1
|
Zhou J, Qian M, Jiang N, Wu J, Feng X, Yu M, Min Q, Xu H, Yang Y, Yang Q, Zhou F, Shao L, Zhu H, Yang Y, Wang JY, Ruan Q, Zhang W. A Novel Homozygous RHOH Variant Associated with T Cell Dysfunction and Recurrent Opportunistic Infections. J Clin Immunol 2024; 44:131. [PMID: 38775840 DOI: 10.1007/s10875-024-01735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.
Collapse
Affiliation(s)
- Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Mengqing Qian
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Ning Jiang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
- Department of Biostatistics and Computational Biology, SKLG, School of Life Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Xiaoqian Feng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Room 921, West #13 building, 130 Dong'an road, Shanghai, 200032, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Haoxin Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Yixuan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Qingluan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Feiran Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
| | - Yun Yang
- Department of Infectious Diseases and Hepatic Diseases, the First People's Hospital of Yunnan Province, Yunnan, 650034, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Room 921, West #13 building, 130 Dong'an road, Shanghai, 200032, China.
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China.
| | - Qiaoling Ruan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 12 M. Wulumuqi Road, Shanghai, 200040, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, 200052, China
| |
Collapse
|
2
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
3
|
Roussel L, Pham-Huy A, Yu AC, Venkateswaran S, Perez A, Bourdel G, Sun Y, Villavicencio ST, Bernier S, Li Y, Kazimerczak-Brunet M, Alattar R, Déry MA, Shapiro AJ, Penner J, Vinh DC. A Novel Homozygous Mutation Causing Complete TYK2 Deficiency, with Severe Respiratory Viral Infections, EBV-Driven Lymphoma, and Jamestown Canyon Viral Encephalitis. J Clin Immunol 2023; 43:2011-2021. [PMID: 37695435 DOI: 10.1007/s10875-023-01580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Autosomal recessive tyrosine kinase 2 (TYK2) deficiency is characterized by susceptibility to mycobacterial and viral infections. Here, we report a 4-year-old female with severe respiratory viral infections, EBV-driven Burkitt-like lymphoma, and infection with the neurotropic Jamestown Canyon virus. A novel, homozygous c.745C > T (p.R249*) variant was found in TYK2. The deleterious effects of the TYK2 lesion were confirmed by immunoblotting; by evaluating functional responses to IFN-α/β, IL-10, and IL-23; and by assessing its scaffolding effect on the cell surface expression of cytokine receptor subunits. The effects of the mutation could not be pharmacologically circumvented in vitro, suggesting that alternative modalities, such as hematopoietic stem cell transplantation or gene therapy, may be needed. We characterize the first patient from Canada with a novel homozygous mutation in TYK2.
Collapse
Affiliation(s)
- Lucie Roussel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Andrea C Yu
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Anna Perez
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourdel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yichun Sun
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stephanya Tellez Villavicencio
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stéphane Bernier
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yongbiao Li
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Makayla Kazimerczak-Brunet
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Rolan Alattar
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Marc-André Déry
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Adam J Shapiro
- Division of Respirology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Justin Penner
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, Qikiqtani General Hospital, Iqaluit, NT, Canada
| | - Donald C Vinh
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada.
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
4
|
Luo X, Liu Q, Zhou L, Tang X, Zhao X, Zhang Z. Two patients with ZAP-70 deficiency in China present with a different genetic, immunological, and clinical phenotype. BMC Pediatr 2023; 23:195. [PMID: 37101133 PMCID: PMC10131425 DOI: 10.1186/s12887-023-03975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Zeta(ζ)-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare autosomal recessive primary immunodeficiency disease. Little is known about this disease. In this study, we report two patients to extend the range of clinical phenotypes and immunophenotypes associated with ZAP-70 mutations. We describe the clinical, genetic, and immunological phenotypes of two patients with ZAP-70 deficiency in China, and the data are also compared with the literature. Case 1 presented with leaky severe combined immunodeficiency with low to the absence of CD8 + T cells, while case 2 suffered from a recurrent respiratory infection and had a past medical history of non-EBV-associated Hodgkin's lymphoma. Sequencing revealed novel compound heterozygous mutations in ZAP-70 of these patients. Case 2 is the second ZAP-70 patient presenting a normal CD8 + T cell number. These two cases have been treated with hematopoietic stem cell transplantation. Selective CD8 + T cell loss is an essential feature of the immunophenotype of ZAP-70 deficiency patients, but there are exceptions. Hematopoietic stem cell transplantation can provide excellent long-term immune function and resolution of clinical problems.
