1
|
Le Voyer T, Maglorius Renkilaraj MRL, Moriya K, Pérez Lorenzo M, Nguyen T, Gao L, Rubin T, Cederholm A, Ogishi M, Arango-Franco CA, Béziat V, Lévy R, Migaud M, Rapaport F, Itan Y, Deenick EK, Cortese I, Lisco A, Boztug K, Abel L, Boisson-Dupuis S, Boisson B, Frosk P, Ma CS, Landegren N, Celmeli F, Casanova JL, Tangye SG, Puel A. Inherited human RelB deficiency impairs innate and adaptive immunity to infection. Proc Natl Acad Sci U S A 2024; 121:e2321794121. [PMID: 39231201 PMCID: PMC11406260 DOI: 10.1073/pnas.2321794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
We report two unrelated adults with homozygous (P1) or compound heterozygous (P2) private loss-of-function variants of V-Rel Reticuloendotheliosis Viral Oncogene Homolog B (RELB). The resulting deficiency of functional RelB impairs the induction of NFKB2 mRNA and NF-κB2 (p100/p52) protein by lymphotoxin in the fibroblasts of the patients. These defects are rescued by transduction with wild-type RELB complementary DNA (cDNA). By contrast, the response of RelB-deficient fibroblasts to Tumor Necrosis Factor (TNF) or IL-1β via the canonical NF-κB pathway remains intact. P1 and P2 have low proportions of naïve CD4+ and CD8+ T cells and of memory B cells. Moreover, their naïve B cells cannot differentiate into immunoglobulin G (IgG)- or immunoglobulin A (IgA)-secreting cells in response to CD40L/IL-21, and the development of IL-17A/F-producing T cells is strongly impaired in vitro. Finally, the patients produce neutralizing autoantibodies against type I interferons (IFNs), even after hematopoietic stem cell transplantation, attesting to a persistent dysfunction of thymic epithelial cells in T cell selection and central tolerance to some autoantigens. Thus, inherited human RelB deficiency disrupts the alternative NF-κB pathway, underlying a T- and B cell immunodeficiency, which, together with neutralizing autoantibodies against type I IFNs, confers a predisposition to viral, bacterial, and fungal infections.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris75010, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MBR3A 1S1, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Group of Inborn Errors of Immunity, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín050010, Colombia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaan Boztug
- St. Anna Children’s Cancer Research Institute, Vienna1090, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya07100, Türkiye
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris75015, France
- HHMI, New York, NY10065
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Voyer TL, Debray JC, Stolzenberg MC, Pellé O, Becquard T, Riestra MR, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Compound heterozygous mutations in the kinase domain of IKKα lead to immunodeficiency and immune dysregulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307356. [PMID: 38798321 PMCID: PMC11118628 DOI: 10.1101/2024.05.17.24307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.
Collapse
|
3
|
Sharfe N, Dalal I, Naghdi Z, Lefaudeux D, Vong L, Dadi H, Navarro H, Tasher D, Ovadia A, Zangen T, Ater D, Ngan B, Hoffmann A, Roifman CM. NFκB pathway dysregulation due to reduced RelB expression leads to severe autoimmune disorders and declining immunity. J Autoimmun 2023; 137:102946. [PMID: 36402602 DOI: 10.1016/j.jaut.2022.102946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Genetic aberrations in the NFκB pathway lead to primary immunodeficiencies with various degrees of severity. We previously demonstrated that complete ablation of the RelB transcription factor, a key component of the alternative pathway, results in an early manifested combined immunodeficiency requiring stem cell transplantation. OBJECTIVE To study the molecular basis of a progressive severe autoimmunity and immunodeficiency in three patients. METHODS Whole exome sequencing was performed to identify the genetic defect. Molecular and cellular techniques were utilized to assess the variant impact on NFκB signaling, canonical and alternative pathway crosstalk, as well as the resultant effects on immune function. RESULTS Patients presented with multiple autoimmune progressive severe manifestations encompassing the liver, gut, lung, and skin, becoming debilitating in the second decade of life. This was accompanied by a deterioration of the immune system, demonstrating an age-related decline in naïve T cells and responses to mitogens, accompanied by a gradual loss of all circulating CD19+ cells. Whole exome sequencing identified a novel homozygous c. C1091T (P364L) transition in RELB. The P364L RelB protein was unstable, with extremely low expression, but retained some function and could be transiently and partially upregulated following Toll-like receptor stimulation. Stimulation of P364L patient fibroblasts resulted in a marked rise in a cluster of pro-inflammatory hyper-expressed transcripts consistent with the removal of RelB inhibitory effect on RelA function. This is likely the main driver of autoimmune manifestations in these patients. CONCLUSION Incomplete loss of RelB provided a unique opportunity to gain insights into NFκB's pathway interactions as well as the pathogenesis of autoimmunity. The P364L RelB mutation leads to gradual decline in immune function with progression of severe debilitating autoimmunity.
