1
|
Grassi G, Scillitani E, Cecchelli C. New horizons for obsessive-compulsive disorder drug discovery: is targeting glutamate receptors the answer? Expert Opin Drug Discov 2024; 19:1235-1245. [PMID: 39105546 DOI: 10.1080/17460441.2024.2387127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Over the past decade, glutamate has emerged as a prominent focus in the field of obsessive-compulsive disorder (OCD) pathophysiology. A convergence of evidence from genetic, preclinical, and clinical studies points to glutamatergic dysfunction as a key feature of this condition. In light of these findings, there has been a growing interest in exploring the potential of glutamatergic agents in the treatment of OCD. AREAS COVERED This paper reviews the literature on glutamate transmission in OCD. In addition, the authors examine the results of clinical trials investigating the efficacy of glutamatergic agents in the treatment of OCD patients. EXPERT OPINION Along with the recognition of neuroinflammation in the brain in OCD, the evidence of glutamate dysfunction represents one of the most promising recent discoveries for understanding the mechanisms involved in OCD. The importance of this discovery lies primarily in its pharmacological implications and has led to intense research activity in the field of glutamatergic agents. While this research has not yet had a substantial clinical impact, targeting glutamate receptors remains a promising horizon for the successful treatment of OCD patients.
Collapse
Affiliation(s)
- Giacomo Grassi
- Department of Psychiatry, Brain Center Firenze, Florence, Italy
| | | | | |
Collapse
|
2
|
Teng C, Zhang W, Zhang D, Shi X, Wu X, Qiao H, Zhang N, Hu X, Guan C. Association between clinical features and decreased degree centrality and variability in dynamic functional connectivity in the obsessive-compulsive disorder. Neuroimage Clin 2024; 44:103665. [PMID: 39270630 PMCID: PMC11416513 DOI: 10.1016/j.nicl.2024.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Neuroimaging studies have indicated widespread brain structural and functional disruptions in patients with obsessive-compulsive disorder (OCD). However, the underlying mechanism of these changes remains unclear. A total of 45 patients with OCD and 42 healthy controls (HC) were enrolled. The study investigated local degree centrality (DC) abnormalities and employed abnormal regions of DC as seeds to investigate variability in dynamic functional connectivity (dFC) in the whole brain using a sliding window approach to analyze resting-state functional magnetic resonance imaging. The relationship between abnormal DC and dFC as well as the clinical features of OCD were examined using correlation analysis. Our findings suggested decreased DC in the bilateral thalamus, bilateral precuneus, and bilateral cuneus in OCD patients and a nominally negative correlation between the DC value in the thalamus and illness severity measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS). In addition, seed-based dFC analysis showed that compared to measurements in the HC, the patients had decreased dFC variability between the left thalamus and the left cuneus and right lingual gyrus, and between the bilateral cuneus and bilateral postcentral gyrus, and a nominally positive correlation between the duration of illness and dFC variability between the left cuneus and left postcentral gyrus. These results indicated that OCD patients had decreased hub importance in the bilateral thalamus and cuneus throughout the entire brain. This reduction was associated with impaired coupling with dynamic function in the visual cortex and sensorimotor network and provided novel insights into the neurophysiological mechanisms underlying OCD.
Collapse
Affiliation(s)
- Changjun Teng
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Da Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - XiaoMeng Shi
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Wu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huifen Qiao
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Zhang
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Hu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Chengbin Guan
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Zhang YD, Shi DD, Liao BB, Li Y, Zhang S, Gao J, Lin LJ, Wang Z. Human microbiota from drug-naive patients with obsessive-compulsive disorder drives behavioral symptoms and neuroinflammation via succinic acid in mice. Mol Psychiatry 2024; 29:1782-1797. [PMID: 38273106 DOI: 10.1038/s41380-024-02424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Emerging evidence suggests that the gut microbiota is closely related to psychiatric disorders. However, little is known about the role of the gut microbiota in the development of obsessive-compulsive disorder (OCD). Here, to investigate the contribution of gut microbiota to the pathogenesis of OCD, we transplanted fecal microbiota from first-episode, drug-naive OCD patients or demographically matched healthy individuals into antibiotic-treated specific pathogen-free (SPF) mice and showed that colonization with OCD microbiota is sufficient to induce core behavioral deficits, including abnormal anxiety-like and compulsive-like behaviors. The fecal microbiota was analyzed using 16 S rRNA full-length sequencing, and the results demonstrated a clear separation of the fecal microbiota of mice colonized with OCD and control microbiota. Notably, microbiota from OCD-colonized mice resulted in injured neuronal morphology and function in the mPFC, with inflammation in the mPFC and colon. Unbiased metabolomic analyses of the serum and mPFC region revealed the accumulation of succinic acid (SA) in OCD-colonized mice. SA impeded neuronal activity and induced an inflammatory response in both the colon and mPFC, impacting intestinal permeability and brain function, which act as vital signal mediators in gut microbiota-brain-immune crosstalk. Manipulations of dimethyl malonate (DM) have been reported to exert neuroprotective effects by suppressing the oxidation of accumulated succinic acid, attenuating the downstream inflammatory response and neuronal damage, and can help to partly improve abnormal behavior and reduce neuroinflammation and intestinal inflammation in OCD-colonized mice. We propose that the gut microbiota likely regulates brain function and behaviors in mice via succinic acid signaling, which contributes to the pathophysiology of OCD through gut-brain crosstalk and may provide new insights into the treatment of this disorder.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Bing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang-Jun Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, PR China.
