1
|
Anderson SD, Kippelen P. A proposal to account for the stimulus, the mechanism, and the mediators released in exercise-induced bronchoconstriction. FRONTIERS IN ALLERGY 2023; 4:1004170. [PMID: 38026130 PMCID: PMC10657894 DOI: 10.3389/falgy.2023.1004170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise induced bronchoconstriction (EIB) describes the transient narrowing of the airways that follows vigorous exercise. It commonly occurs in children and adults who have asthma and in elite athletes. The primary stimulus is proposed to be loss of water, by evaporation, from the airway surface due to conditioning inspired air. The mechanism, whereby this evaporative loss of water provokes contraction of the bronchial smooth muscle, is thought to be an increase in osmolarity of the airway surface liquid. The increase in osmolarity causes mast cells to release histamines, prostaglandins, and leukotrienes. It is these mediators that contract smooth muscle causing the airways to narrow.
Collapse
Affiliation(s)
- Sandra D. Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pascale Kippelen
- Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
2
|
Belikova M, Al-Ameri M, Orre AC, Säfholm J. Defining the contractile prostanoid component in hyperosmolar-induced bronchoconstriction in human small airways. Prostaglandins Other Lipid Mediat 2023; 168:106761. [PMID: 37336434 DOI: 10.1016/j.prostaglandins.2023.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Exercise-induced bronchoconstriction (EIB) is thought to be triggered by increased osmolarity at the airway epithelium. The aim of this study was to define the contractile prostanoid component of EIB, using an ex vivo model where intact segments of bronchi (inner diameter 0.5-2 mm) isolated from human lung tissue and subjected to mannitol. Exposure of bronchial segments to hyperosmolar mannitol evoked a contraction (64.3 ± 3.5 %) which could be prevented either by elimination of mast cells (15.8 ± 4.3 %) or a combination of cysteinyl leukotriene (cysLT1), histamine (H1) and thromboxane (TP) receptor antagonists (11.2 ± 2.3 %). Likewise, when antagonism of TP receptor was exchanged for inhibition of either cyclooxygenase-1 (8 ± 2.5 %), hematopoietic prostaglandin (PG)D synthase (20.7 ± 5.6 %), TXA synthase (14.8 ± 4.9 %), or the combination of the latter two (12.2 ± 4.6 %), the mannitol-induced contraction was prevented, suggesting that the TP-mediated component is induced by PGD2 and TXA2 generated by COX-1 and their respective synthases.
Collapse
Affiliation(s)
- Maria Belikova
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden
| | - Mamdoh Al-Ameri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Sweden
| | | | - Jesper Säfholm
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Centre for Allergy Research, Karolinska Institutet, Sweden.
| |
Collapse
|
3
|
Ciółkowski J, Hydzik P, Rachel M, Mazurek-Durlak Z, Skalska-Izdebska R, Mazurek H. Childhood asthma treatment based on indirect hyperresponsiveness test: Randomized controlled trial. Pediatr Pulmonol 2023; 58:2583-2591. [PMID: 37341585 DOI: 10.1002/ppul.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The purpose of this study was to assess the usefulness of indirect airway hyperresponsiveness (AHR) test using hypertonic saline in determining the dose of inhaled corticosteroids (ICS) to maintain asthma control in children. METHODS A group of 104 patients (7-15 years) with mild-moderate atopic asthma were monitored for their asthma control and treatment for 1 year. Patients were randomly assigned to a symptom-only monitored group and a group with therapy changes based on the symptoms and severity of AHR. Spirometry, exhaled nitric oxide, and blood eosinophils (BEos) were assessed on enrollment and every 3 months thereafter. RESULTS During the study period, the number of mild exacerbations was lower in the AHR group (44 vs. 85; the absolute rate per patient 0.83 vs. 1.67; relative rate 0.49, 95% confidence interval: 0.346-0.717 (p < 0.001)]. Mean changes from baseline in clinical (except asthma control test), inflammatory, and lung function parameters were similar between groups. Baseline BEos correlated with AHR and was a risk factor for recurrent exacerbation in all patients. There was no significant difference in the final ICS dose between AHR and symptoms group: 287 (SD 255) vs. 243 (158) p = 0.092. CONCLUSIONS Adding an indirect AHR test to clinical monitoring of childhood asthma reduced the number of mild exacerbations, with similar current clinical control and final ICS dose as in the symptom-monitored group. The hypertonic saline test appears to be a simple, cheap, and safe tool for monitoring the treatment of mild-to-moderate asthma in children.
