1
|
Ongwe MEB, Mouwenda YD, Manurung MD, Heieis G, Azimi S, Adegnika AA, Kremsner PG, Kuijpers TW, Yazdanbakhsh M, Everts B. Potentiation of the axis involving pentose phosphate pathway/NADPH oxidase/reactive oxygen species drives higher IL-10 production in monocytes of Sub-Saharan Africans. Eur J Immunol 2024; 54:e2451029. [PMID: 38873882 DOI: 10.1002/eji.202451029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.
Collapse
Affiliation(s)
- Madeleine Eunice Betouke Ongwe
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut de Recherches en Écologie Tropicale, Centre National de la Recherche Scientifique et Technologique, Libreville, Gabon
| | - Yoanne D Mouwenda
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Mikhael D Manurung
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Graham Heieis
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Shohreh Azimi
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ayola A Adegnika
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Emma Children's Hospital, Academic Medical Center, Dept of Paediatric Immunology, Rheumatology and Infectious Diseases, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Biochemical Analysis of Leukocytes after In Vitro and In Vivo Activation with Bacterial and Fungal Pathogens Using Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms221910481. [PMID: 34638822 PMCID: PMC8508974 DOI: 10.3390/ijms221910481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Biochemical information from activated leukocytes provide valuable diagnostic information. In this study, Raman spectroscopy was applied as a label-free analytical technique to characterize the activation pattern of leukocyte subpopulations in an in vitro infection model. Neutrophils, monocytes, and lymphocytes were isolated from healthy volunteers and stimulated with heat-inactivated clinical isolates of Candida albicans, Staphylococcus aureus, and Klebsiella pneumoniae. Binary classification models could identify the presence of infection for monocytes and lymphocytes, classify the type of infection as bacterial or fungal for neutrophils, monocytes, and lymphocytes and distinguish the cause of infection as Gram-negative or Gram-positive bacteria in the monocyte subpopulation. Changes in single-cell Raman spectra, upon leukocyte stimulation, can be explained with biochemical changes due to the leukocyte’s specific reaction to each type of pathogen. Raman spectra of leukocytes from the in vitro infection model were compared with spectra from leukocytes of patients with infection (DRKS-ID: DRKS00006265) with the same pathogen groups, and a good agreement was revealed. Our study elucidates the potential of Raman spectroscopy-based single-cell analysis for the differentiation of circulating leukocyte subtypes and identification of the infection by probing the molecular phenotype of those cells.
Collapse
|
3
|
Gut mycobiomes are altered in people with type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS One 2020; 15:e0243077. [PMID: 33259537 PMCID: PMC7707496 DOI: 10.1371/journal.pone.0243077] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023] Open
Abstract
Studies have documented dysbiosis in the gut mycobiome in people with Type 2 diabetes mellitus (T2DM). However, it is not known whether dysbiosis in the gut mycobiome of T2DM patients would be reflected in people with diabetic retinopathy (DR) and if so, is the observed mycobiome dysbiosis similar in people with T2DM and DR. Gut mycobiomes were generated from healthy controls (HC), people with T2DM and people with DR through Illumina sequencing of ITS2 region. Data were analysed using QIIME and R software. Dysbiotic changes were observed in people with T2DM and DR compared to HC at the phyla and genera level. Mycobiomes of HC, T2DM and DR could be discriminated by heat map analysis, Beta diversity analysis and LEfSE analysis. Spearman correlation of fungal genera indicated more negative correlation in HC compared to T2DM and DR mycobiomes. This study demonstrates dysbiosis in the gut mycobiomes in people with T2DM and DR compared to HC. These differences were significant both at the phyla and genera level between people with T2DM and DR as well. Such studies on mycobiomes may provide new insights and directions to identification of specific fungi associated with T2DM and DR and help developing novel therapies for Diabetes Mellitus and DR.
