1
|
Puri R, Mehta V, Duell PB, Nair D, Mohan JC, Yusuf J, Dalal JJ, Mishra S, Kasliwal RR, Agarwal R, Mukhopadhyay S, Wardhan H, Khanna NN, Pradhan A, Mehrotra R, Kumar A, Puri S, Muruganathan A, Sattur GB, Yadav M, Singh HP, Agarwal RK, Nanda R. Proposed low-density lipoprotein cholesterol goals for secondary prevention and familial hypercholesterolemia in India with focus on PCSK9 inhibitor monoclonal antibodies: Expert consensus statement from Lipid Association of India. J Clin Lipidol 2020; 14:e1-e13. [PMID: 32089456 DOI: 10.1016/j.jacl.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
|
2
|
Abstract
Familial hypercholesterolemia (FH) is a common genetic condition characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C), premature atherosclerotic cardiovascular disease, and considerable unmet medical need with conventional LDL-C-lowering therapies. Between 2012 and 2015, the US Food and Drug Administration approved four novel LDL-C-lowering agents for use in patients with FH based on the pronounced LDL-C-lowering efficacy of these medicines. We review the four novel approved agents, as well as promising LDL-C-lowering agents in clinical development, with a focus on their mechanism of action, efficacy in FH cohorts, and safety.
Collapse
Affiliation(s)
- Ezim Ajufo
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; ,
| | - Daniel J Rader
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
3
|
Arama C, Diarra I, Kouriba B, Sirois F, Fedoryak O, Thera MA, Coulibaly D, Lyke KE, Plowe CV, Chrétien M, Doumbo OK, Mbikay M. Malaria severity: Possible influence of the E670G PCSK9 polymorphism: A preliminary case-control study in Malian children. PLoS One 2018; 13:e0192850. [PMID: 29447211 PMCID: PMC5813955 DOI: 10.1371/journal.pone.0192850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
Aim Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) is a hepatic secretory protein which promotes the degradation of low-density lipoprotein receptors leading to reduced hepatic uptake of plasma cholesterol. Non-synonymous single-nucleotide polymorphisms in its gene have been linked to hypo- or hyper- cholesterolemia, depending on whether they decrease or increase PCSK9 activity, respectively. Since the proliferation and the infectivity of Plasmodium spp. partially depend on cholesterol from the host, we hypothesize that these PCSK9 genetic polymorphisms could influence the course of malaria infection in individuals who carry them. Here we examined the frequency distribution of one dominant (C679X) and two recessive (A443T, I474V) hypocholesterolemic polymorphisms as well as that of one recessive hypercholesterolemic polymorphism (E670G) among healthy and malaria-infected Malian children. Methods Dried blood spots were collected in Bandiagara, Mali, from 752 age, residence and ethnicity-matched children: 253 healthy controls, 246 uncomplicated malaria patients and 253 severe malaria patients. Their genomic DNA was extracted and genotyped for the above PCSK9 polymorphisms using Taqman assays. Associations of genotype distributions and allele frequencies with malaria were evaluated. Results The minor allele frequency of the A443T, I474V, E670G, and C679X polymorphisms in the study population sample was 0.12, 0.20, 0.26, and 0.02, respectively. For each polymorphism, the genotype distribution among the three health conditions was statistically insignificant, but for the hypercholesterolemic E670G polymorphism, a trend towards association of the minor allele with malaria severity was observed (P = 0.035). The association proved to be stronger when allele frequencies between healthy controls and severe malaria cases were compared (Odd Ratio: 1.34; 95% Confidence Intervals: 1.04–1.83); P = 0.031). Conclusions Carriers of the minor allele of the E670G PCSK9 polymorphism might be more susceptible to severe malaria. Further investigation of the cholesterol regulating function of PCSK9 in the pathophysiology of malaria is needed.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Issa Diarra
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Bourèma Kouriba
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Francine Sirois
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Olesya Fedoryak
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Mahamadou A. Thera
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Kirsten E. Lyke
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christopher V. Plowe
- Center for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michel Chrétien
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, International Centers for Excellence in Research, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
- * E-mail: (MM); (OKD)
| | - Majambu Mbikay
- Laboratoire de protéolyse fonctionnelle, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Chronic Disease Program, Ottawa Hospital Research Hospital, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (MM); (OKD)
| |
Collapse
|