1
|
Wan J, Wang C, Wang Z, Wang L, Wang H, Zhou M, Fu ZF, Zhao L. CXCL13 promotes broad immune responses induced by circular RNA vaccines. Proc Natl Acad Sci U S A 2024; 121:e2406434121. [PMID: 39436660 PMCID: PMC11536096 DOI: 10.1073/pnas.2406434121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Antibody responses induced by current vaccines for influenza and SARS-CoV-2 often lack robust cross-reactivity. As hubs where diverse immune cells converge and interact, the alterations in the immune microenvironment within lymph nodes (LNs) are intricately linked to immune responses. Herein, we designed a lipid nanoparticle (LNP) loaded with circular RNA (circRNA) and targeted to LNs, in which CXCL13 was directly integrated into antigen-encoding circRNA strands. We demonstrated that CXCL13 alters the transcriptomic profiles of LNs, especially the upregulation of IL-21 and IL-4. Meanwhile, CXCL13 promotes the formation of germinal center and elicits robust antigen-specific T cell responses. With the codelivery of CXCL13 and the antigen, CXCL13 enhances cross-reactive antibodies against influenza virus and SARS-CoV-2, achieving protection against both homologous and heterologous influenza virus challenges in a mouse model. Notably, the targeted modification of LNP surfaces with antibodies helps address some of the challenges associated with lyophilized LNP vaccines, which is crucial for the long-term storage of LNP-circRNA vaccines. Overall, the circRNA-based antigen-CXCL13 coexpression system developed herein provides a simple and robust platform that enhances the magnitude and breadth of antibody responses against multiple viral glycoproteins, highlighting the potential utility of CXCL13 in inducing broad immune responses.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
2
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
3
|
Li X, Liao D, Li Z, Li J, Diaz M, Verkoczy L, Gao F. Autoreactivity and broad neutralization of antibodies against HIV-1 are governed by distinct mutations: Implications for vaccine design strategies. Front Immunol 2022; 13:977630. [PMID: 36479128 PMCID: PMC9720396 DOI: 10.3389/fimmu.2022.977630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Many of the best HIV-1 broadly neutralizing antibodies (bnAbs) known have poly-/autoreactive features that disfavor normal B cell development and maturation, posing a major hurdle in developing an effective HIV-1 vaccine. Key to resolving this problem is to understand if, and to what extent, neutralization breadth-conferring mutations acquired by bnAbs contribute to their autoreactivity. Here, we back-mutated all known changes made by a prototype CD4 binding site-directed bnAb lineage, CH103-106, during its later maturation steps. Strikingly, of 29 mutations examined, only four were crucial for increased autoreactivity, with minimal or no impact on neutralization. Furthermore, three of these residues were clustered in the heavy chain complementarity-determining region 2 (HCDR2). Our results demonstrate that broad neutralization activity and autoreactivity in the CH103-106 bnAb lineage can be governed by a few, distinct mutations during maturation. This provides strong rationale for developing immunogens that favor bnAb lineages bearing "neutralization-only" mutations into current HIV-1 vaccine designs.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Dongmei Liao
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Zhengyang Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Marilyn Diaz
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Laurent Verkoczy
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdongg, China
| |
Collapse
|
4
|
Brenna E, McMichael AJ. The Importance of Cellular Immune Response to HIV: Implications for Antibody Production and Vaccine Design. DNA Cell Biol 2022; 41:38-42. [PMID: 34664991 PMCID: PMC8787704 DOI: 10.1089/dna.2021.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Despite many years from the discovery of human immunodeficiency virus (HIV), a prophylactic vaccine against HIV is still needed. The failure of most of the vaccine clinical trials in the field has different causes, mainly due by the difficulties to identify the correct antigen able to prime the optimal B cell lineage and then make the series of somatic mutations necessary to generate broadly neutralizing antibodies (bNAbs). B cells are responsible for the bNAbs production; however, their function is strongly influenced by the presence of a population of CD4+ T lymphocytes, mainly present in the lymphoid organs, the T follicular helper cells (Tfh). In this review, the importance of the contribution of Tfh cells in HIV response is highlighted and future therapy perspectives based on these observations are described. The advanced technology available nowadays and the wide knowledge built over the past years for HIV may eventually create the best scenario for the generation of an effective vaccine.
Collapse
Affiliation(s)
- Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Kasturi SP, Rasheed MAU, Havenar-Daughton C, Pham M, Legere T, Sher ZJ, Kovalenkov Y, Gumber S, Huang JY, Gottardo R, Fulp W, Sato A, Sawant S, Stanfield-Oakley S, Yates N, LaBranche C, Alam SM, Tomaras G, Ferrari G, Montefiori D, Wrammert J, Villinger F, Tomai M, Vasilakos J, Fox CB, Reed SG, Haynes BF, Crotty S, Ahmed R, Pulendran B. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope-specific plasma cells and humoral immunity in nonhuman primates. Sci Immunol 2021; 5:5/48/eabb1025. [PMID: 32561559 DOI: 10.1126/sciimmunol.abb1025] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
A fundamental challenge in vaccinology is learning how to induce durable antibody responses. Live viral vaccines induce antibody responses that last a lifetime, but those induced with subunit vaccines wane rapidly. Studies in mice and humans have established that long-lived plasma cells (LLPCs) in the bone marrow (BM) are critical mediators of durable antibody responses. Here, we present data that adjuvanting an HIV-1 clade C 1086.C-derived gp140 immunogen (Env) with a novel synthetic Toll-like receptor (TLR)-7/8 agonist named 3M-052 formulated in poly(lactic-co-glycolic)acid or PLGA nanoparticles (NPs) or with alum, either alone or in combination with a TLR-4 agonist GLA, induces notably high and persistent (up to ~1 year) frequencies of Env-specific LLPCs in the BM and serum antibody responses in rhesus macaques. Up to 36 and 18% of Env-specific cells among total IgG-secreting BM-resident plasma cells were detected at peak and termination, respectively. In contrast, adjuvanting Env with alum or GLA in NP induced significantly lower (~<100-fold) LLPC and antibody responses. Immune responses induced by 3M-052 were also significantly higher than those induced by a combination of TLR-7/8 (R848) and TLR-4 (MPL) agonists. Adjuvanting Env with 3M-052 also induced robust activation of blood monocytes, strong plasmablast responses in blood, germinal center B cells, T follicular helper (TFH) cells, and persistent Env-specific plasma cells in draining lymph nodes. Overall, these results demonstrate efficacy of 3M-052 in promoting high magnitude and durability of antibody responses via robust stimulation of innate immunity and BM-resident LLPCs.
