1
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Buso H, Firinu D, Gambier RF, Scarpa R, Garzi G, Soccodato V, Costanzo G, Ledda AG, Rashidy N, Bertozzi I, Nicola S, Tessarin G, Ramigni M, Piovesan C, Vianello F, Vianello A, Del Giacco S, Lougaris V, Brussino L, Jones MG, Quinti I, Agostini C, Rattazzi M, Milito C, Cinetto F. Lung function trajectories in common variable immunodeficiencies: An observational retrospective multicenter study. J Allergy Clin Immunol 2024:S0091-6749(24)01230-2. [PMID: 39566607 DOI: 10.1016/j.jaci.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Respiratory disease is a frequent cause of morbidity and mortality in common variable immunodeficiencies (CVIDs); however, lung function trajectories are poorly understood. OBJECTIVE We sought to determine lung physiology measurements in CVIDs, their temporal trajectory, and their association with clinical and immunologic parameters. METHODS This retrospective study from 5 Italian centers included patients with CVIDs who had longitudinal pulmonary function tests (PFTs) and chest computed tomography scan available. Applying the European Respiratory Society/American Thoracic Society 2021 standard, PFTs were expressed as percentile value within the normal distribution of healthy individuals, with the 5th percentile identified as lower limit of normal (LLN). The association of lung function with clinical and immunologic parameters was investigated. RESULTS The study included 185 patients with CVIDs; 64% had at least 1 lung comorbidity (bronchiectasis: 41%; granulomatous interstitial lung diseases: 24%). At first spirometry, median FEV1 was 3.07 L (interquartile range: 2.40-3.80 L), at the 32nd percentile (6th-61st percentile), and median forced vital capacity (FVC) was 3.70 L (interquartile range: 3.00-.54 L), at the 29th percentile (7th-49th percentile). Of patients, 23% had FEV1 < LLN, and 21% had FVC < LLN. Switched-memory B cells <2% were associated with both FEV1 < LLN (odds ratio 7.58) and FVC < LLN (odds ratio 3.55). In 112 patients with at least 5 years of PFTs, we found no significant difference between measured and predicted annual decline of FEV1 (25.6 mL/year vs 20.7 mL/year) and FVC (15.6 mL/year vs 16.2 mL/year). CONCLUSIONS In our study, lung volumes of the majority of patients with CVIDs were in the lower third of normal distribution of healthy individuals. After diagnosis, rate of lung decline was not accelerated.
Collapse
Affiliation(s)
- Helena Buso
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy.
| | - Renato Finco Gambier
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Soccodato
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Andrea G Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Nicolò Rashidy
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Ilaria Bertozzi
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Stefania Nicola
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Giulio Tessarin
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | | | | | - Fabrizio Vianello
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Vianello
- Department of Cardio-Thoracic, Respiratory Pathophysiology Division, University of Padova, Padova, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | - Luisa Brussino
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Mark G Jones
- Clinical and Experimental Sciences & NIHR Southampton Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Agostini
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Marcello Rattazzi
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| |
Collapse
|
3
|
van Stigt AC, von der Thüsen JH, Mustafa DAM, van den Bosch TPP, Lila KA, Vadgama D, van Hagen M, Dalm VASH, Dik WA, IJspeert H. Granulomas in Common Variable Immunodeficiency Display Different Histopathological Features Compared to Other Granulomatous Diseases. J Clin Immunol 2024; 45:22. [PMID: 39373788 PMCID: PMC11458708 DOI: 10.1007/s10875-024-01817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Granulomatous disease affects up to 20% of patients with Common Variable Immunodeficiency (CVID). Granulomas are comprised of highly activated immune cells, and emerge in response to antigenic triggers. In CVID granulomas however, the underlying pathophysiology is unclear and the specific trigger remains unknown. Granuloma formation in CVID is often compared to sarcoidosis, although clinical context and prognosis differ, suggesting a different pathogenesis. The aim of this study was to investigate if the cellular organization and proteomics of granulomas in CVID is different from other granulomatous diseases. Therefore, tissue slides from formaldehyde fixed paraffin embedded biopsies obtained from patients with CVID, sarcoidosis, tuberculosis and foreign-material induced pseudo-sarcoidosis were stained with hematoxylin and eosin and assessed for histopathological characteristics. Targeted spatial protein analysis was performed, and immune fluorescent multiplex assays were used to analyze the cellular organization. Histological analysis revealed that CVID granulomas were smaller, less circumscribed, with fewer multinucleated giant cells and minimal fibrosis compared to the other granulomatous diseases. Spatial protein analysis showed that granulomas in all diseases expressed CD68, CD11c, CD44, CD127, and PD-L1. However in CVID, reduced expression of the fibrosis-related protein fibronectin, but enrichment of CD163, CD3 and FAPα inside CVID granulomas was observed. Immunofluorescence analysis conformed a different cellular organization in CVID granulomas with increased influx of neutrophils, macrophages, T and B lymphocytes. In conclusion, granulomas in CVID display a different histological and cellular organization with increased influx of myeloid and lymphoid cells, compared to sarcoidosis, tuberculosis and pseudo-sarcoidosis, indicating a distinct pathogenesis underlying granuloma formation.