Collapse
Affiliation(s)
- Nigel Sharfe
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Ilan Dalal
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Zahra Naghdi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Diane Lefaudeux
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Linda Vong
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Harjit Dadi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Hector Navarro
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Diana Tasher
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Ovadia
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzili Zangen
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Ater
- Pediatric Pulmonology Unit, Assuta Medical Center, Tel Aviv, Israel
| | - Bo Ngan
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Chaim M Roifman
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
5
|
Ding X, Huang H, Zhong L, Chen M, Peng F, Zhang B, Cui X, Yang XA. Disseminated Talaromyces marneffei Infection in a Non-HIV Infant With a Homozygous Private Variant of RELB. Front Cell Infect Microbiol 2021; 11:605589. [PMID: 33791233 PMCID: PMC8005656 DOI: 10.3389/fcimb.2021.605589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective This study presents a relatively rare case of disseminated Talaromyces marneffei (T. marneffei) infection in an HIV-negative patient. Methods An 8-month-old girl was hospitalized because of uncontrollable fever and cough for 6 days. Routine laboratory tests, biochemical detection, immunological tests, pathogenic examination, and imaging inspection were performed. Genetic tests of trio whole genome sequencing (Trio-WES), trio copy number sequencing (Trio-CNVseq), and Sanger sequencing were conducted to identify pathogenic variants. In silico analysis of the sequence alignment and structural modeling results was carried out to study the possible pathogenicity of the identified variant. Western blotting was performed to investigate the expression of the identified gene at the protein level. Results Enhanced CT and MRI scanning demonstrated thymic dysplasia, diffuse pulmonary and liver nodules, and many balloon-like air sacs in both lungs. The white blood cell count, neutrophil count, and neutrophil ratio were normal or elevated. The patient was HIV-negative and bone marrow and blood culture showed T. marneffei infection. Total lymphocyte count, CD3+ T lymphocyte count, CD3+CD4+ T lymphocyte count, CD3+CD8+ T lymphocyte count, and NK cell count decreased, while the number of CD19 positive B cells increased. However, the ratio of CD3+CD4+:CD3+CD8+ T cells increased. Trio-WES identified a homozygous private variant of NM_006509: c.400_c.401insAGC/p.Lys134 delinsLysGln in RELB and Sanger sequencing validated the result. Structural modeling indicated that the variant may be pathogenic. Reverse transcription-polymerase chain reaction and Western blot analysis showed that the expression of RelB in the patient was lower than that in the healthy controls at mRNA and protein levels. Conclusion This is the first report on disseminated T. marneffei infection in a patient with a homozygous private variant of RELB.
Collapse
Affiliation(s)
- Xiaofang Ding
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Han Huang
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Lili Zhong
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Min Chen
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Fang Peng
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Bing Zhang
- Department of Pediatrics, First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Xinyu Cui
- Department of Biochemistry, School of Basic Medical Science, Chengde Medical University, Chengde, China
| | - Xiu-An Yang
- Department of Biochemistry, School of Basic Medical Science, Chengde Medical University, Chengde, China
| |
Collapse
|
6
|
Andreas N, Potthast M, Geiselhöringer AL, Garg G, de Jong R, Riewaldt J, Russkamp D, Riemann M, Girard JP, Blank S, Kretschmer K, Schmidt-Weber C, Korn T, Weih F, Ohnmacht C. RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2602-2613. [PMID: 31578269 DOI: 10.4049/jimmunol.1801530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.
Collapse
Affiliation(s)
- Nico Andreas
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany.,Institute of Immunology, Jena University Hospital, 07743 Jena, Germany
| | - Maria Potthast
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anna-Lena Geiselhöringer
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Garima Garg
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany
| | - Renske de Jong
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Dennis Russkamp
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marc Riemann
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structural, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Simon Blank
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, German Research Foundation - Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengeneering, Technical University Dresden, 01307 Dresden, Germany
| | - Carsten Schmidt-Weber
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany.,German Center for Lung Disease, 35392 Giessen, Germany; and
| | - Thomas Korn
- Klinikum Rechts der Isar, Neurologische Klinik, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, 07745 Jena, Germany
| | - Caspar Ohnmacht
- Zentrum Allergie und Umwelt, Technische Universität und Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| |
Collapse
|
7
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
8
|
Advances and highlights in primary immunodeficiencies in 2017. J Allergy Clin Immunol 2018; 142:1041-1051. [PMID: 30170128 DOI: 10.1016/j.jaci.2018.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/30/2022]
Abstract
This manuscript reviews selected topics in primary immunodeficiency diseases (PIDDs) published in 2017. These include (1) the role of follicular T cells in the differentiation of B cells and development of optimal antibody responses; (2) impaired nuclear factor κB subunit 1 signaling in the pathogenesis of common variable immunodeficiency, revealing an association between impaired B-cell maturation and development of inflammatory conditions; (3) autoimmune and inflammatory manifestations in patients with PIDDs in T- and B-cell deficiencies, as well as in neutrophil disorders; (4) newly described gene defects causing PIDDs, including exostosin-like 3 (EXTL3), TNF-α-induced protein 3 (TNFAIP3 [A20]), actin-related protein 2/3 complex-subunit 1B (ARPC1B), v-Rel avian reticuloendotheliosis viral oncogene homolog A (RELA), hypoxia upregulated 1 (HYOU1), BTB domain and CNC homolog 2 (BACH2), CD70, and CD55; (5) use of rapamycin and the phosphoinositide 3-kinase inhibitor leniolisib to reduce autoimmunity and regulate B-cell function in the activated phosphoinositide 3-kinase δ syndrome; (6) improved outcomes in hematopoietic stem cell transplantation for severe combined immunodeficiency (SCID) in the last decade, with an overall 2-year survival of 90% in part caused by early diagnosis through implementation of universal newborn screening; (7) demonstration of the efficacy of lentiviral vector-mediated gene therapy for patients with adenosine deaminase-deficient SCID; (8) the promise of gene editing for PIDDs using CRISPR/Cas9 and zinc finger nuclease technology for SCID and chronic granulomatous disease; and (9) the efficacy of thymus transplantation in Europe, although associated with an unexpected high incidence of autoimmunity. The remarkable progress in the understanding and management of PIDDs reflects the current interest in this area and continues to improve the care of immunodeficient patients.
Collapse
|