| |
Collapse
|
4
|
Wang J, Huang C, Luo G, Xiao Y, Guo G, Quan D, Zheng H. Reduced sleep quality defines a subtype of obsessive-compulsive disorder with lower Glx levels in the resting thalamus and worse response inhibition. J Psychiatr Res 2024; 173:14-24. [PMID: 38461674 DOI: 10.1016/j.jpsychires.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The aim of this study was to investigate the differences between resting and active thalamic neurometabolite levels and inhibitory function in obsessive compulsive disorder (OCD) patients with poor sleep quality (PSQ was defined as Pittsburgh Sleep Quality Index >5 and sleep efficiency ≤85%) compared to OCD patients with good sleep quality (GSQ) and healthy controls (HCs), as well as the relationship of these indices to obsessive compulsive symptoms. METHODS Functional magnetic resonance spectroscopy (fMRS) was used to measure resting and active thalamic neurometabolite levels in 72 subjects (20 HCs and 38 OCD patients included in study analysis). Response inhibition function was measured by the Go-Nogo task before and during MRS recording. Subjective sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI). The symptoms of OCD, anxiety and depression were evaluated using relevant clinical scales. RESULTS OCD patients exhibited significantly reduced Glx/Cr levels in the resting thalamus. The levels of resting thalamic Glu/Cr and Glx/Cr in OCD patients with PSQ were significantly lowest. OCD patients had significantly lower correct rates on Go tasks, higher error rates on Nogo tasks, and longer error average response times (EART) to the Nogo task. OCD patients with PSQ demonstrated the highest Nogo task error rate and the longest EART to Nogo task. Furthermore, PSQI scores exhibited negative correlations with Glu/Cr and Glx/Cr in the resting thalamus. CONCLUSION OCD patients with PSQ demonstrated reduced levels of thalamic resting Glx and more pronounced response inhibitory function impairment. Aberrant neurometabolite levels in critical brain regions, coupled with heightened response inhibition function deficits, may be a neurobiological basis for the PSQ that OCD patients generally exhibit.
Collapse
Affiliation(s)
- Jian Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Cigui Huang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guowei Luo
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Yuqing Xiao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510180, China; School of Medicine, South China University of Technology, Guangzhou, 510006, China; The Second Clinical School of Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Yuan X, Zhu Y, Xiao L, Chuan Liu Z, Zou J, Hu Z, Wu Y, Li P, Hu M, Zhou F. Regional homogeneity in patients with obsessive-compulsive disorder and depression: A resting state functional magnetic resonance imaging study. Neurosci Lett 2023; 817:137528. [PMID: 37865188 DOI: 10.1016/j.neulet.2023.137528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE To explore the brain functional impairment of patients with obsessive-compulsive disorder (OCD) with and without depressive symptoms and analyze the correlation between the degree of impairment and the severity of symptoms. METHOD Fourteen patients with OCD who met the ICD-10 diagnostic criteria for OCD were included. The group having OCD with depression (OCDd) consisted of 15 patients, and 17 healthy controls (HC) matched for age and education were also included. The Yale-Brown OCD Scale (Y-BOCS) and the 24-item Hamilton Assessment of Depression Scale (HAMD) were administered to the OCD and OCDd groups. Resting-state functional brain magnetic resonance imaging was performed in the three groups of participants. RESULT The OCDd group had lower scores on the HAMD, Y-BOCS, and obsessive-compulsive thinking subscales compared with the OCD group (P < 0.05). The scores on the OCDd subscale were negatively correlated with the HAMD scores (R = - 0.568, P = 0.027). The OCDd group had higher regional homogeneity (ReHo) values in the lingual gyrus than the OCD group. The OCDd group had higher ReHo values in the lingual gyrus than the HC group, and the OCDd group had higher ReHo values than the HC group. These differences were statistically significant (P < 0.05). After correction for multiple comparisons, significant difference was observed between the OCDd and HC groups (P<0.05). In the OCD group, the ReHo value of the lingual gyrus was negatively correlated with the Y-BOCS total score and the compulsive behavior subscale score (R = - 0.609, -0.552; P = 0.016, 0.033). CONCLUSION Abnormal ReHo values in the lingual gyrus and right medial superior frontal gyrus were found in the patients with OCDd. In the OCDd group, the ReHo values of the lingual gyrus were negatively correlated with the scores on the Y-BOCS total and obsessive-compulsive subscales, suggesting that abnormal local coherence of the lingual gyrus may be related to the severity of OCD.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province 330006, China
| | - Li Xiao
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Zi Chuan Liu
- Gao 'an People's Hospital, Yichun, Jiangxi Province, 330800, China
| | - Jingzhi Zou
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Zhizhong Hu
- Mental Health Education Center, Nanchang University, Nanchang, Jiangxi Province 330036, China
| | - Yunhong Wu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Pan Li
- School of Public Policy and Administration, Nanchang University, Nanchang, Jiangxi Province, 330036, China
| | - Maorong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China.