Collapse
Affiliation(s)
- Sudhir Pai Kasturi
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Mohammed Ata Ur Rasheed
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA.,Division of Microbiology and Immunology and Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | | | - Mathew Pham
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Traci Legere
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Zarpheen Jinnah Sher
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Yevgeny Kovalenkov
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Sanjeev Gumber
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Jessica Y Huang
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William Fulp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alicia Sato
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA.,Department of Molecular Genetics and Microbiology and Department of Immunology, Duke University, NC, USA
| | - Sherry Stanfield-Oakley
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA
| | - Nicole Yates
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA.,Department of Molecular Genetics and Microbiology and Department of Immunology, Duke University, NC, USA
| | - Celia LaBranche
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA
| | - Georgia Tomaras
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA.,Department of Molecular Genetics and Microbiology and Department of Immunology, Duke University, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA.,Department of Molecular Genetics and Microbiology and Department of Immunology, Duke University, NC, USA
| | - David Montefiori
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA
| | - Jens Wrammert
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA
| | - Francois Villinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA.,New Iberia Research Center, University of Louisiana Lafayette, New Iberia, LA, USA
| | - Mark Tomai
- 3M Drug Delivery Systems, St. Paul, MN, USA
| | | | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Steven G Reed
- Infectious Disease Research Institute, Seattle, WA, USA.,HDT Bio, Seattle, WA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute and Department of Surgery, Duke University Medical Center Durham, NC, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute of Immunology, La Jolla, CA, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA. .,Division of Microbiology and Immunology and Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA, USA
| | - Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, 954, Gatewood Road, Atlanta, GA, USA. .,Departments of Pathology and Microbiology & Immunology, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Chakraborty S, Berndsen ZT, Hengartner NW, Korber BT, Ward AB, Gnanakaran S. Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. iScience 2020; 23:101836. [PMID: 33319171 PMCID: PMC7724196 DOI: 10.1016/j.isci.2020.101836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Dense surface glycosylation on the HIV-1 envelope (Env) protein acts as a shield from the adaptive immune system. However, the molecular complexity and flexibility of glycans make experimental studies a challenge. Here we have integrated high-throughput atomistic modeling of fully glycosylated HIV-1 Env with graph theory to capture immunologically important features of the shield topology. This is the first complete all-atom model of HIV-1 Env SOSIP glycan shield that includes both oligomannose and complex glycans, providing physiologically relevant insights of the glycan shield. This integrated approach including quantitative comparison with cryo-electron microscopy data provides hitherto unexplored details of the native shield architecture and its difference from the high-mannose glycoform. We have also derived a measure to quantify the shielding effect over the antigenic protein surface that defines regions of relative vulnerability and resilience of the shield and can be harnessed for rational immunogen design.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Non-Linear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicolas W. Hengartner
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - S. Gnanakaran
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
7
|
Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape. Nat Commun 2020; 11:377. [PMID: 31953427 PMCID: PMC6969152 DOI: 10.1038/s41467-019-14174-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements. This is achieved by first developing a probabilistic model for the prevalence of vp1 sequences that enables us to isolate and remove data that are subject to strong vaccine-derived biases. The intrinsic fitness constraints derived for vp1, a capsid protein subject to antibody responses, are compared with those of analogous HIV proteins. We find that vp1 evolution is subject to tighter constraints, limiting its ability to evade vaccine-induced immune responses. Our analysis also indicates that circulating poliovirus strains in unimmunized populations serve as a reservoir that can seed outbreaks in spatio-temporally localized sub-optimally immunized populations. Poliovirus has a higher mutation rate than HIV, yet has been almost eradicated by vaccination while an effective vaccine against HIV does not exist. Here, the authors develop a fitness model for poliovirus viral protein 1 to show that it is subject to stringent evolutionary constraints that limit its ability to avoid vaccine-induced immune responses.
Collapse
|
8
|
Wang C, Gao N, Song Y, Duan S, Wang W, Cong Z, Qin C, Jiang C, Yu X, Gao F. Reduction of peak viremia by an integration-defective SIV proviral DNA vaccine in rhesus macaques. Microbiol Immunol 2019; 64:52-62. [PMID: 31544982 DOI: 10.1111/1348-0421.12744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2019] [Accepted: 09/15/2019] [Indexed: 12/01/2022]
Abstract
An integrase-defective SIV (idSIV) vaccine delivered by a DNA prime and viral particle boost approach can suppress viral loads (VLs) during the acute infection stage after intravenous SIVmac239 challenge. This study investigated how idSIV DNA and viral particle immunization alone contributed to the suppression of VLs in Chinese rhesus macaques after SIV challenge. Two macaques were immunized with idSIV DNA five times and two macaques were immunized with idSIV viral particles three times. Cellular and humoral immune responses were measured in the vaccinated macaques after immunization. The VLs and CD4+ T cell counts were monitored for 28 weeks after the intravenous SIVmac239 challenge. The SIV-specific T cell responses were only detected in the DNA-vaccinated macaques. However, binding and neutralizing antibodies against autologous and heterologous viruses were moderately better in macaques immunized with viral particles than in macaques immunized with DNA. After the challenge, the mean peak viremia in the DNA group was 2.3 logs lower than that in the control group, while they were similar between the viral particle immunization and control groups. Similar CD4+ T cell counts were observed among all groups. These results suggest that idSIV DNA immunization alone reduces VLs during acute infection after SIV challenge in macaques and may serve as a key component in combination with other immunogens as prophylactic vaccines.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.,The First Hospital and Institute of Immunology, Jilin University, Changchun, Jilin Province, China
| | - Nan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Yanan Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.,Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China.,Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Impact of HIV-1 Diversity on Its Sensitivity to Neutralization. Vaccines (Basel) 2019; 7:vaccines7030074. [PMID: 31349655 PMCID: PMC6789624 DOI: 10.3390/vaccines7030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 pandemic remains a major burden on global public health and a vaccine to prevent HIV-1 infection is highly desirable but has not yet been developed. Among the many roadblocks to achieve this goal, the high antigenic diversity of the HIV-1 envelope protein (Env) is one of the most important and challenging to overcome. The recent development of broadly neutralizing antibodies has considerably improved our knowledge on Env structure and its interplay with neutralizing antibodies. This review aims at highlighting how the genetic diversity of HIV-1 thwarts current, and possibly future, vaccine developments. We will focus on the impact of HIV-1 Env diversification on the sensitivity to neutralizing antibodies and the repercussions of this continuous process at a population level.
Collapse
|
10
|
Rudometov AP, Rudometova NB, Shcherbakov DN, Lomzov AA, Kaplina ON, Shcherbakova NS, Ilyichev AA, Bakulina AY, Karpenko LI. The Structural and Immunological Properties of Chimeric Proteins Containing HIV-1 MPER Sites. Acta Naturae 2019; 11:56-65. [PMID: 31720017 PMCID: PMC6826149 DOI: 10.32607/20758251-2019-11-3-56-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) poses a serious risk to global public health. The development of a safe and effective vaccine could stop the HIV/AIDS pandemic. Much of the research focused on HIV-1 prevention through vaccination is aimed at developing immunogens and immunization strategies to induce the formation of antibodies with neutralizing activity against a broad range of HIV-1 isolates (bNAbs). The objective of this study was to develop immunogens capable of targeting an immune response to MPER, one of the regions of bNAb binding in Env. Two immunogens carrying MPER fragments on their scaffolds (protein YkuJ Bacillus subtilis and artificial polypeptide TBI) were constructed. Circular dichroism spectroscopy was used to show that the secondary structure of the immunogens was consistent with their theoretical models. The antigenic structure of the MPER-TBI and YkuJ-MPER proteins was characterized using bNAbs that recognize HIV-1 MPER (2F5, 4E10, and 10E8). The rabbit model made it possible to show the immunogenicity of the constructed recombinant proteins. The resulting serum was found to be cross-reactive with immunogens carrying MPER. The constructs designed and characterized in this study can be used for targeting the humoral immune response to MPER, which is known to be one of the sites of HIV-1 vulnerability.
Collapse
Affiliation(s)
- A. P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - N. B. Rudometova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - D. N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
- Altai State University, Lenin Ave. 61, Barnaul, 656049, Russia
| | - A. A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Ac. Lavrentieva Ave. 8, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| | - O. N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - N. S. Shcherbakova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - A. A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| | - A. Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Novosibirsk region, 630559 , Russia
| |
Collapse
|
11
|
Neutralizing Antibody-Based Prevention of Cell-Associated HIV-1 Infection. Viruses 2018; 10:v10060333. [PMID: 29912167 PMCID: PMC6024846 DOI: 10.3390/v10060333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/01/2023] Open
Abstract
Improved vaccine-mediated protection against HIV-1 requires a thorough understanding of the mode of HIV-1 transmission and how various immune responses control transmission. Cell-associated HIV-1 is infectious and contributes to HIV-1 transmission in humans. Non-human primate models of cell-associated SIV infection demonstrate that cell-associated SIV is more infectious than cell-free SIV. In a recently described chimeric simian–human immunodeficiency virus (SHIV) macaque model, it was demonstrated that an occult infection with cell-associated SHIV can be established that evades passive protection with a broadly neutralizing antibody (bnAb). Indeed, considerable in vitro data shows that bnAbs have less efficacy against cell-associated HIV-1 than cell-free HIV-1. Optimizing the protective capacity of immune responses such as bnAbs against cell-associated infections may be needed to maximize their protective efficacy.