Collapse
Affiliation(s)
- Janusz Ciółkowski
- Allergology Outpatient Clinic, The Regional Public Hospital in Lesko, Lesko, Poland
| | - Paweł Hydzik
- Department of Quantitative Methods in the Faculty of Management, Rzeszów University of Technology, Rzeszów, Poland
| | - Marta Rachel
- Institute of Medical Sciences, College of Medical Science, Rzeszów University, Rzeszów, Poland
| | | | - Renata Skalska-Izdebska
- Allergology Outpatient Clinic, The Regional Public Hospital in Lesko, Lesko, Poland
- Institute of Medical Sciences, College of Medical Science, Rzeszów University, Rzeszów, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, National Research Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
- Institute of Health, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| |
Collapse
|
4
|
Liu J, Nie M, Dong C, Säfholm J, Pejler G, Nilsson G, Adner M. Monensin inhibits mast cell mediated airway contractions in human and guinea pig asthma models. Sci Rep 2022; 12:18924. [PMID: 36344588 PMCID: PMC9640546 DOI: 10.1038/s41598-022-23486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a common respiratory disease associated with airway hyperresponsiveness (AHR), airway inflammation and mast cell (MC) accumulation in the lung. Monensin, an ionophoric antibiotic, has been shown to induce apoptosis of human MCs. The aim of this study was to define the effect of monensin on MC responses, e.g., antigen induced bronchoconstriction, and on asthmatic features in models of allergic asthma. Tracheal segments from house dust mite (HDM) extract sensitized guinea pigs were isolated and exposed to monensin, followed by histological staining to quantify MCs. Both guinea pig tracheal and human bronchi were used for pharmacological studies in tissue bath systems to investigate the monensin effect on tissue viability and antigen induced bronchoconstriction. Further, an HDM-induced guinea pig asthma model was utilized to investigate the effect of monensin on AHR and airway inflammation. Monensin decreased MC number, caused MC death, and blocked the HDM or anti-IgE induced bronchoconstriction in guinea pig and human airways. In the guinea pig asthma model, HDM-induced AHR, airway inflammation and MC hyperplasia could be inhibited by repeated administration of monensin. This study indicates that monensin is an effective tool to reduce MC number and MCs are crucial for the development of asthma-like features.
Collapse
Affiliation(s)
- Jielu Liu
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Mu Nie
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Caijuan Dong
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Jesper Säfholm
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| | - Gunnar Pejler
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Nilsson
- grid.24381.3c0000 0000 9241 5705Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden ,grid.8993.b0000 0004 1936 9457Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Adner
- grid.4714.60000 0004 1937 0626Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Biomedicum, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
5
|
Ritondo BL, Rogliani P, Facciolo F, Falco S, Vocale A, Calzetta L. Beclomethasone dipropionate and sodium cromoglycate protect against airway hyperresponsiveness in a human ex vivo model of cow's milk aspiration. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100010. [PMID: 34909646 PMCID: PMC8663930 DOI: 10.1016/j.crphar.2020.100010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022] Open
Abstract
Background Recurrent cow's milk (CM) aspiration is often associated with gastroesophageal reflux in infants and toddlers and it seems to be implicated in the etiology of different inflammatory lung disorders. This study aimed to investigate ex vivo the impact of CM aspiration on human airways and whether treatment with beclomethasone dipropionate (BDP) or sodium cromoglycate (SCG) may prevent the potential CM-induced airway hyperresponsiveness (AHR). Methods Human isolated bronchi were contracted by electrical field stimulation (EFS10Hz) to mimic the contractile tone induced by the parasympathetic activity and challenged with CM, fat/lactose-free CM, or human breast milk (HM). The effect of pre-treatment with beclomethasone dipropionate (BDP) and sodium cromoglycate (SCG) was also investigated on the AHR induced by CM. Results After a 60 min-challenge with CM 1:10 v/v and fat/lactose-free CM 1:10 v/v, ASM significantly (P < 0.05) increased compared to control (+67.04 ± 17.08% and +77.91 ± 1.34%, respectively), a condition that remained stable for 150 min post-treatment, whereas HM did not alter ASM contractility. BDP 1 μM and 10 μM significantly (P < 0.05) reduced the AHR elicited by CM (−52.49 ± 10.97% and −66.98 ± 7.90%, respectively vs. control). At the same manner, SCG 1 μM and 10 μM significantly (P < 0.05) inhibited the CM-induced AHR (−59.03 ± 9.24% and −73.52 ± 7.41%, respectively vs. control). Conclusion CM induces AHR in human ASM by eliciting an increased parasympathetic contractile response. Preventive treatment with nebulized SCG may be indicated in infants or toddlers fed with CM, rather than with BDP due to a superior safety profile. Cow's milk aspiration seems to be associated with some inflammatory lung diseases. Cow's milk aspiration induces human airway hyperresponsiveness. Beclomethasone and sodium cromoglycate protect against cow's milk hyperresponsiveness in vitro. Inhaled sodium cromoglycate might be suitable in children at risk of cow's milk aspiration.
