1
|
Yang M, Chen J, Wei W. Dimerization of glucocorticoid receptors and its role in inflammation and immune responses. Pharmacol Res 2020; 166:105334. [PMID: 33276107 DOI: 10.1016/j.phrs.2020.105334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids (GCs) plays an irreplaceable role in inflammation and immune responses, fat metabolism and sugar metabolism, it is often used for the treatment of asthma, rheumatoid arthritis and allergic rhinitis clinically, but long-term or high-dose use will produce adverse drug reactions (ADRs). Its biological action is mediated by glucocorticoid receptors (GRs), of which the oligomerization state is closely related to the target gene of which the GRs act. A leading hypothesis is that the beneficial anti-inflammatory effects of GCs occur through the transrepression mechanism mediated by GR monomers, while ADRs may be dependent on the transactivation mechanism mediated by GR dimers. However, in recent years, multiple studies have shown that the transactivation and transrepression functions of the GR dimer also confer anti-inflammatory effects. Furthermore, some studies have shown that some selective glucocorticoid receptor agonists and modulators (SEGRAMs) have good separation characteristics (i.e., preferentially mediate the transrepression of proinflammatory genes or preferentially activate anti-inflammatory target genes). This article reviewed the formation of GR dimers, the role of GR dimers in the inflammation and immune responses, and the progress of SEGRAMs to provide novel ideas for further understanding the anti-inflammatory mechanism of GR and the development of SEGRAMs.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China.
| |
Collapse
|
2
|
Rogliani P, Ritondo BL, Puxeddu E, Pane G, Cazzola M, Calzetta L. Experimental Glucocorticoid Receptor Agonists for the Treatment of Asthma: A Systematic Review. J Exp Pharmacol 2020; 12:233-254. [PMID: 32982485 PMCID: PMC7495344 DOI: 10.2147/jep.s237480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Inhaled corticosteroids (ICSs) are considered the cornerstone of asthma treatment. Despite the solid evidence documenting the efficacy and safety of ICSs at the level of the airways, their use can be affected by pulmonary and systemic adverse events (AEs) when administered chronically and/or at high doses. Thus, there is a pharmacological and medical need for new glucocorticoid (GC) receptor (GR) ligands with a more favorable therapeutic index, in order to overcome the shortcomings of currently available ICSs. The therapeutic profile of GCs can be improved by enhancing genomic mechanisms mediated by transrepression, which is assumed to be responsible for several anti-inflammatory and immunomodulatory actions, rather than transactivation, which causes most of the GC-associated AEs. It was assumed that an independent modulation of the molecular mechanisms underlying transactivation and transrepression could translate into the dissociation of beneficial effects from AEs. Therefore, current research is looking for GCs that are able to elicit prevalently transrepression with negligible transactivating activity. These compounds are known as selective glucocorticoid receptor agonists (SEGRAs). In this review, experimental GR agonists currently in pre-clinical and clinical development for the treatment of asthma have been systematically assessed. Several compounds are currently under pre-clinical development, but only three novel experimental GR agonists (GW870086X, AZD5423, AZD7594) seem to have some potential therapeutic relevance and have entered clinical trials for the treatment of asthma. Since data from pre-clinical studies have not always been confirmed in clinical investigations, well-designed randomized controlled trials are needed in asthmatic patients to confirm the potentially positive benefit/risk ratio of each specific SEGRA and to optimize the development strategy of these agents in respiratory medicine.