Collapse
|
12
|
Improved immune response against HIV-1 Env antigen by enhancing EEV production via a K151E mutation in the A34R gene of replication-competent vaccinia virus Tiantan. Antiviral Res 2018; 153:49-59. [DOI: 10.1016/j.antiviral.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
|
13
|
HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. J Virol 2018; 92:JVI.01552-17. [PMID: 29321320 PMCID: PMC5972890 DOI: 10.1128/jvi.01552-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/03/2017] [Indexed: 02/01/2023] Open
Abstract
Vaccine-elicited humoral immune responses comprise an array of antibody forms and specificities, with only a fraction contributing to protective host immunity. Elucidation of antibody effector functions responsible for protective immunity against human immunodeficiency virus type 1 (HIV-1) acquisition is a major goal for the HIV-1 vaccine field. Immunoglobulin A (IgA) is an important part of the host defense against pathogens; however, little is known about the role of vaccine-elicited IgA and its capacity to mediate antiviral functions. To identify the antiviral functions of HIV-1-specific IgA elicited by vaccination, we cloned HIV-1 envelope-specific IgA monoclonal antibodies (MAbs) by memory B cell cultures from peripheral blood mononuclear cells from an RV144 vaccinee and produced two IgA clonal cell lines (HG129 and HG130) producing native, nonrecombinant IgA MAbs. The HG129 and HG130 MAbs mediated phagocytosis by monocytes, and HG129 blocked HIV-1 Env glycoprotein binding to galactosylceramide, an alternative HIV-1 receptor. These findings elucidate potential antiviral functions of vaccine-elicited HIV-1 envelope-specific IgA that may act to block HIV-1 acquisition at the portal of entry by preventing HIV-1 binding to galactosylceramide and mediating antibody Fc receptor-mediated virion phagocytosis. Furthermore, these findings highlight the complex and diverse interactions of vaccine-elicited IgA with pathogens that depend on IgA fine specificity and form (e.g., multimeric or monomeric) in the systemic circulation and mucosal compartments. IMPORTANCE Host-pathogen interactions in vivo involve numerous immune mechanisms that can lead to pathogen clearance. Understanding the nature of antiviral immune mechanisms can inform the design of efficacious HIV-1 vaccine strategies. Evidence suggests that both neutralizing and nonneutralizing antibodies can mediate some protection against HIV in animal models. Although numerous studies have characterized the functional properties of HIV-1-specific IgG, more studies are needed on the functional attributes of HIV-1-specific IgA, specifically for vaccine-elicited IgA. Characterization of the functional properties of HIV-1 Env-specific IgA monoclonal antibodies from human vaccine clinical trials are critical toward understanding the capacity of the host immune response to block HIV-1 acquisition.
Collapse
|
14
|
Ahmed Y, Tian M, Gao Y. Development of an anti-HIV vaccine eliciting broadly neutralizing antibodies. AIDS Res Ther 2017; 14:50. [PMID: 28893278 PMCID: PMC5594608 DOI: 10.1186/s12981-017-0178-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/11/2017] [Indexed: 11/17/2022] Open
Abstract
The extreme HIV diversity posts a great challenge on development of an effective anti-HIV vaccine. To solve this problem, it is crucial to discover an appropriate immunogens and strategies that are able to prevent the transmission of the diverse viruses that are circulating in the world. Even though there have been a number of broadly neutralizing anti-HIV antibodies (bNAbs) been discovered in recent years, induction of such antibodies to date has only been observed in HIV-1 infection. Here, in this mini review, we review the progress in development of HIV vaccine in eliciting broad immune response, especially production of bNAbs, discuss possible strategies, such as polyvalent sequential vaccination, that facilitates B cell maturation leading to bNAb response.
Collapse
|
15
|
Abstract
A key unresolved challenge for developing an effective HIV‐1 vaccine is the discovery of strategies to elicit immune responses that are able to cross‐protect against a significant fraction of the diverse viruses that are circulating worldwide. Here, we summarize some of the immunological implications of HIV‐1 diversity, and outline the rationale behind several polyvalent vaccine design strategies that are currently under evaluation. Vaccine‐elicited T‐cell responses, which contribute to the control of HIV‐1 in natural infections, are currently being considered in both prevention and treatment settings. Approaches now in preclinical and human trials include full proteins in novel vectors, concatenated conserved protein regions, and polyvalent strategies that improve coverage of epitope diversity and enhance the cross‐reactivity of responses. While many barriers to vaccine induction of broadly neutralizing antibody (bNAb) responses remain, epitope diversification has emerged as both a challenge and an opportunity. Recent longitudinal studies have traced the emergence of bNAbs in HIV‐1 infection, inspiring novel approaches to recapitulate and accelerate the events that give rise to potent bNAb in vivo. In this review, we have selected two such lineage‐based design strategies to illustrate how such in‐depth analysis can offer conceptual improvements that may bring us closer to an effective vaccine.
Collapse
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA.,New Mexico Consortium, Los Alamos, NM, USA
| | - Peter Hraber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kshitij Wagh
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Borrow P, Moody MA. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol Rev 2017; 275:62-78. [PMID: 28133804 PMCID: PMC5299500 DOI: 10.1111/imr.12504] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV‐1) is a key, as‐yet‐unachieved goal of prophylactic HIV‐1 vaccine strategies. However, some HIV‐infected individuals develop bnAbs after approximately 2‐4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy‐chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV‐1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV‐1 vaccine design.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M Anthony Moody
- Duke University Human Vaccine Institute and Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
17
|
Havenar-Daughton C, Lee JH, Crotty S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol Rev 2017; 275:49-61. [PMID: 28133798 DOI: 10.1111/imr.12512] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh-cell processes involved in bnAb generation, including the difficulty of quantifying antigen-specific GC Tfh cells and the difficulty of tracking GC in human and non-human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Jeong Hyun Lee
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Moore PL, Gorman J, Doria-Rose NA, Morris L. Ontogeny-based immunogens for the induction of V2-directed HIV broadly neutralizing antibodies. Immunol Rev 2017; 275:217-229. [PMID: 28133797 PMCID: PMC5300058 DOI: 10.1111/imr.12501] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of a preventative HIV vaccine able to elicit broadly neutralizing antibodies (bNAbs) remains a major challenge. Antibodies that recognize the V2 region at the apex of the HIV envelope trimer are among the most common bNAb specificities during chronic infection and many exhibit remarkable breadth and potency. Understanding the developmental pathway of these antibodies has provided insights into their precursors, and the viral strains that engage them, as well as defined how such antibodies mature to acquire breadth. V2‐apex bNAbs are derived from rare precursors with long anionic CDR H3s that are often deleted in the B cell repertoire. However, longitudinal studies suggest that once engaged, these precursors contain many of the structural elements required for neutralization, and can rapidly acquire breadth through moderate levels of somatic hypermutation in response to emerging viral variants. These commonalities in the precursors and mechanism of neutralization have enabled the identification of viral strains that show enhanced reactivity for V2 precursors from multiple donors, and may form the basis of germline targeting approaches. In parallel, new structural insights into the HIV trimer, the target of these quaternary antibodies, has created invaluable new opportunities for ontogeny‐based immunogens designed to select for rare V2‐bNAb precursors, and drive them toward breadth.