Collapse
|
4
|
Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun 2020; 11:2031. [PMID: 32341348 PMCID: PMC7184738 DOI: 10.1038/s41467-020-15834-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophils employ several mechanisms to restrict fungi, including the action of enzymes such as myeloperoxidase (MPO) or NADPH oxidase, and the release of neutrophil extracellular traps (NETs). Moreover, they cooperate, forming “swarms” to attack fungi that are larger than individual neutrophils. Here, we designed an assay for studying how these mechanisms work together and contribute to neutrophil's ability to contain clusters of live Candida. We find that neutrophil swarming over Candida clusters delays germination through the action of MPO and NADPH oxidase, and restricts fungal growth through NET release within the swarm. In comparison with neutrophils from healthy subjects, those from patients with chronic granulomatous disease produce larger swarms against Candida, but their release of NETs is delayed, resulting in impaired control of fungal growth. We also show that granulocyte colony-stimulating factors (GCSF and GM-CSF) enhance swarming and neutrophil ability to restrict fungal growth, even during treatment with chemical inhibitors that disrupt neutrophil function. Neutrophils employ several mechanisms to control the growth of fungi, including enzymes, reactive oxygen species, extracellular traps, and formation of “swarms”. Here, Hopke et al. study how the different mechanisms work together, using an in vitro assay with human neutrophils and clusters of live Candida cells.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Chronic granulomatous disease (CGD) is a primary immunodeficiency, with a defect of phagocytes in killing specific pathogens. CGD is characterized by severe recurrent bacterial and fungal infections and dysregulated inflammatory response. Since its first description as fatal disease about 60 years ago, a significant improvement in outcome has been achieved in the last 20 years. The purpose of this review is to framework recent advances in CGD immunopathogenesis, management of disease manifestation and cure of CGD patients. RECENT FINDINGS For years, CGD is a known cause of life-threatening infections and excessive inflammation. The cause and the management of inflammatory reactions, however, have not been clarified, and the range of clinical presentation is growing with corresponding novel therapeutic interventions. Recent work focuses on the best outcome of hematopoietic stem cell transplantation (HSCT) and gene therapy for the cure of CGD patients, more specifically, those with X-linked and p47 mutations. SUMMARY The genetics and phenotype of CGD is well characterized; however, the underlying mechanisms, the treatment of its inflammatory manifestations and the cure of CGD is under further investigation.
Collapse
|
6
|
Fadel A, Plunkett A, Li W, Tessu Gyamfi VE, Nyaranga RR, Fadel F, Dakak S, Ranneh Y, Salmon Y, Ashworth JJ. Modulation of innate and adaptive immune responses by arabinoxylans. J Food Biochem 2017. [DOI: 10.1111/jfbc.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Abdulmannan Fadel
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
- Faculty of Science and Engineering, School of Healthcare Science; Manchester Metropolitan Univeristy; Manchester M1 5GD United Kingdom
| | - Andrew Plunkett
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Weili Li
- Institute of Food Science & Innovation; University of Chester; Chester CH1 4BJ United Kingdom
| | - Vivian Elewosi Tessu Gyamfi
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Rosemarie Roma Nyaranga
- Department of Food and Nutrition, School of Health Psychology and Social Care; Manchester Metropolitan University; Manchester M15 6BH United Kingdom
| | - Fatma Fadel
- Independent Researcher, Al-Baha University; Al Bahah Saudi Arabia
| | - Suaad Dakak
- Faculty of Pharmacy and Medical Sciences; Al-Ahliyya Amman University; Amman Jordan
| | - Yazan Ranneh
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Serdang Malaysia
| | - Yasser Salmon
- Veteriner Fakultesi, Istanbul Universitesi; Istanbul Turkey
| | - Jason J Ashworth
- Faculty of Science and Engineering, School of Healthcare Science; Manchester Metropolitan Univeristy; Manchester M1 5GD United Kingdom
| |
Collapse
|
7
|
Chinen J, Badran YR, Geha RS, Chou JS, Fried AJ. Advances in basic and clinical immunology in 2016. J Allergy Clin Immunol 2017; 140:959-973. [DOI: 10.1016/j.jaci.2017.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
|
8
|
Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev 2017; 273:299-311. [PMID: 27558342 DOI: 10.1111/imr.12454] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|