoimmunity and inflammatory disorders. The role of IL-12 and IL-15 in the enhancement of natural killer cell activity was reported. Newborn screening for T-cell deficiency is being implemented in more states and is achieving its goal of defining the true incidence of severe combined immunodeficiency and providing early treatment that offers the highest survival for these patients. Definitive treatment of severe immunodeficiency with both hematopoietic stem cell transplantation and gene therapy was reported to be successful, with increasing definition of conditions needed for optimal outcomes. Progress in HIV infection is directed toward the development of an effective vaccine and the eradication of hidden latent virus reservoirs.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| |
Collapse
|