Collapse
Affiliation(s)
- Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
19
|
Abstract
Beginning in 2009, studies of the humoral responses of HIV‐positive individuals have led to the identification of scores, if not hundreds, of antibodies that are both broadly reactive and potently neutralizing. This development has provided renewed impetus toward an HIV vaccine and led directly to the development of novel immunogens. Advances in identification of donors with the most potent and broad anti‐HIV serum neutralizing responses were crucial in this effort. Equally, development of methods for the rapid generation of human antibodies from these donors was pivotal. Primarily these methods comprise single B‐cell culture coupled to high‐throughput neutralization screening and flow cytometry‐based sorting of single B cells using HIV envelope protein baits. In this review, the advantages and disadvantages of these methodologies are discussed in the context of the specificities targeted by individual antibodies and the need for further improvements to evaluate HIV vaccine candidates.
Collapse
Affiliation(s)
- Laura E McCoy
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Division of Infection & Immunity, University College London, London, UK
| | - Dennis R Burton
- Department of Immunology & Microbial Science, IAVI Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| |
Collapse
|
20
|
Verkoczy L, Alt FW, Tian M. Human Ig knockin mice to study the development and regulation of HIV-1 broadly neutralizing antibodies. Immunol Rev 2017; 275:89-107. [PMID: 28133799 DOI: 10.1111/imr.12505] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major challenge for HIV-1 vaccine research is developing a successful immunization approach for inducing broadly neutralizing antibodies (bnAbs). A key shortcoming in meeting this challenge has been the lack of animal models capable of identifying impediments limiting bnAb induction and ranking vaccine strategies for their ability to promote bnAb development. Since 2010, immunoglobulin knockin (KI) technology, involving inserting functional rearranged human variable exons into the mouse IgH and IgL loci has been used to express bnAbs in mice. This approach has allowed immune tolerance mechanisms limiting bnAb production to be elucidated and strategies to overcome such limitations to be evaluated. From these studies, along with the wealth of knowledge afforded by analyses of recombinant Ig-based bnAb structures, it became apparent that key functional features of bnAbs often are problematic for their elicitation in mice by classic vaccine paradigms, necessitating more iterative testing of new vaccine concepts. In this regard, bnAb KI models expressing deduced precursor V(D)J rearrangements of mature bnAbs or unrearranged germline V, D, J segments (that can be assembled into variable region exons that encode bnAb precursors), have been engineered to evaluate novel immunogens/regimens for effectiveness in driving bnAb responses. One promising approach emerging from such studies is the ability of sequentially administered, modified immunogens (designed to bind progressively more mature bnAb precursors) to initiate affinity maturation. Here, we review insights gained from bnAb KI studies regarding the regulation and induction of bnAbs, and discuss new Ig KI methodologies to manipulate the production and/or expression of bnAbs in vivo, to further facilitate vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Departments of Medicine and Pathology, Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Cirelli KM, Crotty S. Germinal center enhancement by extended antigen availability. Curr Opin Immunol 2017; 47:64-69. [PMID: 28738289 PMCID: PMC5626612 DOI: 10.1016/j.coi.2017.06.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022]
Abstract
Vaccine elicitation of protective antibody responses has proved difficult for a number of important human pathogens, including HIV-1. The amount of somatic hypermutation associated with the development of broadly neutralizing antibodies against HIV has not been achieved using conventional immunization strategies. An underexplored aspect of vaccine design is modulation of antigen kinetics. Immunization strategies with extended antigen availability have recently been shown to enhance humoral responses. In this review, we explore the mechanisms through which sustained antigen availability can enhance germinal center responses and the potency of antibody responses. These potential mechanisms include shifting B cell recognition away from non-neutralizing immunodominant epitopes, altered kinetics of immune complex deposition, improved T follicular helper (Tfh) cell responses, enhanced affinity maturation, and enhanced development of B cell memory. Finally, we discuss immunization strategies that result in extended antigen availability.
Collapse
Affiliation(s)
- Kimberly M Cirelli
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
22
|
Pentavalent HIV-1 vaccine protects against simian-human immunodeficiency virus challenge. Nat Commun 2017; 8:15711. [PMID: 28593989 PMCID: PMC5472724 DOI: 10.1038/ncomms15711] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
The RV144 Thai trial HIV-1 vaccine of recombinant poxvirus (ALVAC) and recombinant HIV-1 gp120 subtype B/subtype E (B/E) proteins demonstrated 31% vaccine efficacy. Here we design an ALVAC/Pentavalent B/E/E/E/E vaccine to increase the diversity of gp120 motifs in the immunogen to elicit a broader antibody response and enhance protection. We find that immunization of rhesus macaques with the pentavalent vaccine results in protection of 55% of pentavalent-vaccine-immunized macaques from simian–human immunodeficiency virus (SHIV) challenge. Systems serology of the antibody responses identifies plasma antibody binding to HIV-infected cells, peak ADCC antibody titres, NK cell-mediated ADCC and antibody-mediated activation of MIP-1β in NK cells as the four immunological parameters that best predict decreased infection risk that are improved by the pentavalent vaccine. Thus inclusion of additional gp120 immunogens to a pox-prime/protein boost regimen can augment antibody responses and enhance protection from a SHIV challenge in rhesus macaques. A previous human HIV-1 vaccine clinical trial, boosting with HIV envelope protein from two strains, demonstrated moderate vaccine efficacy. Here, Bradley et al. show that a pentavalent HIV envelope protein boost improves protection from viral challenge in non-human primates and they identify immune correlates of protection.
Collapse
|
23
|
HIV-Enhancing and HIV-Inhibiting Properties of Cationic Peptides and Proteins. Viruses 2017; 9:v9050108. [PMID: 28505117 PMCID: PMC5454421 DOI: 10.3390/v9050108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 12/26/2022] Open
Abstract
Cationic antimicrobial peptides and proteins have historically been ascribed roles in innate immunity that infer killing of microbial and viral pathogens and protection of the host. In the context of sexually transmitted HIV-1, we take an unconventional approach that questions this paradigm. It is becoming increasingly apparent that many of the cationic polypeptides present in the human genital or anorectal mucosa, or human semen, are capable of enhancing HIV-1 infection, often in addition to other reported roles as viral inhibitors. We explore how the in vivo environment may select for or against the HIV-enhancing aspects of these cationic polypeptides by focusing on biological relevance. We stress that the distinction between enhancing and inhibiting HIV-1 infection is not mutually exclusive to specific classes of cationic polypeptides. Understanding how virally enhancing peptides and proteins act to promote sexual transmission of HIV-1 would be important for the design of topical microbicides, mucosal vaccines, and other preventative measures.
Collapse
|
24
|
DeLeon O, Hodis H, O’Malley Y, Johnson J, Salimi H, Zhai Y, Winter E, Remec C, Eichelberger N, Van Cleave B, Puliadi R, Harrington RD, Stapleton JT, Haim H. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 2017; 15:e2001549. [PMID: 28384158 PMCID: PMC5383018 DOI: 10.1371/journal.pbio.2001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. HIV-1 is the causative agent of the global AIDS pandemic. The envelope glycoproteins (Envs) of HIV-1 constitute a primary target for antibody-based vaccines. However, the diversity of Envs in the population limits the potential efficacy of this approach. Accurate estimates of the range of variants that currently infect patients and those expected to appear in the future will likely contribute to the design of population-targeted immunogens. We found that different properties (features) of Env have different propensities for small “fluctuations” in their values among viruses that infect patients at any given time point. This propensity of each feature for in-host variance, which we designate “volatility”, is conserved among patients. We apply this parameter to model the evolution of features (in patients and population) as a diffusion process driven by their “diffusion coefficients” (volatilities). Using volatilities measured from a few patient samples from the 1980s, we accurately predict properties of viruses that evolved in the population over the course of 30 years. The diffusion-based model described here efficiently captures evolution of phenotypes in biological systems controlled by a dominant random component.