Collapse
Affiliation(s)
- Astrid C van Stigt
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
- The Tumor Immuno-Pathology Laboratory, Department of pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Karishma A Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
- The Tumor Immuno-Pathology Laboratory, Department of pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin van Hagen
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willem A Dik
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Hanna IJspeert
- Erasmus Medical Center, Laboratory of Medical Immunology, Department of Immunology, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands.
| |
Collapse
|
4
|
Bintalib HM, Grigoriadou S, Patel SY, Mutlu L, Sooriyakumar K, Vaitla P, McDermott E, Drewe E, Steele C, Ahuja M, Garcez T, Gompels M, Grammatikos A, Herwadkar A, Ayub R, Halliday N, Burns SO, Hurst JR, Goddard S. Investigating pulmonary and non-infectious complications in common variable immunodeficiency disorders: a UK national multi-centre study. Front Immunol 2024; 15:1451813. [PMID: 39318627 PMCID: PMC11420000 DOI: 10.3389/fimmu.2024.1451813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Background Common Variable Immunodeficiency Disorders (CVID) encompass a spectrum of immunodeficiency characterised by recurrent infections and diverse non-infectious complications (NICs). This study aimed to describe the clinical features and variation in NICs in CVID with and without interstitial lung disease (ILD) from a large UK national registry population. Methods Retrospective, cross-sectional data from a UK multicentre database (previously known as UKPIN), categorising patients into those with CVID-ILD and those with NICs related to CVID but without pulmonary involvement (CVID-EP; EP= extra-pulmonary involvement only). Results 129 patients were included. Chronic lung diseases, especially CVID-ILD, are prominent complications in complex CVID, occurring in 62% of the cohort. Bronchiectasis was common (64% of the cohort) and associated with greater pulmonary function impairment in patients with CVID-ILD compared to those without bronchiectasis. Lymphadenopathy and the absence of gastrointestinal diseases were significant predictors of ILD in complex CVID. Although the presence of liver disease did not differ significantly between the groups, nearly half of the CVID-ILD patients were found to have liver disease. Patients with CVID-ILD were more likely to receive immunosuppressive treatments such as rituximab and mycophenolate mofetil than the CVID-EP group, indicating greater need for treatment and risk of complications. Conclusion This study highlights the significant burden of CVID-ILD within the CVID population with NICs only. The lungs emerged as the most frequently affected organ, with ILD and bronchiectasis both highly prevalent. These findings emphasise the necessity of a comprehensive and multidisciplinary approach in managing CVID patients, considering their susceptibility to various comorbidities and complications.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Sofia Grigoriadou
- Department of Immunology, Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Smita Y. Patel
- Clinical Immunology, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Leman Mutlu
- Clinical Immunology and Allergy, Department of Pathology, East Kent Hospitals University NHS Foundation Trust, Canterbury, United Kingdom
| | - Kavitha Sooriyakumar
- Department of Allergy and Immunology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Prashantha Vaitla
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth Drewe
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Cathal Steele
- Regional Immunology Service of Northern Ireland, The Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Manisha Ahuja
- Clinical Research Fellow, Newcastle University; Specialist Registrar Newcastle upon Tyne Hospitals NHSFT, Newcastle, United Kingdom
| | - Tomaz Garcez
- Department of Immunology, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Mark Gompels
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Alexandros Grammatikos
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Archana Herwadkar
- Immunology Department, Division of Surgery and Tertiary Medicine, Salford Royal National Health Service (NHS) Foundation Trust, Salford, United Kingdom
| | - Rehana Ayub
- Clinical Immunology, Leeds Teaching Hospitals National Health Service (NHS) Trust, Leeds, United Kingdom
| | - Neil Halliday
