1
|
Carneiro J, Tavendale R, Mukhopadhyay S, Soares P. Does CDHR3 gene polymorphism affect paediatric asthma and its treatment response? Clin Exp Allergy 2024; 54:159-161. [PMID: 38017357 DOI: 10.1111/cea.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Joana Carneiro
- NOVA National School of Public Health, NOVA University Lisbon, Lisbon, Portugal
| | - Roger Tavendale
- Division of Population and Health Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Somnath Mukhopadhyay
- Academic Department of Paediatrics, Brighton & Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK
| | - Patrícia Soares
- NOVA National School of Public Health, Public Health Research Center, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| |
Collapse
|
2
|
Essaidi-Laziosi M, Royston L, Boda B, Pérez-Rodriguez FJ, Piuz I, Hulo N, Kaiser L, Clément S, Huang S, Constant S, Tapparel C. Altered cell function and increased replication of rhinoviruses and EV-D68 in airway epithelia of asthma patients. Front Microbiol 2023; 14:1106945. [PMID: 36937308 PMCID: PMC10014885 DOI: 10.3389/fmicb.2023.1106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/18/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Rhinovirus (RV) infections constitute one of the main triggers of asthma exacerbations and an important burden in pediatric yard. However, the mechanisms underlying this association remain poorly understood. Methods In the present study, we compared infections of in vitro reconstituted airway epithelia originating from asthmatic versus healthy donors with representative strains of RV-A major group and minor groups, RV-C, RV-B, and the respiratory enterovirus EV-D68. Results We found that viral replication was higher in tissues derived from asthmatic donors for all tested viruses. Viral receptor expression was comparable in non-infected tissues from both groups. After infection, ICAM1 and LDLR were upregulated, while CDHR3 was downregulated. Overall, these variations were related to viral replication levels. The presence of the CDHR3 asthma susceptibility allele (rs6967330) was not associated with increased RV-C replication. Regarding the tissue response, a significantly higher interferon (IFN) induction was demonstrated in infected tissues derived from asthmatic donors, which excludes a defect in IFN-response. Unbiased transcriptomic comparison of asthmatic versus control tissues revealed significant modifications, such as alterations of cilia structure and motility, in both infected and non-infected tissues. These observations were supported by a reduced mucociliary clearance and increased mucus secretion in non-infected tissues from asthmatic donors. Discussion Altogether, we demonstrated an increased permissiveness and susceptibility to RV and respiratory EV infections in HAE derived from asthmatic patients, which was associated with a global alteration in epithelial cell functions. These results unveil the mechanisms underlying the pathogenesis of asthma exacerbation and suggest interesting therapeutic targets.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léna Royston
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Francisco Javier Pérez-Rodriguez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Isabelle Piuz
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Song Huang
- Epithelix Sàrl, Plan les Ouates, Geneva, Switzerland
| | | | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Caroline Tapparel,
| |
Collapse
|
3
|
Diaz-Cabrera NM, Sánchez-Borges MA, Ledford DK. Atopy: A Collection of Comorbid Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3862-3866. [PMID: 34509674 DOI: 10.1016/j.jaip.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
The concept of atopy was initially developed in the first quarter of the 20th century on the basis of clinical observations without any knowledge of pathogenic mechanisms. Atopy involves a collection of comorbidities that share pathogenic features, and atopic comorbidities affect outcomes of concomitant conditions rather than existing synchronously. The clinical importance of understanding the relationship of these conditions is necessary because the treatment of one condition influences the others, and the development of one leads to or precedes the development of another. Environmental influences and multigenetic predispositions result in complex relationships among the atopic conditions sharing a type 2 pathogenesis. The specialty of Allergy and Immunology is devoted to managing the comorbidities of atopy, and better understanding of their connections can improve patient care.