Collapse
Affiliation(s)
- Orlando DeLeon
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hagit Hodis
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yunxia O’Malley
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jacklyn Johnson
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hamid Salimi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yinjie Zhai
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Winter
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire Remec
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah Eichelberger
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Brandon Van Cleave
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramya Puliadi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert D. Harrington
- Center for AIDS Research (CFAR) at the University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
25
|
Augusto MT, Hollmann A, Troise F, Veiga AS, Pessi A, Santos NC. Lipophilicity is a key factor to increase the antiviral activity of HIV neutralizing antibodies. Colloids Surf B Biointerfaces 2017; 152:311-316. [DOI: 10.1016/j.colsurfb.2017.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
|
26
|
Banerjee S, Shi H, Banasik M, Moon H, Lees W, Qin Y, Harley A, Shepherd A, Cho MW. Evaluation of a novel multi-immunogen vaccine strategy for targeting 4E10/10E8 neutralizing epitopes on HIV-1 gp41 membrane proximal external region. Virology 2017; 505:113-126. [PMID: 28237764 DOI: 10.1016/j.virol.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023]
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by broadly neutralizing antibodies (bnAbs) 4E10 and 10E8. In this proof-of-concept study, we evaluated a novel multi-immunogen vaccine strategy referred to as Incremental, Phased Antigenic Stimulation for Rapid Antibody Maturation (IPAS-RAM) to induce 4E10/10E8-like bnAbs. Rabbits were immunized sequentially, but in a phased manner, with three immunogens that are progressively more native (gp41-28×3, gp41-54CT, and rVV-gp160DH12). Although nAbs were not induced, epitope-mapping analyses indicated that IPAS-RAM vaccination was better able to target antibodies towards the 4E10/10E8 epitopes than homologous prime-boost immunization using gp41-28×3 alone. MPER-specific rabbit monoclonal antibodies were generated, including 9F6. Although it lacked neutralizing activity, the target epitope profile of 9F6 closely resembled those of 4E10 and 10E8 (671NWFDITNWLWYIK683). B-cell repertoire analyses suggested the importance of co-immunizations for maturation of 9F6, which warrants further evaluation of our IPAS-RAM vaccine strategy using an improved priming immunogen.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Heliang Shi
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Hojin Moon
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Andrew Harley
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Adrian Shepherd
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, UK
| | - Michael W Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
27
|
Abstract
INTRODUCTION Despite many recent advances in the HIV prevention landscape, an effective vaccine remains the most promising tool to end the HIV-1 pandemic. Areas covered: This review summarizes past HIV vaccine efficacy trials and current vaccine strategies as well as new approaches about to move into first-in-human trials. Expert opinion: Despite many setbacks in early HIV vaccine efficacy trials, the success of RV144 has provided the glimmer of hope necessary to invigorate the vaccine field, and has led to the development of a large number of vaccine strategies aiming at inducing an array of different immune responses. The follow-up pox-protein trials, developed to replicate and enhance the polyfunctional antibody responses induced by the RV144 regimen, are already reaching efficacy trials, while a large body of work providing a more complete understanding of the development of broadly neutralizing antibodies is now being translated into immunogen design using several different strategies. T-cell based vaccines, fallen out of favor after Ad5-based trials showed increased infection rates in Ad5 seropositive vaccine recipients, are experiencing a comeback based in part on the promising results from non-human primate challenge studies using rhCMV-based immunogens. This diverse array of vaccine candidates may finally allow us to identify a broadly effective HIV vaccine able to contain the epidemic.
Collapse
Affiliation(s)
- Kristen W Cohen
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Nicole Frahm
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| |
Collapse
|
28
|
Verkoczy L. Humanized Immunoglobulin Mice: Models for HIV Vaccine Testing and Studying the Broadly Neutralizing Antibody Problem. Adv Immunol 2017; 134:235-352. [PMID: 28413022 PMCID: PMC5914178 DOI: 10.1016/bs.ai.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vaccine that can effectively prevent HIV-1 transmission remains paramount to ending the HIV pandemic, but to do so, will likely need to induce broadly neutralizing antibody (bnAb) responses. A major technical hurdle toward achieving this goal has been a shortage of animal models with the ability to systematically pinpoint roadblocks to bnAb induction and to rank vaccine strategies based on their ability to stimulate bnAb development. Over the past 6 years, immunoglobulin (Ig) knock-in (KI) technology has been leveraged to express bnAbs in mice, an approach that has enabled elucidation of various B-cell tolerance mechanisms limiting bnAb production and evaluation of strategies to circumvent such processes. From these studies, in conjunction with the wealth of information recently obtained regarding the evolutionary pathways and paratopes/epitopes of multiple bnAbs, it has become clear that the very features of bnAbs desired for their function will be problematic to elicit by traditional vaccine paradigms, necessitating more iterative testing of new vaccine concepts. To meet this need, novel bnAb KI models have now been engineered to express either inferred prerearranged V(D)J exons (or unrearranged germline V, D, or J segments that can be assembled into functional rearranged V(D)J exons) encoding predecessors of mature bnAbs. One encouraging approach that has materialized from studies using such newer models is sequential administration of immunogens designed to bind progressively more mature bnAb predecessors. In this review, insights into the regulation and induction of bnAbs based on the use of KI models will be discussed, as will new Ig KI approaches for higher-throughput production and/or altering expression of bnAbs in vivo, so as to further enable vaccine-guided bnAb induction studies.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke University Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States.
| |
Collapse
|
29
|
Yu HT, Wang JY, Tian D, Wang MX, Li Y, Yuan L, Chen WJ, Li D, Zhuang M, Ling H. Comparison of the patterns of antibody recall responses to HIV-1 gp120 and hepatitis B surface antigen in immunized mice. Vaccine 2016; 34:6276-6284. [PMID: 27843002 DOI: 10.1016/j.vaccine.2016.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
Abstract
To date, we still lack an ideal strategy for designing envelope glycoprotein (Env) vaccines to elicit potent protective antibodies against HIV-1 infection. Since the human hepatitis B virus surface antigen (HBsAg) is representative of effective vaccines that can induce ideal humoral immune responses, knowledge of how it elicits antibody responses and T helper cells would be an useful reference for HIV vaccine development. We compared the characteristics of the HIV-1 Env gp120 trimer and HBsAg in antibody elicitation and induction of T follicular helper (Tfh) and memory B cells in immunized Balb/c mice. Using the strategy of protein prime-protein boost, we found that HIV-1 gp120 induced slower recall antibody responses but redundant non-specific IgG responses at early time after boosting compared to HBsAg. The higher frequency of PD-1hiCD4+ T cells and Tfh cells that appeared at the early time point after gp120 boosting is likely to limit the development of memory B cells, memory T cells, and specific antibody recall responses. These findings regarding the different features of HIV envelope and HBsAg in T helper cell responses may provide a direction to improve HIV envelope immunogenicity.
Collapse
Affiliation(s)
- Hao-Tong Yu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Dan Tian
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Ming-Xia Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China.
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin Medical University, Harbin, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
30
|
Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. J Virol 2016; 90:9224-36. [PMID: 27489265 DOI: 10.1128/jvi.01116-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. IMPORTANCE The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key functional roles. In this study, we examine the conserved, CD4 binding site-proximal N197 glycan and demonstrate that its removal both facilitates neutralizing antibody access to the CD4 binding site and modestly impacts the structural dynamics at the trimer crown without drastically altering global Env trimer stability. This indicates that surgical glycosylation site modification may be an effective way of sculpting epitope presentation in Env-based vaccines.