- University College London (UCL) Institute for Liver and Digestive Health, University College London, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| | - Sarah Goddard
- Department of Immunology, University Hospitals North Midlands, Royal Stoke Hospital, Stoke-on-Trent, United Kingdom
| |
Collapse
|
5
|
Galant-Swafford J, Catanzaro J, Achcar RD, Cool C, Koelsch T, Bang TJ, Lynch DA, Alam R, Katial RK, Fernández Pérez ER. Approach to diagnosing and managing granulomatous-lymphocytic interstitial lung disease. EClinicalMedicine 2024; 75:102749. [PMID: 39170934 PMCID: PMC11338122 DOI: 10.1016/j.eclinm.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Granulomatous-lymphocytic interstitial lung disease (GLILD) is a lymphoproliferative and granulomatous pulmonary manifestation of primary immune deficiency diseases, notably common variable immunodeficiency (CVID), and is an important contributor of excess morbidity. As with all forms of ILD, the significance of utilizing a multidisciplinary team discussion to enhance diagnostic and treatment confidence of GLILD cannot be overstated. In this review, key clinical, radiological, and pathological features are integrated into a diagnostic algorithm to facilitate a consensus diagnosis. As the evidence for diagnosing and managing patients with GLILD is limited, the viewpoints discussed here are not meant to resolve current controversies. Instead, this review aims to provide a practical framework for diagnosing and evaluating suspected cases and emphasizes the importance of a multidisciplinary approach when caring for GLILD patients.
Collapse
Affiliation(s)
- Jessica Galant-Swafford
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jason Catanzaro
- Department of Pediatrics, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rosane Duarte Achcar
- Department of Medicine, Division of Pathology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Health Sciences Center, 12605 East 16th Avenue, Denver, CO 80045, USA
| | - Tilman Koelsch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Tami J. Bang
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rohit K. Katial
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Evans R. Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Interstitial Lung Disease Program, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
6
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
7
|
Smits BM, Boland SL, Hol ME, Dandis R, Leavis HL, de Jong PA, Prevaes SMPJ, Mohamed Hoesein FAA, van Montfrans JM, Ellerbroek PM. Pulmonary Computed Tomography Screening Frequency in Primary Antibody Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1037-1048.e3. [PMID: 38182096 DOI: 10.1016/j.jaip.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Patients with primary antibody deficiency (PAD) frequently suffer from pulmonary complications, associated with severe morbidity and mortality. Hence, regular pulmonary screening by computed tomography (CT) scanning is advised. However, predictive risk factors for pulmonary morbidity are lacking. OBJECTIVE To identify patients with PAD at risk for pulmonary complications necessitating regular CT screening. METHODS A retrospective, longitudinal cohort study of patients with PAD (median follow-up 7.4 [2.3-14.8] years) was performed. CTs were scored using the modified Brody-II scoring system. Clinical and laboratory parameters were retrospectively collected. Potential risk factors were identified by univariate analysis when P < .2 and confirmed by multivariable logistic regression when P < .05. RESULTS The following independent risk factors for progression of airway disease (AD) were identified: (1) diagnosis of X-linked agammaglobulinemia (XLA), (2) recurrent airway infections (2.5/year), and (3) the presence of AD at baseline. Signs of AD progression were detected in 5 of 11 patients with XLA and in 17 of 80 of the other patients with PAD. Of the 22 patients who progressed, 17 had pre-existent AD scores ≥7.0%. Increased AD scores were related to poorer forced expiratory volume in 1 second values and chronic cough. Common variable immunodeficiency and increased CD4 effector/memory cells were risk factors for an interstitial lung disease (ILD) score ≥13.0%. ILD ≥13.0% occurred in 12 of 80 patients. Signs of ILD progression were detected in 8 of 80 patients, and 4 of 8 patients showing progression had pre-existent ILD scores ≥13.0%. CONCLUSION We identified risk factors that distinguished patients with PAD at risk for AD and ILD presence and progression, which could guide future screening frequency; however, independent and preferably prospective validation is needed.