Collapse
Affiliation(s)
- Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine and the James A. Haley Veterans' Hospital, Tampa, Fla.
| | - Mario A Sánchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Clinica El Avila, Caracas, Venezuela
| | - Dennis K Ledford
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine and the James A. Haley Veterans' Hospital, Tampa, Fla
| |
Collapse
|
4
|
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 2021; 145:1499-1509. [PMID: 32507228 PMCID: PMC7270816 DOI: 10.1016/j.jaci.2020.04.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/23/2022]
Abstract
The respiratory epithelium provides a physical, functional, and immunologic barrier to protect the host from the potential harming effects of inhaled environmental particles and to guarantee maintenance of a healthy state of the host. When compromised, activation of immune/inflammatory responses against exogenous allergens, microbial substances, and pollutants might occur, rendering individuals prone to develop chronic inflammation as seen in allergic rhinitis, chronic rhinosinusitis, and asthma. The airway epithelium in asthma and upper airway diseases is dysfunctional due to disturbed tight junction formation. By putting the epithelial barrier to the forefront of the pathophysiology of airway inflammation, different approaches to diagnose and target epithelial barrier defects are currently being developed. Using single-cell transcriptomics, novel epithelial cell types are being unraveled that might play a role in chronicity of respiratory diseases. We here review and discuss the current understandings of epithelial barrier defects in type 2-driven chronic inflammation of the upper and lower airways, the estimated contribution of these novel identified epithelial cells to disease, and the current clinical challenges in relation to diagnosis and treatment of allergic rhinitis, chronic rhinosinusitis, and asthma.
Collapse
Affiliation(s)
- Peter W Hellings
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Otorhinolaryngology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, University Hospital Ghent, Laboratory of Upper Airway Research, Ghent, Belgium.
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium; Department of Otorhinolaryngology, Head and Neck Surgery, University of Crete School of Medicine, Heraklion, Crete, Greece
| |
Collapse
|
5
|
Bailey TW, Dos Santos AP, do Nascimento NC, Xie S, Thimmapuram J, Sivasankar MP, Cox A. RNA sequencing identifies transcriptional changes in the rabbit larynx in response to low humidity challenge. BMC Genomics 2020; 21:888. [PMID: 33308144 PMCID: PMC7733274 DOI: 10.1186/s12864-020-07301-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Voice disorders are a worldwide problem impacting human health, particularly for occupational voice users. Avoidance of surface dehydration is commonly prescribed as a protective factor against the development of dysphonia. The available literature inconclusively supports this practice and a biological mechanism for how surface dehydration of the laryngeal tissue affects voice has not been described. In this study, we used an in vivo male New Zealand white rabbit model to elucidate biological changes based on gene expression within the vocal folds from surface dehydration. Surface dehydration was induced by exposure to low humidity air (18.6% + 4.3%) for 8 h. Exposure to moderate humidity (43.0% + 4.3%) served as the control condition. Ilumina-based RNA sequencing was performed and used for transcriptome analysis with validation by RT-qPCR. RESULTS There were 103 statistically significant differentially expressed genes identified through Cuffdiff with 61 genes meeting significance by both false discovery rate and fold change. Functional annotation enrichment and predicted protein interaction mapping showed enrichment of various loci, including cellular stress and inflammatory response, ciliary function, and keratinocyte development. Eight genes were selected for RT-qPCR validation. Matrix metalloproteinase 12 (MMP12) and macrophage cationic peptide 1 (MCP1) were significantly upregulated and an epithelial chloride channel protein (ECCP) was significantly downregulated after surface dehydration by RNA-Seq and RT-qPCR. Suprabasin (SPBN) and zinc activated cationic channel (ZACN) were marginally, but non-significantly down- and upregulated as evidenced by RT-qPCR, respectively. CONCLUSIONS The data together support the notion that surface dehydration induces physiological changes in the vocal folds and justifies targeted analysis to further explore the underlying biology of compensatory fluid/ion flux and inflammatory mediators in response to airway surface dehydration.
Collapse
Affiliation(s)
- Taylor W Bailey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA.,Department of Public Health, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana, 47907, USA
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|