Collapse
|
31
|
An HIV gp120-CD4 Immunogen Does Not Elicit Autoimmune Antibody Responses in Cynomolgus Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:618-27. [PMID: 27193040 PMCID: PMC4933776 DOI: 10.1128/cvi.00115-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
A promising concept for human immunodeficiency virus (HIV) vaccines focuses immunity on the highly conserved transition state structures and epitopes that appear when the HIV glycoprotein gp120 binds to its receptor, CD4. We are developing chimeric antigens (full-length single chain, or FLSC) in which gp120 and CD4 sequences are flexibly linked to allow stable intrachain complex formation between the two moieties (A. DeVico et al., Proc Natl Acad Sci U S A 104:17477-17482, 2007, doi:10.1073/pnas.0707399104; T. R. Fouts et al., J Virol 74:11427-11436, 2000, doi:10.1128/JVI.74.24.11427-11436.2000). Proof of concept studies with nonhuman primates show that FLSC elicited heterologous protection against simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) (T. R. Fouts et al., Proc Natl Acad Sci U S A 112:E992-E999, 2016, doi:10.1073/pnas.1423669112), which correlated with antibodies against transition state gp120 epitopes. Nevertheless, advancement of any vaccine that comprises gp120-CD4 complexes must consider whether the CD4 component breaks tolerance and becomes immunogenic in the autologous host. To address this, we performed an immunotoxicology study with cynomolgus macaques vaccinated with either FLSC or a rhesus variant of FLSC containing macaque CD4 sequences (rhFLSC). Enzyme-linked immunosorbent assay (ELISA) binding titers, primary CD3(+) T cell staining, and temporal trends in T cell subset frequencies served to assess whether anti-CD4 autoantibody responses were elicited by vaccination. We find that immunization with multiple high doses of rhFLSC did not elicit detectable antibody titers despite robust responses to rhFLSC. In accordance with these findings, immunized animals had no changes in circulating CD4(+) T cell counts or evidence of autoantibody reactivity with cell surface CD4 on primary naive macaque T cells. Collectively, these studies show that antigens using CD4 sequences to stabilize transition state gp120 structures are unlikely to elicit autoimmune antibody responses, supporting the advancement of gp120-CD4 complex-based antigens, such as FLSC, into clinical testing.
Collapse
|
32
|
Havenar-Daughton C, Reiss SM, Carnathan DG, Wu JE, Kendric K, Torrents de la Peña A, Kasturi SP, Dan JM, Bothwell M, Sanders RW, Pulendran B, Silvestri G, Crotty S. Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. THE JOURNAL OF IMMUNOLOGY 2016; 197:994-1002. [PMID: 27335502 DOI: 10.4049/jimmunol.1600320] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/19/2016] [Indexed: 01/17/2023]
Abstract
A range of current candidate AIDS vaccine regimens are focused on generating protective HIV-neutralizing Ab responses. Many of these efforts rely on the rhesus macaque animal model. Understanding how protective Ab responses develop and how to increase their efficacy are both major knowledge gaps. Germinal centers (GCs) are the engines of Ab affinity maturation. GC T follicular helper (Tfh) CD4 T cells are required for GCs. Studying vaccine-specific GC Tfh cells after protein immunizations has been challenging, as Ag-specific GC Tfh cells are difficult to identify by conventional intracellular cytokine staining. Cytokine production by GC Tfh cells may be intrinsically limited in comparison with other Th effector cells, as the biological role of a GC Tfh cell is to provide help to individual B cells within the GC, rather than secreting large amounts of cytokines bathing a tissue. To test this idea, we developed a cytokine-independent method to identify Ag-specific GC Tfh cells. RNA sequencing was performed using TCR-stimulated GC Tfh cells to identify candidate markers. Validation experiments determined CD25 (IL-2Rα) and OX40 to be highly upregulated activation-induced markers (AIM) on the surface of GC Tfh cells after stimulation. In comparison with intracellular cytokine staining, the AIM assay identified >10-fold more Ag-specific GC Tfh cells in HIV Env protein-immunized macaques (BG505 SOSIP). CD4 T cells in blood were also studied. In summary, AIM demonstrates that Ag-specific GC Tfh cells are intrinsically stingy producers of cytokines, which is likely an essential part of their biological function.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jennifer E Wu
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Kayla Kendric
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sudhir Pai Kasturi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Jennifer M Dan
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Division of Infectious Diseases, University of California San Diego, La Jolla, CA 92093
| | - Marcella Bothwell
- Department of Surgery, University of California San Diego, San Diego, CA 92123; and Pediatric Otolaryngology, Rady Children's Hospital-San Diego, San Diego, CA 92123
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Bali Pulendran
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037;
| |
Collapse
|
33
|
[Human immunodeficiency virus: position of Blood Working Group of the Federal Ministry of Health]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 58:1351-70. [PMID: 26487384 DOI: 10.1007/s00103-015-2255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Human Immunodeficiency Virus (HIV). Transfus Med Hemother 2016; 43:203-22. [PMID: 27403093 PMCID: PMC4924471 DOI: 10.1159/000445852] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
|
35
|
Karpenko LI, Bazhan SI, Bogryantseva MP, Ryndyuk NN, Ginko ZI, Kuzubov VI, Lebedev LR, Kaplina ON, Reguzova AY, Ryzhikov AB, Usova SV, Oreshkova SF, Nechaeva EA, Danilenko ED, Ilyichev AA. Results of phase I clinical trials of a combined vaccine against HIV-1 based on synthetic polyepitope immunogens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Abstract
Significantly higher levels of plasma CXCL13 [chemokine (C-X-C motif) ligand 13] were associated with the generation of broadly neutralizing antibodies (bnAbs) against HIV in a large longitudinal cohort of HIV-infected individuals. Germinal centers (GCs) perform the remarkable task of optimizing B-cell Ab responses. GCs are required for almost all B-cell receptor affinity maturation and will be a critical parameter to monitor if HIV bnAbs are to be induced by vaccination. However, lymphoid tissue is rarely available from immunized humans, making the monitoring of GC activity by direct assessment of GC B cells and germinal center CD4(+) T follicular helper (GC Tfh) cells problematic. The CXCL13-CXCR5 [chemokine (C-X-C motif) receptor 5] chemokine axis plays a central role in organizing both B-cell follicles and GCs. Because GC Tfh cells can produce CXCL13, we explored the potential use of CXCL13 as a blood biomarker to indicate GC activity. In a series of studies, we found that plasma CXCL13 levels correlated with GC activity in draining lymph nodes of immunized mice, immunized macaques, and HIV-infected humans. Furthermore, plasma CXCL13 levels in immunized humans correlated with the magnitude of Ab responses and the frequency of ICOS(+) (inducible T-cell costimulator) Tfh-like cells in blood. Together, these findings support the potential use of CXCL13 as a plasma biomarker of GC activity in human vaccine trials and other clinical settings.
Collapse
|
37
|
Soares HR, Castro R, Tomás HA, Rodrigues AF, Gomes-Alves P, Bellier B, Klatzmann D, Carrondo MJT, Alves PM, Coroadinha AS. Tetraspanins displayed in retrovirus-derived virus-like particles and their immunogenicity. Vaccine 2016; 34:1634-1641. [PMID: 26795367 DOI: 10.1016/j.vaccine.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
Virus-like particles (VLPs) are a particular subset of subunit vaccines which are currently explored as safer alternatives to live attenuated or inactivated vaccines. VLPs derived from retrovirus (retroVLPs) are commonly used as scaffolds for vaccine candidates due to their ability to incorporate heterologous envelope proteins. Pseudotyping retroVLPs is however not a selective process therefore, host cellular proteins such as tetraspanins are also included in the membrane. The contribution of these host-proteins to retrovirus immunogenicity remains unclear. In this work, human cells silenced and not silenced for tetraspanin CD81 were used to produce CD81(-) or CD81(+) retroVLPs. We first analyzed mice immune response against human CD81. Despite effective silencing of CD81 in retroVLP producing cells, both humoral and cellular immune responses showed persistent anti-CD81 immunogenicity, suggesting cross reactivity to related antigens. We thus compared the incorporation of related tetraspanins in retroVLPs and showed that decreased CD81 incorporation in CD81(-) retro-VLPs is compensated by an increased incorporation of CD9 and CD63 tetraspanins. These results highlight the dynamic nature of host-derived proteins incorporation in retroVLPs membrane, which should be considered when retrovirus-based biopharmaceuticals are produced in xenogeneic cells.