Collapse
Affiliation(s)
- Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.,Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ermanno Puxeddu
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Gloria Pane
- Division of Respiratory Medicine, University Hospital "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Zhang L, Huang G, Jin L, Han S. Therapeutic Effects of a Long-Acting Cholinergic Receptor Blocker, Tiotropium Bromide, on Asthma. Med Sci Monit 2018; 24:944-950. [PMID: 29446377 PMCID: PMC5822933 DOI: 10.12659/msm.907950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The aim of this study was to evaluate the therapeutic effects of tiotropium bromide on asthma. Material/Methods A total of 160 patients with moderate persistent asthma were randomly divided into 4 groups (n=40): the 3 control groups were given fluticasone propionate aerosol (group A), salmeterol-fluticasone propionate inhalant (group B), and tiotropium bromide inhalation powder combined with salmeterol-fluticasone propionate inhalant (group C), respectively, and the experimental group received tiotropium bromide inhalation powder combined with fluticasone propionate aerosol (group D) and salbutamol was used to relieve symptoms when necessary. Results After 8 weeks of treatment, the pulmonary function of group D, which was significantly better than those of group A (P<0.05), was similar to those of groups B and C (P>0.05). Group D had significantly better asthma control test scores and nighttime symptom scores than in group A (P<0.05), without significant differences from those of group B or group C (P>0.05). The number of times salbutamol was used to alleviate symptoms was significantly different (P<0.05) between group D and group A (P<0.05), as well as between group C and group D (P<0.05). Groups D and B had similar results (P>0.05). IL-13 levels in induced sputum had significant differences (P<0.05). The levels in group D, which were higher than those of groups A and B (P<0.05), were similar to those of group C (P>0.05). Conclusions Tiotropium bromide combined with fluticasone propionate improved the respiratory function and quality of life, and is a new therapy for moderate, persistent asthma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Guangyin Huang
- Department of Respiratory Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Long Jin
- Department of Respiratory Medicine, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Shuhua Han
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
4
|
Gao ZG, Jacobson KA. Purinergic Signaling in Mast Cell Degranulation and Asthma. Front Pharmacol 2017; 8:947. [PMID: 29311944 PMCID: PMC5744008 DOI: 10.3389/fphar.2017.00947] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Abstract
Glucocorticosteroids are the most effective anti-inflammatory therapy for asthma but are relatively ineffective in COPD. Glucocorticoids are broad-spectrum anti-inflammatory drugs that suppress inflammation via several molecular mechanisms. Glucocorticoids suppress the multiple inflammatory genes that are activated in asthma by reversing histone acetylation of activated inflammatory genes through binding of ligand-bound glucocorticoid receptors (GR) to coactivator molecules and recruitment of histone deacetylase-2 (HDAC2) to the activated inflammatory gene transcription complex (trans-repression). At higher concentrations of glucocorticoids GR homodimers interact with DNA recognition sites to activate transcription through increased histone acetylation of anti-inflammatory genes and transcription of several genes linked to glucocorticoid side effects (trans-activation). Glucocorticoids also have post-transcriptional effects and decrease stability of some proinflammatory mRNAs. Decreased glucocorticoid responsiveness is found in patients with severe asthma and asthmatics who smoke, as well as in all patients with COPD. Several molecular mechanisms of glucocorticoid resistance have now been identified which involve phosphorylation and other post-translational modifications of GR. HDAC2 is markedly reduced in activity and expression as a result of oxidative/nitrative stress and pi3 kinase-δ inhibition, so that inflammation is resistant to the anti-inflammatory actions of glucocorticoids. Dissociated glucocorticoids and selective GR modulators which show improved trans-repression over trans-activation effects have been developed to reduce side effects, but so far it has been difficult to dissociate anti-inflammatory effects from adverse effects. In patients with glucocorticoid resistance alternative anti-inflammatory treatments are being investigated as well as drugs that may reverse the molecular mechanisms of glucocorticoid resistance.
Collapse
|
7
|
Thomson NC. New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opin Pharmacother 2017; 18:283-293. [PMID: 28099820 DOI: 10.1080/14656566.2017.1284794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Inhaled corticosteroids (ICS) alone or in combination with an inhaled long-acting beta2-agonist (LABA) are the preferred long-term treatment for adults and adolescents with symptomatic asthma. Additional drugs include leukotriene-receptor antagonists, slow-release theophylline and the long-acting muscarinic antagonist (LAMA) tiotropium (approved in 2015). There is a need for more effective therapies, as many patients continue to have poorly controlled asthma. Areas covered: New and developing long-acting non-adrenoreceptor synthetic drugs for the treatment of symptomatic chronic asthma despite treatment with an ICS alone or combined with a LABA. Data was reviewed from studies published up until November 2016. Expert opinion: Tiotropium improves lung function and has a modest effect in reducing exacerbations when added to ICS alone or ICS and LABA. The LAMAs umeclidinium and glycopyrronium are under development in fixed dose combination with ICS and LABA. Novel small molecule drugs, such as CRTH2 receptor antagonists, PDE4 inhibitors, protein kinase inhibitors and nonsteroidal glucocorticoid receptor agonists and 'off-label' use of licensed drugs, such as macrolides and statins are under investigation for asthma, although their effectiveness in clinical practice is not established. To better achieve the goal of developing effective novel small molecule drugs for asthma will require greater understanding of mechanisms of disease and the different phenotypes and endotypes of asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
8
|
Thomson NC. New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opin Pharmacother 2017. [DOI: 10.10.1080/14656566.2017.1284794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|