Collapse
Affiliation(s)
- Bas M Smits
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sharisa L Boland
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein E Hol
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rana Dandis
- Research Department, Trial and Datacenter, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, Utrecht University, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine, Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Sullivan NP, Maniam N, Maglione PJ. Interstitial lung diseases in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:500-506. [PMID: 37823528 DOI: 10.1097/aci.0000000000000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Our goal is to review current understanding of interstitial lung disease (ILD) affecting patients with inborn errors of immunity (IEI). This includes understanding how IEI might predispose to and promote development or progression of ILD as well as how our growing understanding of IEI can help shape treatment of ILD in these patients. Additionally, by examining current knowledge of ILD in IEI, we hope to identify key knowledge gaps that can become focus of future investigative efforts. RECENT FINDINGS Recent identification of novel IEI associated with ILD and the latest reports examining treatment of ILD in IEI are included. Of noted interest, are recent clinical studies of immunomodulatory therapy for ILD in common variable immunodeficiency. SUMMARY ILD is a frequent complication found in many IEI. This article provides a guide to identifying manifestations of ILD in IEI. We review a broad spectrum of IEI that develop ILD, including antibody deficiency and immune dysregulation disorders that promote autoimmunity and autoinflammation. This work integrates clinical information with molecular mechanisms of disease and diagnostic assessments to provide an expedient overview of a clinically relevant and expanding topic.
Collapse
Affiliation(s)
| | - Nivethietha Maniam
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul J Maglione
- Section of Pulmonary, Allergy, Sleep and Critical Care Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Tessarin G, Baronio M, Gazzurelli L, Rossi S, Chiarini M, Moratto D, Giliani SC, Bondioni MP, Badolato R, Lougaris V. Rituximab Monotherapy Is Effective as First-Line Treatment for Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) in CVID Patients. J Clin Immunol 2023; 43:2091-2103. [PMID: 37755605 PMCID: PMC10661825 DOI: 10.1007/s10875-023-01587-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Granulomatous lymphocytic interstitial lung disease (GLILD) represents a fatal immune dysregulatory complication in common variable immunodeficiency (CVID). Evidence-based diagnostic guidelines are lacking, and GLILD treatment consists in immunosuppressive drugs; nonetheless, therapeutical strategies are heterogeneous and essentially based on experts' opinions and data from small case series or case reports.We aimed to evaluate the efficacy and safety of first-line Rituximab monotherapy for CVID-related GLILD, by assessing symptoms and quality of life alterations, immunological parameters, pulmonary function tests, and lung computed tomography.All six GLILD patients received Rituximab infusions as a first-line treatment. Rituximab was administered at 375 mg/m2 monthly for six infusions followed by maintenance every 3 months; none of the patients experienced severe adverse events. Symptom burden and quality of life significantly improved in treated patients compared to a control group of CVID patients without GLILD. Rituximab treatment indirectly caused a trend toward reduced T-cell activation and exhaustion markers sCD25 and sTIM-3. Lung function improved in treated patients, with statistically significant increases in TLC and DLCO. Lung CT scan findings expressed by means of Baumann scoring system displayed a reduction in the entire cohort.In conclusion, first-line monotherapy with Rituximab displayed high efficacy in disease remission in all treated patients, with improvement of symptoms and amelioration of quality of life, as well as restoration of PFTs and lung CT scan findings.
Collapse
Affiliation(s)
- Giulio Tessarin
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Department of Molecular and Translational Medicine, Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Luisa Gazzurelli
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Stefano Rossi
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Marco Chiarini
- Diagnostic Department, Flow Cytometry Laboratory, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Daniele Moratto
- Diagnostic Department, Flow Cytometry Laboratory, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Medical and Surgical Specialties, Pediatric Radiology, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
10
|
van Stigt AC, Dalm VASH, Nagtzaam NMA, van Hagen PM, Dik WA, IJspeert H. Soluble Interleukin-2 Receptor/White Blood Cell Ratio Reflects Granulomatous Disease Progression in Common Variable Immune Deficiency. J Clin Immunol 2023; 43:1754-1757. [PMID: 37542638 PMCID: PMC10661782 DOI: 10.1007/s10875-023-01560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Astrid C van Stigt
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Division of Allergy & Clinical Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Division of Allergy & Clinical Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands
| | - Nicole M A Nagtzaam
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands
| | - P Martin van Hagen
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Internal Medicine, Division of Allergy & Clinical Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands
| | - Willem A Dik
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands
| | - Hanna IJspeert
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands.