Collapse
Affiliation(s)
- H R Soares
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - R Castro
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - H A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - A F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - P Gomes-Alves
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - B Bellier
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_959, I3, F-75013 Paris, France; INSERM, UMR_S 959, I3, F-75013 Paris, France
| | - D Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS_959, I3, F-75013 Paris, France; INSERM, UMR_S 959, I3, F-75013 Paris, France
| | - M J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa, P-2825 Monte da Caparica, Portugal
| | - P M Alves
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - A S Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
38
|
Xie E, Kotha A, Biaco T, Sedani N, Zou J, Stashenko P, Duncan MJ, Campos-Neto A, Cayabyab MJ. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance. PLoS One 2015; 10:e0143422. [PMID: 26618634 PMCID: PMC4664415 DOI: 10.1371/journal.pone.0143422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Emily Xie
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Abhiroop Kotha
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Tracy Biaco
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Nikita Sedani
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Jonathan Zou
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Phillip Stashenko
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Antonio Campos-Neto
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Mark J. Cayabyab
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses 2015; 7:5443-75. [PMID: 26506369 PMCID: PMC4632389 DOI: 10.3390/v7102881] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations of mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus "hot-spots" under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. With well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent "cocktail" vaccines.
Collapse
|
40
|
McAfee MS, Huynh TP, Johnson JL, Jacobs BL, Blattman JN. Interaction between unrelated viruses during in vivo co-infection to limit pathology and immunity. Virology 2015; 484:153-162. [PMID: 26099694 PMCID: PMC4567517 DOI: 10.1016/j.virol.2015.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Great progress has been made in understanding immunity to viral infection. However, infection can occur in the context of co-infection by unrelated pathogens that modulate immune responses and/or disease. We have studied immunity and disease during co-infection with two unrelated viruses: Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV). ECTV infection can be a lethal in mice due in part to the blockade of Type I Interferons (IFN-I). We show that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, likely due to IFN-I induction by LCMV, as rescue is not observed in IFN-I receptor deficient mice. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and potentially biased toward effector-memory cell generation. Thus, we provide evidence for bi-directional effects of viral co-infection that modulate disease and immunity.
Collapse
Affiliation(s)
- Megan S McAfee
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Trung P Huynh
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - John L Johnson
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | - Joseph N Blattman
- Molecular & Cellular Biology Graduate Program & Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
41
|
Abstract
The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people.
Collapse
Affiliation(s)
- Peter J Hotez
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030; .,Department of Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030; , .,Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, Texas 77030.,Sabin Vaccine Institute, Washington, DC and Houston, Texas.,Baker Institute, Rice University, Houston, Texas 77030.,Department of Biology, Baylor University, Waco, Texas 76706
| | - Maria Elena Bottazzi
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030; .,Department of Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030; , .,Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, Texas 77030.,Sabin Vaccine Institute, Washington, DC and Houston, Texas.,Department of Biology, Baylor University, Waco, Texas 76706
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas 77030; .,Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, Texas 77030
| |
Collapse
|
42
|
Chinen J, Notarangelo LD, Shearer WT. Advances in basic and clinical immunology in 2014. J Allergy Clin Immunol 2015; 135:1132-41. [PMID: 25956014 DOI: 10.1016/j.jaci.2015.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Genetic identification of immunodeficiency syndromes has become more efficient with the availability of whole-exome sequencing, expediting the identification of relevant genes and complementing traditional linkage analysis and homozygosity mapping. New genes defects causing immunodeficiency include phophoglucomutase 3 (PGM3), cytidine 5' triphosphate synthase 1 (CTPS1), nuclear factor κB-inducing kinase (NIK), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10), phosphoinositide-3 kinase regulatory subunit 1 (PIK3R1), IL21, and Jagunal homolog 1 (JAGN1). New case reports expanded the clinical spectrum of gene defects. For example, a specific recombination-activating gene 1 variant protein with partial recombinant activity might produce Omenn syndrome or a common variable immunodeficiency phenotype. Central and peripheral B-cell tolerance was investigated in patients with several primary immunodeficiencies, including common variable immunodeficiency and Wiskott-Aldrich syndrome, to explain the occurrence of autoimmunity and inflammatory disorders. The role of IL-12 and IL-15 in the enhancement of natural killer cell activity was reported. Newborn screening for T-cell deficiency is being implemented in more states and is achieving its goal of defining the true incidence of severe combined immunodeficiency and providing early treatment that offers the highest survival for these patients. Definitive treatment of severe immunodeficiency with both hematopoietic stem cell transplantation and gene therapy was reported to be successful, with increasing definition of conditions needed for optimal outcomes. Progress in HIV infection is directed toward the development of an effective vaccine and the eradication of hidden latent virus reservoirs.
Collapse
Affiliation(s)
- Javier Chinen
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | - Luigi D Notarangelo
- Division of Immunology, Boston Children's Hospital, and the Departments of Pediatrics and Pathology, Harvard Medical School, Boston, Mass
| | - William T Shearer
- Immunology, Allergy and Rheumatology Section, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex.
| |
Collapse
|
43
|
Petazzi RA, Gramatica A, Herrmann A, Chiantia S. Time-controlled phagocytosis of asymmetric liposomes: Application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1985-92. [PMID: 26115636 DOI: 10.1016/j.nano.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Macrophage immune functions such as antibody-mediated phagocytosis are strongly impaired in individuals affected by HIV-1. Nevertheless, infected macrophages are still able to phagocytose apoptotic cells. For this reason, we recently developed antibody-decorated phosphatidylserine (PS)-containing liposomes that bind HIV-1 virus-like particles and, by mimicking apoptotic cells, are efficiently internalized by macrophages. In the context of an in vivo application, it would be extremely important to initially protect immunoliposomes from macrophages, in order to provide enough time to redistribute through the body and achieve maximum virus binding. To this end, we have designed asymmetric immunoliposomes in which the PS is initially confined to the inner leaflet and thus cannot be recognized by macrophages. Spontaneous PS flip-flop to the outer surface leads to a time-delay in internalization by macrophages in vitro. Such a delay can be fine-tuned by altering the molecular composition of the immunoliposomes. FROM THE CLINICAL EDITOR In the fight against HIV-1, macrophage plays an important role. Ironically, the phagocytic functions of these cells are often impaired by HIV-1. In this interesting article, the authors described the development of asymmetric liposomes, which would bind HIV-1 with prolonged systemic circulation, such that the clearance of virus by macrophages is enhanced. This system represents a promising effective approach to utilize the phagocytic capability of macrophages.
Collapse
Affiliation(s)
| | - Andrea Gramatica
- Department of Biology/Molecular Biophysics, Humboldt Universität zu Berlin, Germany
| | - Andreas Herrmann
- Department of Biology/Molecular Biophysics, Humboldt Universität zu Berlin, Germany
| | - Salvatore Chiantia
- Department of Biology/Molecular Biophysics, Humboldt Universität zu Berlin, Germany.
