1
|
Moon S, Rha MS. Revisiting T Cells in Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:585-600. [PMID: 39622684 PMCID: PMC11621483 DOI: 10.4168/aair.2024.16.6.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024]
Abstract
A variety of immune cells in the nasal tissue are involved in the immunopathogenesis of chronic rhinosinusitis (CRS), a chronic inflammatory disease affecting the nasal cavity and paranasal sinuses. T cells play a pivotal role in orchestrating immune dysregulation in CRS by producing key cytokines. Recent studies have expanded the understanding of T cell biology across the inflammatory endotypes of CRS. This review summarizes current knowledge on the multifaceted roles of T cells in the pathophysiology of CRS. Particularly, we highlight the alterations in phenotypes and functions of various T cell subsets in CRS. Additionally, as functional studies of effector and regulatory T cell populations have revealed potential translational targets, we suggest perspectives for future research into T cell-oriented therapeutic strategies for CRS.
Collapse
Affiliation(s)
- Sungmin Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Wang E, Sun Y, Zhao H, Wang M, Cao Z. Genetic correlation between chronic sinusitis and autoimmune diseases. FRONTIERS IN ALLERGY 2024; 5:1387774. [PMID: 39381510 PMCID: PMC11458559 DOI: 10.3389/falgy.2024.1387774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024] Open
Abstract
Objective The association between autoimmune diseases and chronic rhinosinusitis in observational studies remains unclear. This study aimed to explore the genetic correlation between chronic rhinosinusitis and autoimmune diseases. Methods We employed Mendelian randomization (MR) analysis and linkage disequilibrium score regression (LDSC) to investigate causal relationships and genetic correlations between autoimmune phenotypes and chronic rhinosinusitis. Additionally, transcriptome-wide association (TWAS) analysis was conducted to identify the shared genes between the two conditions to demonstrate their relationship. The CRS GWAS (genome-wide association study) data and other autoimmune diseases were retrieved from ieuOpenGWAS (https://gwas.mrcieu.ac.uk/), the FinnGen alliance (https://r8.finngen.fi/), the UK Biobank (https://www.ukbiobank.ac.uk/), and the EBI database (https://www.ebi.ac.uk/). Results Utilizing a bivariate two-sample Mendelian randomization approach, our findings suggest a significant association of chronic rhinosinusitis with various autoimmune diseases, including allergic rhinitis (p = 9.55E-10, Odds Ratio [OR] = 2,711.019, 95% confidence interval [CI] = 261.83391-28,069.8), asthma (p = 1.81E-23, OR = 33.99643, 95%CI = 17.52439-65.95137), rheumatoid arthritis (p = 9.55E-10, OR = 1.115526, 95%CI = 1.0799484-1.1522758), hypothyroidism (p = 2.08828E-2, OR = 4.849254, 95%CI = 1.7154455-13.707962), and type 1 diabetes (p = 2.08828E-2, OR = 01.04849, 95%CI = 1.0162932-1.0817062). LDSC analysis revealed a genetic correlation between the positive autoimmune phenotypes mentioned above and chronic rhinosinusitis: AR (rg = 0.344724754, p = 3.94E-8), asthma (rg = 0.43703672, p = 1.86E-10), rheumatoid arthritis (rg = 0.27834931, p = 3.5376E-2), and hypothyroidism (rg = -0.213201473, p = 3.83093E-4). Utilizing the Transcriptome-Wide Association Studies (TWAS) approach, we identified several genes commonly associated with both chronic rhinosinusitis and autoimmune diseases. Genes such as TSLP/WDR36 (Chromosome 5, top SNP: rs1837253), ORMDL3 (Chromosome 13, top SNP: rs11557467), and IL1RL1/IL18R1 (Chromosome 2, top SNP: rs12905) exhibited a higher degree of consistency in their shared involvement across atopic dermatitis (AT), allergic rhinitis (AR), and chronic rhinosinusitis (CRS). Conclusion Current evidence suggests a genetic correlation between chronic rhinosinusitis and autoimmune diseases like allergic rhinitis, asthma, rheumatoid arthritis, hypothyroidism, and type 1 diabetes. Further research is required to elucidate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Enze Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingxuan Sun
- Department of Neurology, The First Affiliation Hospital of China Medical University, Shenyang, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Guo Y, Sun Q, Yin J, Mou Y, Wang J, Wang Y, Liu J, Li Y, Song X. Identification of hub genes associated with neutrophils in chronic rhinosinusitis with nasal polyps. Sci Rep 2024; 14:19870. [PMID: 39191825 DOI: 10.1038/s41598-024-70387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Neutrophil infiltration plays a key role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). However, pertinent mechanisms remain poorly elucidated. Here, we obtained the data from gene expression omnibus (GEO) and gene set enrichment analysis (GSEA) to identify and validate neutrophil-associated hub genes in CRSwNP. We found that four neutrophil-associated hub genes, namely ICAM1, IL-1β, TYROBP, and BCL2A1, were markedly upregulated and positively correlated with neutrophil infiltration levels in patients with CRSwNP. Subsequently, this was confirmed by real-time quantitative PCR. In conclusion, we identified the role of neutrophil infiltration in the pathophysiology of CRSwNP, which may be the potential targets for the diagnosis and treatment of CRSwNP.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Qi Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yakui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jianwei Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yaqi Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Jiahui Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People's Republic of China.
| |
Collapse
|
4
|
Li X, Fu S, Cheng H, Ma M, Song Z, Li J, Wu S, Zhang C, Wang X, Tang M, Pu X, Ji Q, Liang J, Zhao Z, Körner H, Li B, Shao M, Wang H. Differentiation of Type 17 Mucosal-Associated Invariant T Cells in Circulation Contributes to the Severity of Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1248-1261. [PMID: 38599461 DOI: 10.1016/j.ajpath.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are essential in defending against infection. Sepsis is a systemic inflammatory response to infection and a leading cause of death. The relationship between the overall competency of the host immune response and disease severity is not fully elucidated. This study identified a higher proportion of circulating MAIT17 with expression of IL-17A and retinoic acid receptor-related orphan receptor γt in patients with sepsis. The proportion of MAIT17 was correlated with the severity of sepsis. Single-cell RNA-sequencing analysis revealed an enhanced expression of lactate dehydrogenase A (LDHA) in MAIT17 in patients with sepsis. Cell-culture experiments demonstrated that phosphoinositide 3-kinase-LDHA signaling was required for retinoic acid receptor-related orphan receptor γt expression in MAIT17. Finally, the elevated levels of plasma IL-18 promoted the differentiation of circulating MAIT17 cells in sepsis. In summary, this study reveals a new role of circulating MAIT17 in promoting sepsis severity and suggests the phosphoinositide 3-kinase-LDHA signaling as a driving force in MAIT17 responses.
Collapse
Affiliation(s)
- Xinying Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; School of Life Sciences, Anhui Medical University, Hefei, China
| | - Sicheng Fu
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Hao Cheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Min Ma
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijian Song
- School of Pharmacy, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Jun Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Wu
- School of Pharmacy, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Chong Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxia Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Maoyu Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Xuexue Pu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Ji
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinquan Liang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhibin Zhao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Heinrich Körner
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Departments of Respiratory and Critical Care Medicine and Thoracic Surgery, Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
6
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|