Collapse
Affiliation(s)
- Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Falco
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Aurora Vocale
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Rasori 10, 43126, Parma, Italy
| |
Collapse
|
6
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
7
|
Sverrild A, Andreasen AH, Westergaard CG, von Bülow A, Udesen PB, Thomsen SF, Allin KH, Backer V, Porsbjerg C. Airway hyperresponsiveness to inhaled mannitol identifies a cluster of non-eosinophilic asthma patients with high symptom burden. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:4029-4036.e2. [PMID: 34332175 DOI: 10.1016/j.jaip.2021.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients with asthma are heterogeneous in clinical presentation and in response to treatment. Despite this, tools to guide treatment are limited and include mainly measures of eosinophilic inflammation and symptoms. Airway hyperresponsiveness (AHR) to mannitol is present in patients across inflammatory phenotypes and improve with inhaled cortico-steroids. OBJECTIVE To investigate whether measuring AHR to mannitol in addition to eosinophilic inflammation and symptoms add information to the phenotypic characterization of patients with asthma. METHODS A total of 317 patients with asthma from six different cohorts were included in the analysis. All patients had measures of AHR to mannitol, blood eosinophils and ACQ-5 available. A cluster analysis using Wards minimum variance method was performed. The distribution of FeNO, IgE, lung function, induced sputum inflammatory cell count, age of onset and severity of disease was compared between clusters. RESULTS Four clusters were identified. Three of the clusters had proportionate levels of AHR, eosinophilic inflammation and symptoms, but one cluster presented with low levels of eosinophilic inflammation and a significant symptom burden. Half of the subjects in this cluster presented with AHR to inhaled mannitol. Lung function, fractional exhaled nitric oxide, Body Mass Index and IgE were normal. CONCLUSION Information on AHR to mannitol in addition to blood eosinophils and symptoms identifies a subgroup of asthma patients with symptomatic, non-eosinophilic disease. AHR to mannitol may provide a treatable trait in a subgroup of patients with non-eosinophilic asthma.
Collapse
Affiliation(s)
- Asger Sverrild
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| | - Anne H Andreasen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | | | - Anna von Bülow
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Pernille B Udesen
- The Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Koege, Denmark
| | - Simon F Thomsen
- Department of Dermatology & Department of Biomedical Sciences, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical activity Research (CFAS), Rigshospitalet and Copenhagen University, Copenhagen, Denmark; Institute of Clinical medicine, University of Copenhagen, Denmark; Department of Ear-Nose-Throat, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute of Clinical medicine, University of Copenhagen, Denmark; Copenhagen Center for Translational Research, Copenhagen, Denmark
| |
Collapse
|
8
|
Brannan JD, Kippelen P. Bronchial Provocation Testing for the Identification of Exercise-Induced Bronchoconstriction. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:2156-2164. [PMID: 32620430 DOI: 10.1016/j.jaip.2020.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/26/2023]
Abstract
Exercise-induced bronchoconstriction (EIB) occurs in patients with asthma, children, and otherwise healthy athletes. Poor diagnostic accuracy of respiratory symptoms during exercise requires objective assessment of EIB. The standardized tests currently available are based on the assumption that the provoking stimulus to EIB is dehydration of the airway surface fluid due to conditioning large volumes of inhaled air. "Indirect" bronchial provocation tests that use stimuli to cause endogenous release of bronchoconstricting mediators from airway inflammatory cells include dry air hyperpnea (eg, exercise and eucapnic voluntary hyperpnea) and osmotic aerosols (eg, inhaled mannitol). The airway response to different indirect tests is generally similar in patients with asthma and healthy athletes with EIB. Furthermore, the airway sensitivity to these tests is modified by the same pharmacotherapy used to treat asthma. In contrast, pharmacological agents such as methacholine, given by inhalation, act directly on smooth muscle to cause contraction. These "direct" tests have been used traditionally to identify airway hyperresponsiveness in clinical asthma but are less useful to diagnose EIB. The mechanistic differences between indirect and direct tests have helped to elucidate the events leading to airway narrowing in patients with asthma and elite athletes, while improving the clinical utility of these tests to diagnose and manage EIB.