Collapse
Affiliation(s)
- Xianze Luo
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Qing Liu
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Lina Zhou
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| | - Zhiyong Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
5
|
Lin YF, Lee WI, Ho CH, Chen SH, Hsu MH, Wu RC, Lee WF, Jaing TH, Huang JL, Tsai SF. Lymphocyte disturbance and functional assessment of the [Asp521Asn] ZAP70 mutation. Clin Immunol 2023; 247:109236. [PMID: 36669607 DOI: 10.1016/j.clim.2023.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Activated zeta-chain-associated protein kinase 70 (ZAP70) phosphorylates the TCRαβ:CD3:zeta complex to diversify and amplify TCR signaling. Patients with ZAP70 mutations can present with phenotypes of immune dysregulation as well as infection. We identified the first Taiwanese boy with the [Asp521Asn] ZAP70 mutation who presented with recurrent pneumonia, inflammatory bowel disease-like diarrhea, transient hematuria and autoimmune hepatitis. He had isolated CD8 lymphopenia, eosinophilia, hypogammaglobulinemia, and impaired lymphocyte proliferation. Downstream CD3/CD28 signaling, phosphorylation of AKT, ZAP70 and Ca2+ influx were decreased in [Asp521Asn] ZAP70 lymphocytes. Immunophenotyping analysis revealed expansion of transitional B and CD21-low B cells, Th2-skewing T follicular helper cells, but lower Treg cells. The Asp521Asn-ZAP70 hindered TCR-CD3 downstream phosphorylation and disturbed lymphocyte subgroup "profiles" leading to autoimmunity/autoinflammation. Further large-scale studies are warranted to clarify this lymphocyte disturbance. The prognosis significantly depends on hematopoietic stem cell transplantation, but not the genotype, the presence of opportunistic infections or immune dysregulation.
Collapse
Affiliation(s)
- Yung-Feng Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wen-I Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Ching-Huang Ho
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hsiang Chen
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wan-Fang Lee
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Primary Immunodeficiency Care and Research (PICAR) Institute, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Pediatrics, New Taipei Municipal TuChen Hospital, New Taipei, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| |
Collapse
|
6
|
Novel ZAP-70-Related Immunodeficiency Presenting with Epstein-Barr Virus Lymphoproliferative Disorder and Hemophagocytic Lymphohistiocytosis. Case Reports Immunol 2021; 2021:6587323. [PMID: 34239742 PMCID: PMC8238617 DOI: 10.1155/2021/6587323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Zeta-chain-associated protein kinase 70 (ZAP-70) plays an integral role in the T-cell antigenic receptor complex. A deficiency of this kinase leads to a phenotype of severe combined immunodeficiency, while hypomorphic mutations of the kinase lead to more mild immunodeficiency phenotypes. We present a case of a 21-year-old patient with lymphadenopathy who was found to have Epstein-Barr virus (EBV) lymphoproliferative disease (LPD) and the development of hemophagocytic lymphohistiocytosis (HLH). On further workup, the patient was ultimately found to have a homozygous intrionic mutation in ZAP-70. This is a novel ZAP-70 mutation (c.1623 + 5G > A) associated with combined immunodeficiency and an EBV-positive LPD. A primary immunodeficiency is important to consider in a young, otherwise healthy patient presenting with an EBV-positive LPD.