- Erasmus MC, University Medical Center Rotterdam, Academic Center for Rare Immunological Diseases (RIDC), Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Lui VG, Ghosh T, Rymaszewski A, Chen S, Baxter RM, Kong DS, Ghosh D, Routes JM, Verbsky JW, Hsieh EWY. Dysregulated Lymphocyte Antigen Receptor Signaling in Common Variable Immunodeficiency with Granulomatous Lymphocytic Interstitial Lung Disease. J Clin Immunol 2023; 43:1311-1325. [PMID: 37093407 PMCID: PMC10524976 DOI: 10.1007/s10875-023-01485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A subset of common variable immunodeficiency (CVID) patients either presents with or develops autoimmune and lymphoproliferative complications, such as granulomatous lymphocytic interstitial lung disease (GLILD), a major cause of morbidity and mortality in CVID. While a myriad of phenotypic lymphocyte derangements has been associated with and described in GLILD, defects in T and B cell antigen receptor (TCR/BCR) signaling in CVID and CVID with GLILD (CVID/GLILD) remain undefined, hindering discovery of biomarkers for disease monitoring, prognostic prediction, and personalized medicine approaches. METHODS To identify perturbations of immune cell subsets and TCR/BCR signal transduction, we applied mass cytometry analysis to peripheral blood mononuclear cells (PBMCs) from healthy control participants (HC), CVID, and CVID/GLILD patients. RESULTS Patients with CVID, regardless of GLILD status, had increased frequency of HLADR+CD4+ T cells, CD57+CD8+ T cells, and CD21lo B cells when compared to healthy controls. Within these cellular populations in CVID/GLILD patients only, engagement of T or B cell antigen receptors resulted in discordant downstream signaling responses compared to CVID. In CVID/GLILD patients, CD21lo B cells showed perturbed BCR-mediated phospholipase C gamma and extracellular signal-regulated kinase activation, while HLADR+CD4+ T cells and CD57+CD8+ T cells displayed disrupted TCR-mediated activation of kinases most proximal to the receptor. CONCLUSION Both CVID and CVID/GLILD patients demonstrate an activated T and B cell phenotype compared to HC. However, only CVID/GLILD patients exhibit altered TCR/BCR signaling in the activated lymphocyte subsets. These findings contribute to our understanding of the mechanisms of immune dysregulation in CVID with GLILD.
Collapse
Affiliation(s)
- Victor G Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - Amy Rymaszewski
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaoying Chen
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Asthma, Allergy, and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan M Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Daniel S Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - John M Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James W Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA.
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Aurora, CO, USA.
- Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
12
|
Bintalib HM, van de Ven A, Jacob J, Davidsen JR, Fevang B, Hanitsch LG, Malphettes M, van Montfrans J, Maglione PJ, Milito C, Routes J, Warnatz K, Hurst JR. Diagnostic testing for interstitial lung disease in common variable immunodeficiency: a systematic review. Front Immunol 2023; 14:1190235. [PMID: 37223103 PMCID: PMC10200864 DOI: 10.3389/fimmu.2023.1190235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Common variable immunodeficiency related interstitial lung disease (CVID-ILD, also referred to as GLILD) is generally considered a manifestation of systemic immune dysregulation occurring in up to 20% of people with CVID. There is a lack of evidence-based guidelines for the diagnosis and management of CVID-ILD. Aim To systematically review use of diagnostic tests for assessing patients with CVID for possible ILD, and to evaluate their utility and risks. Methods EMBASE, MEDLINE, PubMed and Cochrane databases were searched. Papers reporting information on the diagnosis of ILD in patients with CVID were included. Results 58 studies were included. Radiology was the investigation modality most commonly used. HRCT was the most reported test, as abnormal radiology often first raised suspicion of CVID-ILD. Lung biopsy was used in 42 (72%) of studies, and surgical lung biopsy had more conclusive results compared to trans-bronchial biopsy (TBB). Analysis of broncho-alveolar lavage was reported in 24 (41%) studies, primarily to exclude infection. Pulmonary function tests, most commonly gas transfer, were widely used. However, results varied from normal to severely impaired, typically with a restrictive pattern and reduced gas transfer. Conclusion Consensus diagnostic criteria are urgently required to support accurate assessment and monitoring in CVID-ILD. ESID and the ERS e-GLILDnet CRC have initiated a diagnostic and management guideline through international collaboration. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022276337.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Annick van de Ven
- Departments of Internal Medicine & Allergology, Rheumatology & Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Joseph Jacob
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London (UCL), London, United Kingdom
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Børre Fevang
- Centre for Rare Disorders, Division of Paediatric and Adolescent Health, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Marion Malphettes
- Department of Clinic Immunopathology, Hôpital Saint-Louis, Paris, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht (UMC), Utrecht, Netherlands
| | - Paul J. Maglione
- Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John Routes
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Medicine, Microbiology and Immunology, Medical College Wisconsin, Milwaukee, WI, United States
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| |
Collapse
|