1
|
Sun S, Li K, Du H, Luo J, Jiang Y, Wang J, Liu M, Liu G, Han S, Che H. Integrating Widely Targeted Lipidomics and Transcriptomics Unravels Aberrant Lipid Metabolism and Identifies Potential Biomarkers of Food Allergies in Rats. Mol Nutr Food Res 2023; 67:e2200365. [PMID: 37057506 DOI: 10.1002/mnfr.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/17/2023] [Indexed: 04/15/2023]
Abstract
SCOPE Oral food challenges (OFCs) are currently the gold standard for determining the clinical reactivity of food allergy (FA) but are time-consuming, expensive, and risky. To screen novel peripheral biomarkers of FA and characterize the aberrant lipid metabolism in serum, 24 rats are divided into four groups: peanut, milk, and shrimp allergy (PA, MA, and SA, respectively) and control groups, with six rats in each group, and used for widely targeted lipidomics and transcriptomics analysis. METHODS AND RESULTS Widely targeted lipidomics reveal 144, 162, and 206 differentially accumulated lipids in PA, MA, and SA groups, respectively. The study integrates widely targeted lipidomics and transcriptomics and identifies abnormal lipid metabolism correlated with widespread differential accumulation of diverse lipids (including triacylglycerol, diacylglycerol, sphingolipid, and glycerophospholipid) in PA, MA, and SA. Simplified random forest classifier is constructed through five repetitions of 10-fold cross-validation to distinguish allergy from control. A subset of 15 lipids as potential biomarkers allows for more reliable and more accurate prediction of FA. Independent replication validates the reproducibility of potential biomarkers. CONCLUSION The results reveal the major abnormalities in lipid metabolism and suggest the potential role of lipids as novel molecular signatures for FA.
Collapse
Affiliation(s)
- Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kexin Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hang Du
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiangzuo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuchi Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Sun S, Luo J, Du H, Liu G, Liu M, Wang J, Han S, Che H. Widely Targeted Lipidomics and Transcriptomics Analysis Revealed Changes of Lipid Metabolism in Spleen Dendritic Cells in Shrimp Allergy. Foods 2022; 11:foods11131882. [PMID: 35804699 PMCID: PMC9265612 DOI: 10.3390/foods11131882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Shrimp allergy (SA) is pathological type 2 inflammatory immune responses against harmless shrimp protein allergen, which is caused by complex interactions between dendritic cells (DCs) and other immune cells. Lipid metabolism in different DCs states are significantly changed. However, the lipid metabolism of spleen DCs in SA remain ambiguous. In this study, we established a BALB/c mouse shrimp protein extract-induced allergy model to determine the lipid profile of spleen DCs in SA, and the molecular mechanism between lipid metabolism and immune inflammation was preliminarily studied. Spleen DCs were sorted by fluorescence-activated cell sorting, and then widely targeted lipidomics and transcriptomics analysis were performed. Principal component analysis presented the lipidome alterations in SA. The transcriptomic data showed that Prkcg was involved in lipid metabolism, immune system, and inflammatory signaling pathway. In the correlation analysis, the results suggested that Prkcg was positively correlated with triacylglycerol (Pearson correlation coefficient = 0.917, p = 0.01). The lipidomics and transcriptomics integrated pathway analysis indicated the activated metabolic conversion from triacylglycerol to 1,2-diacyl-sn-glycerol and the transmission of lipid metabolism to immune inflammation (from triacylglycerol and ceramide to Prkcg) in SA spleen DCs, and cellular experiments in vitro showed that glyceryl trioleate and C16 ceramide treatment induced immune function alteration in DCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huilian Che
- Correspondence: ; Tel.: +86-10-6273-7244; Fax: +86-10-6232-3465
| |
Collapse
|