| |
Collapse
|
44
|
Functional and Structural Characterization of Human V3-Specific Monoclonal Antibody 2424 with Neutralizing Activity against HIV-1 JRFL. J Virol 2015; 89:9090-102. [PMID: 26109728 PMCID: PMC4524078 DOI: 10.1128/jvi.01280-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The V3 region of HIV-1 gp120 is important for virus-coreceptor interaction and highly immunogenic. Although most anti-V3 antibodies neutralize only the sensitive tier 1 viruses, anti-V3 antibodies effective against the more resistant viruses exist, and a better understanding of these antibodies and their epitopes would be beneficial for the development of novel vaccine immunogens against HIV. The HIV-1 isolate JRFL with its cryptic V3 is resistant to most V3-specific monoclonal antibodies (MAbs). However, the V3 MAb 2424 achieves 100% neutralization against JRFL. 2424 is encoded by IGHV3-53 and IGLV2-28 genes, a pairing rarely used by the other V3 MAbs. 2424 also has distinct binding and neutralization profiles. Studies of 2424-mediated neutralization of JRFL produced with a mannosidase inhibitor further revealed that its neutralizing activity is unaffected by the glycan composition of the virus envelope. To understand the distinct activity of 2424, we determined the crystal structure of 2424 Fab in complex with a JRFL V3 peptide and showed that the 2424 epitope is located at the tip of the V3 crown ((307)IHIGPGRAFYT(319)), dominated by interactions with His(P308), Pro(P313), and Arg(P315). The binding mode of 2424 is similar to that of the well-characterized MAb 447-52D, although 2424 is more side chain dependent. The 2424 epitope is focused on the very apex of V3, away from nearby glycans, facilitating antibody access. This feature distinguishes the 2424 epitope from the other V3 crown epitopes and indicates that the tip of V3 is a potential site to target and incorporate into HIV vaccine immunogens. IMPORTANCE HIV/AIDS vaccines are crucial for controlling the HIV epidemics that continue to afflict millions of people worldwide. However, HIV vaccine development has been hampered by significant scientific challenges, one of which is the inability of HIV vaccine candidates evaluated thus far to elicit production of potent and broadly neutralizing antibodies. The V3 loop is one of the few immunogenic targets on the virus envelope glycoprotein that can induce neutralizing antibodies, but in many viruses, parts of V3 are inaccessible for antibody recognition. This study examined a V3-specific monoclonal antibody that can completely neutralize HIV-1 JRFL, a virus isolate resistant to most V3 antibodies. Our data reveal that this antibody recognizes the most distal tip of V3, which is not as occluded as other parts of V3. Hence, the epitope of 2424 is in one of the vulnerable sites on the virus that may be exploited in designing HIV vaccine immunogens.
Collapse
|
45
|
Qin Y, Banerjee S, Agrawal A, Shi H, Banasik M, Lin F, Rohl K, LaBranche C, Montefiori DC, Cho MW. Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop. PLoS One 2015; 10:e0128823. [PMID: 26039641 PMCID: PMC4454676 DOI: 10.1371/journal.pone.0128823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
We recently reported the induction of potent, cross-clade neutralizing antibodies (nAbs) against Human Immunodeficiency Virus type-1 (HIV-1) in rabbits using gp120 based on an M-group consensus sequence. To better characterize these antibodies, 93 hybridomas were generated, which represent the largest panel of monoclonal antibodies (mAbs) ever generated from a vaccinated rabbit. The single most frequently recognized epitope of the isolated mAbs was at the very C-terminal end of the protein (APTKAKRRVVEREKR), followed by the V3 loop. A total of seven anti-V3 loop mAbs were isolated, two of which (10A3 and 10A37) exhibited neutralizing activity. In contrast to 10A3 and most other anti-V3 loop nAbs, 10A37 was atypical with its epitope positioned more towards the C-terminal half of the loop. To our knowledge, 10A37 is the most potent and broadly neutralizing anti-V3 loop mAb induced by vaccination. Interestingly, all seven anti-V3 loop mAbs competed with PGT121, suggesting a possibility that early induction of potent anti-V3 loop antibodies could prevent induction of more broadly neutralizing PGT121-like antibodies that target the conserved base of the V3 loop stem.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/isolation & purification
- Binding Sites, Antibody
- Conserved Sequence
- Epitopes/chemistry
- Epitopes/immunology
- Female
- HIV Antibodies/biosynthesis
- HIV Antibodies/chemistry
- HIV Antibodies/isolation & purification
- HIV Envelope Protein gp120/administration & dosage
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/immunology
- HIV-1/chemistry
- HIV-1/immunology
- Hybridomas/immunology
- Models, Molecular
- Molecular Sequence Data
- Neutralization Tests
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Rabbits
- Vaccination
Collapse
Affiliation(s)
- Yali Qin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Saikat Banerjee
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Aditi Agrawal
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Heliang Shi
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Marisa Banasik
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Feng Lin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Kari Rohl
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University, Durham, NC, 27710, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, NC, 27710, United States of America
| | - Michael W. Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
- Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, United States of America
| |
Collapse
|
46
|
Moore PL, Williamson C, Morris L. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends Microbiol 2015; 23:204-11. [PMID: 25572881 PMCID: PMC4380704 DOI: 10.1016/j.tim.2014.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/02/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Abstract
The development of a preventative HIV-1 vaccine remains a global public health priority. This will likely require the elicitation of broadly neutralizing antibodies (bNAbs) able to block infection by diverse viral strains from across the world. Understanding the pathway to neutralization breadth in HIV-1 infected humans will provide insights into how bNAb lineages arise, a process that probably involves a combination of host and viral factors. Here, we focus on the role of viral characteristics and evolution in shaping bNAbs during HIV-1 infection, and describe how these findings may be translated into novel vaccine strategies.
Collapse
Affiliation(s)
- Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town & National Health Laboratory Services, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; University of the Witwatersrand, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
47
|
Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency. J Virol 2015; 89:5264-75. [PMID: 25673728 DOI: 10.1128/jvi.00129-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the V3/glycans (initially defined by PGT121-128 antibodies) are targets of broadly neutralizing antibodies and potential targets for anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently attainable, with 50% of sera from chronically infected individuals neutralizing ≥ 50% of a large, diverse set of viruses. Nonetheless, there is little systematic information addressing which specificities are preferentially targeted among such commonly found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95% PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15 to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contributors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens based upon the MPER and V3/glycans. IMPORTANCE Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect vaccinees. Therefore, current efforts focus on novel approaches never before successfully used in vaccine design, including modeling epitopes. Candidate immunogen models identified by broadly neutralizing antibodies include the membrane-proximal external region (MPER), V3/glycans, and the V2/glycan site. Autoreactivity and polyreactivity of anti-MPER and anti-V3/glycan antibodies are thought to pose both direct and indirect barriers to achieving neutralization breadth. We found that antibodies to the MPER and the V3/glycans contribute substantially to neutralization breadth and potency. In contrast, antibodies to the V2/glycan site were not associated with neutralization breadth/potency. This suggests that the autoreactivity effect is not critical and that the MPER and the V3/glycans should remain high-priority vaccine candidates. The V2/glycan site result is surprising because broadly neutralizing antibodies to this site have been repeatedly observed. Vaccine design priorities should shift toward the MPER and V3/glycans.
Collapse
|
48
|
The Role of Cationic Polypeptides in Modulating HIV-1 Infection of the Cervicovaginal Mucosa. Antibiotics (Basel) 2014; 3:677-93. [PMID: 27025760 PMCID: PMC4790373 DOI: 10.3390/antibiotics3040677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/17/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022] Open
Abstract
The mucosa and overlying fluid of the female reproductive tract (FRT) are portals for the heterosexual transmission of HIV-1. Toward the ongoing development of topically applied microbicides and mucosal vaccines against HIV-1, it is evermore important to understand how the dynamic FRT mucosa is involved in controlling transmission and infection of HIV-1. Cationic peptides and proteins are the principal innate immune effector molecules of mucosal surfaces, and interact in a combinatorial fashion to modulate HIV-1 infection of the cervix and vagina. While cationic peptides and proteins have historically been categorized as antimicrobial or have other host-benefitting roles, an increasing number of these molecules have been found to augment HIV-1 infection and potentially antagonize host defense. Complex environmental factors such as hormonal fluctuations and/or bacterial and viral co-infections provide additional challenges to both experimentation and interpretation of results. In the context of heterosexual transmission of HIV-1, this review explores how various cationic peptides and proteins participate in modulating host defense against HIV-1 of the cervicovaginal mucosa.
Collapse
|
49
|
Cure of HIV infection: is the long wait over? J Allergy Clin Immunol 2014; 134:20-2. [PMID: 25117800 DOI: 10.1016/j.jaci.2014.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022]
|