Collapse
Affiliation(s)
- John D Brannan
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, NSW, Australia.
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom; Division of Sport, Health and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
9
|
Johnsson AK, Choi JH, Rönnberg E, Fuchs D, Kolmert J, Hamberg M, Dahlén B, Wheelock CE, Dahlén SE, Nilsson G. Selective inhibition of prostaglandin D 2 biosynthesis in human mast cells to overcome need for multiple receptor antagonists: Biochemical consequences. Clin Exp Allergy 2021; 51:594-603. [PMID: 33449404 DOI: 10.1111/cea.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The major mast cell prostanoid PGD2 is targeted for therapy of asthma and other diseases, because the biological actions include bronchoconstriction, vasodilation and regulation of immune cells mediated by three different receptors. It is not known if the alternative to selectively inhibit the biosynthesis of PGD2 affects release of other prostanoids in human mast cells. OBJECTIVES To determine the biochemical consequences of inhibition of the hematopoietic prostaglandin D synthase (hPGDS) PGD2 in human mast cells. METHODS Four human mast cell models, LAD2, cord blood derived mast cells (CBMC), peripheral blood derived mast cells (PBMC) and human lung mast cells (HLMC), were activated by anti-IgE or ionophore A23187. Prostanoids were measured by UPLC-MS/MS. RESULTS All mast cells almost exclusively released PGD2 when activated by anti-IgE or A23187. The biosynthesis was in all four cell types entirely initiated by COX-1. When pharmacologic inhibition of hPGDS abolished formation of PGD2 , PGE2 was detected and release of TXA2 increased. Conversely, when the thromboxane synthase was inhibited, levels of PGD2 increased. Adding exogenous PGH2 confirmed predominant conversion to PGD2 under control conditions, and increased levels of TXB2 and PGE2 when hPGDS was inhibited. However, PGE2 was formed by non-enzymatic degradation. CONCLUSIONS Inhibition of hPGDS effectively blocks mast cell dependent PGD2 formation. The inhibition was associated with redirected use of the intermediate PGH2 and shunting into biosynthesis of TXA2 . However, the levels of TXA2 did not reach those of PGD2 in naïve cells. It remains to determine if this diversion occurs in vivo and has clinical relevance.
Collapse
Affiliation(s)
- Anna-Karin Johnsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jeong-Hee Choi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Elin Rönnberg
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Immunology and Allergy Division, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Mats Hamberg
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Dahlén
- Department of Medicine, Clinical Asthma and Allergy Research Laboratory, Karolinska University Hospital, Huddinge, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Immunology and Allergy Division, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Ladjemi MZ, Di Candia L, Heddebaut N, Techoueyres C, Airaud E, Soussan D, Dombret MC, Hamidi F, Guillou N, Mordant P, Castier Y, Létuvé S, Taillé C, Aubier M, Pretolani M. Clinical and histopathologic predictors of therapeutic response to bronchial thermoplasty in severe refractory asthma. J Allergy Clin Immunol 2021; 148:1227-1235.e6. [PMID: 33453288 DOI: 10.1016/j.jaci.2020.12.642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Phenotypes and endotypes predicting optimal response to bronchial thermoplasty (BT) in patients with severe asthma remain elusive. OBJECTIVE Our aim was to compare the clinical characteristics and hallmarks of airway inflammation and remodeling before and after BT in responder and partial responder patients with severe asthma refractory to oral steroids and to omalizumab. METHODS In all, 23 patients with severe refractory asthma were divided into BT responders (n = 15) and BT partial responders (n = 8), according to the decrease in asthma exacerbations at 12 months after BT. Clinical parameters were compared at baseline and 12 months after BT, and hallmarks of airway inflammation and remodeling were analyzed by immunohistochemistry in bronchial biopsy specimens before and 3 months after BT. RESULTS At baseline, the BT responders were around 8 years younger than the BT partial responders (P = .02) and they had a greater incidence of atopy, higher numbers of blood eosinophils (both P = .03) and IgE levels, higher epithelial IFN-α expression, and higher numbers of mucosal eosinophils and IL-33-positive cells (P ≤ .05). A reduction in blood eosinophil count, serum IgE level, type 2 airway inflammation, and numbers of