Collapse
|
7
|
A novel hypomorphic ζ-chain-associated protein tyrosine kinase 70 kDa mutation with normal CD8+ T cells count. Chin Med J (Engl) 2020; 133:1759-1760. [PMID: 32649515 PMCID: PMC7401758 DOI: 10.1097/cm9.0000000000000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
8
|
Sharifinejad N, Jamee M, Zaki-Dizaji M, Lo B, Shaghaghi M, Mohammadi H, Jadidi-Niaragh F, Shaghaghi S, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Clinical, Immunological, and Genetic Features in 49 Patients With ZAP-70 Deficiency: A Systematic Review. Front Immunol 2020; 11:831. [PMID: 32431715 PMCID: PMC7214800 DOI: 10.3389/fimmu.2020.00831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Zeta-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare combined immunodeficiency (CID) caused by recessive homozygous/compound heterozygous loss-of-function mutations in the ZAP70 gene. Patients with ZAP-70 deficiency present with a variety of clinical manifestations, particularly recurrent respiratory infections and cutaneous involvements. Therefore, a systematic review of ZAP-70 deficiency is helpful to achieve a comprehensive view of this disease. Methods: We searched PubMed, Web of Science, and Scopus databases for all reported ZAP-70 deficient patients and screened against the described eligibility criteria. A total of 49 ZAP-70 deficient patients were identified from 33 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Results: ZAP-70 deficient patients have been reported in the literature with a broad spectrum of clinical manifestations including recurrent respiratory infections (81.8%), cutaneous involvement (57.9%), lymphoproliferation (32.4%), autoimmunity (19.4%), enteropathy (18.4%), and increased risk of malignancies (8.1%). The predominant immunologic phenotype was low CD8+ T cell counts (97.9%). Immunologic profiling showed defective antibody production (57%) and decreased lymphocyte responses to mitogenic stimuli such as phytohemagglutinin (PHA) (95%). Mutations of the ZAP70 gene were located throughout the gene, and there was no mutational hotspot. However, most of the mutations were located in the kinase domain. Hematopoietic stem cell transplantation (HSCT) was applied as the major curative treatment in 25 (51%) of the patients, 18 patients survived transplantation, while two patients died and three required a second transplant in order to achieve full remission. Conclusion: Newborns with consanguineous parents, positive family history of CID, and low CD8+ T cell counts should be considered for ZAP-70 deficiency screening, since early diagnosis and treatment with HSCT can lead to a more favorable outcome. Based on the current evidence, there is no genotype-phenotype correlation in ZAP-70 deficient patients.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Mohammadreza Shaghaghi
- Johns Hopkins Hospital, Baltimore, MD, United States.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
9
|
Roussel L, Landekic M, Golizeh M, Gavino C, Zhong MC, Chen J, Faubert D, Blanchet-Cohen A, Dansereau L, Parent MA, Marin S, Luo J, Le C, Ford BR, Langelier M, King IL, Divangahi M, Foulkes WD, Veillette A, Vinh DC. Loss of human ICOSL results in combined immunodeficiency. J Exp Med 2019; 215:3151-3164. [PMID: 30498080 PMCID: PMC6279397 DOI: 10.1084/jem.20180668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies represent naturally occurring experimental models to decipher human immunobiology. We report a patient with combined immunodeficiency, marked by recurrent respiratory tract and DNA-based viral infections, hypogammaglobulinemia, and panlymphopenia. He also developed moderate neutropenia but without prototypical pyogenic infections. Using whole-exome sequencing, we identified a homozygous mutation in the inducible T cell costimulator ligand gene (ICOSLG; c.657C>G; p.N219K). Whereas WT ICOSL is expressed at the cell surface, the ICOSLN219K mutation abrogates surface localization: mutant protein is retained in the endoplasmic reticulum/Golgi apparatus, which is predicted to result from deleterious conformational and biochemical changes. ICOSLN219K diminished B cell costimulation of T cells, providing a compelling basis for the observed defect in antibody and memory B cell generation. Interestingly, ICOSLN219K also impaired migration of lymphocytes and neutrophils across endothelial cells, which normally express ICOSL. These defects likely contributed to the altered adaptive immunity and neutropenia observed in the patient, respectively. Our study identifies human ICOSLG deficiency as a novel cause of a combined immunodeficiency.
Collapse
Affiliation(s)
- Lucie Roussel
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Marija Landekic
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Makan Golizeh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Ming-Chao Zhong
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Jun Chen
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Denis Faubert
- Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Alexis Blanchet-Cohen
- Bioinformatics, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Luc Dansereau
- Department of Internal Medicine, Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Marc-Antoine Parent
- Department of Family Medicine, Centre intégé de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Sonia Marin
- Hôpital de l'Archipel, Centre intégré de santé et de services sociaux des Îles, Les Îles-de-la-Madeleine, Québec, Canada
| | - Julia Luo
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Catherine Le
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Brinley R Ford
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada
| | - Irah L King
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - William D Foulkes
- Department of Medical Genetics, Research Institute-McGill University Health Centre, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - André Veillette
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre and Research Institute-McGill University Health Centre, Montréal, Québec, Canada .,Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|