mucosal IL-33-positive cells and mast cells associated with augmented epithelial MUC5AC and IFN-α/β immunostaining was noted after BT in responders, whereas the numbers of mucosal IL-33-positive cells were augmented in BT partial responders. Most of these changes were correlated with clinical parameters. Subepithelial membrane thickening and airway smooth muscle area were similar in the 2 patient groups at baseline and after BT. CONCLUSION By reducing allergic type 2 inflammation and increasing epithelial MUC5AC and anti-viral IFN-α/β expression, BT may enhance host immune responses and thus attenuate exacerbations and symptoms in BT responders. Instead, targeting IL-33 may provide a clinical benefit in BT partial responders.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Leonarda Di Candia
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Nicolas Heddebaut
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Camille Techoueyres
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Eloise Airaud
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - David Soussan
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Marie-Christine Dombret
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France; Département de Pneumologie A, Hôpital Bichat-Claude Bernard, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Fatima Hamidi
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Noëlline Guillou
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Pierre Mordant
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France; Département de Chirurgie Thoracique, Hôpital Bichat-Claude Bernard, Paris, France
| | - Yves Castier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France; Département de Chirurgie Thoracique, Hôpital Bichat-Claude Bernard, Paris, France
| | - Séverine Létuvé
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Camille Taillé
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France; Département de Pneumologie A, Hôpital Bichat-Claude Bernard, Paris, France; Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Michel Aubier
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France
| | - Marina Pretolani
- Inserm UMR1152, Physiopathologie et Epidémiologie des Maladies Respiratoires, Université de Paris, Faculté de Médicine, Paris, France; Laboratory of Excellence, INFLAMEX, Université Sorbonne Paris Cité and DHU FIRE, Paris, France.
| |
Collapse
|
11
|
IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol 2019; 145:808-817.e2. [PMID: 31805312 DOI: 10.1016/j.jaci.2019.10.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Specific inflammatory pathways are indicated to contribute to severe asthma, but their individual involvement in the development of airway hyperresponsiveness remains unexplored. OBJECTIVE This experimental study in human small bronchi aimed to provide insight into which of the type 2 and type 17 cytokines cause hyperresponsiveness of airway smooth muscle. METHODS Explanted small bronchi isolated from human lung tissue and human airway smooth muscle cells were treated for 2 and 1 day(s), respectively, with 100 ng/mL of IL-4, IL-5, IL-13, or IL-17A, and contractile responses, Ca2+ mobilization, and receptor expression were assessed. RESULTS Treatment with IL-13 increased the potency of histamine, carbachol, and leukotriene D4 as contractile agonists. IL-4, but not IL-5 or IL-17A, also increased the potency of histamine. In human airway smooth muscle cells, IL-13 and IL-4, but not IL-5 and IL-17A, enhanced the histamine-induced Ca2+ mobilization that was accompanied with increased mRNA expression of histamine H1 and cysteinyl leukotriene CysLT1 receptors. RNA sequencing of isolated bronchi confirmed the IL-13-mediated upregulation of H1 and CysLT1 receptors, without showing an alteration of muscarinic M3 receptors. Dexamethasone had no effects on IL-13-induced hyperresponsiveness in human bronchi, the increased Ca2+ mobilization, or the enhanced receptor expression. In contrast, antagonism of the common receptor for IL-13 and IL-4 by the biologic dupilumab prevented the effects of both IL-13 and IL-4 in human bronchi and human airway smooth muscle cells. CONCLUSIONS The glucocorticoid-insensitive hyperrresponsiveness in isolated human airways induced by IL-13 and IL-4 provides further evidence that the IL-4Rα pathway should be targeted as a new strategy for the treatment of airway hyperresponsiveness in asthma.
Collapse
|
12
|
Mannitol and the mechanisms behind bronchoconstriction. J Allergy Clin Immunol 2019; 144:931-932. [PMID: 31472165 DOI: 10.1016/j.jaci.2019.06.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/03/2023]
|