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province 330006, China.
| |
Collapse
|
6
|
Zhang X, Zhou J, Chen Y, Guo L, Yang Z, Robbins TW, Fan Q. Pathological Networking of Gray Matter Dendritic Density With Classic Brain Morphometries in OCD. JAMA Netw Open 2023; 6:e2343208. [PMID: 37955895 PMCID: PMC10644219 DOI: 10.1001/jamanetworkopen.2023.43208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Importance The pathogenesis of obsessive-compulsive disorder (OCD) may involve altered dendritic morphology, but in vivo imaging of neurite morphology in OCD remains limited. Such changes must be interpreted functionally within the context of the multimodal neuroimaging approach to OCD. Objective To examine whether dendritic morphology is altered in patients with OCD compared with healthy controls (HCs) and whether such alterations are associated with other brain structural metrics in pathological networks. Design, Setting, and Participants This case-control study used cross-sectional data, including multimodal brain images and clinical symptom assessments, from 108 patients with OCD and 108 HCs from 2014 to 2017. Patients with OCD were recruited from Shanghai Mental Health Center, Shanghai, China, and HCs were recruited via advertisements. The OCD group comprised unmedicated adults with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of OCD, while the HCs were adults without any DSM-IV diagnosis, matched for age, sex, and education level. Data were analyzed from September 2019 to April 2023. Exposure DSM-IV diagnosis of OCD. Main Outcomes and Measures Multimodal brain imaging was used to compare neurite microstructure and classic morphometries between patients with OCD and HCs. The whole brain was searched to identify regions exhibiting altered morphology in patients with OCD and explore the interplay between the brain metrics representing these alterations. Brain-symptom correlations were analyzed, and the performance of different brain metric configurations were evaluated in distinguishing patients with OCD from HCs. Results Among 108 HCs (median [IQR] age, 26 [23-31] years; 50 [46%] female) and 108 patients with OCD (median [IQR] age, 26 [24-31] years; 46 [43%] female), patients with OCD exhibited deficient neurite density in the right lateral occipitoparietal regions (peak t = 3.821; P ≤ .04). Classic morphometries also revealed widely-distributed alterations in the brain (peak t = 4.852; maximum P = .04), including the prefrontal, medial parietal, cingulate, and fusiform cortices. These brain metrics were interconnected into a pathological brain network associated with OCD symptoms (global strength: HCs, 0.253; patients with OCD, 0.941; P = .046; structural difference, 0.572; P < .001). Additionally, the neurite density index exhibited high discriminatory power in distinguishing patients with OCD from HCs (accuracy, ≤76.85%), and the entire pathological brain network also exhibited excellent discriminative classification properties (accuracy, ≤82.87%). Conclusions and Relevance The findings of this case-control study underscore the utility of in vivo imaging of gray matter dendritic density in future OCD research and the development of neuroimaging-based biomarkers. They also endorse the concept of connectopathy, providing a potential framework for interpreting the associations among various OCD symptom-related morphological anomalies.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Kosová E, Pajuelo D, Fajnerová I, Greguš D, Brunovský M, Stopková P, Škoch A, Fürstová P, Španiel F, Horáček J. Spectroscopic abnormalities in the pregenual anterior cingulate cortex in obsessive-compulsive disorder using proton magnetic resonance spectroscopy: a controlled study. BMC Psychiatry 2023; 23:734. [PMID: 37817131 PMCID: PMC10565966 DOI: 10.1186/s12888-023-05228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The main aim of the present study is to determine the role of metabolites observed using proton magnetic resonance spectroscopy (1H-MRS) in obsessive-compulsive disorder (OCD). As the literature describing biochemical changes in OCD yields conflicting results, we focused on accurate metabolite quantification of total N-acetyl aspartate (tNAA), total creatine (tCr), total choline-containing compounds (tCh), and myo-inositol (mI) in the anterior cingulate cortex (ACC) to capture the small metabolic changes between OCD patients and controls and between OCD patients with and without medication. METHODS In total 46 patients with OCD and 46 healthy controls (HC) matched for age and sex were included in the study. The severity of symptoms in the OCD was evaluated on the day of magnetic resonance imaging (MRI) using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). Subjects underwent 1H-MRS from the pregenual ACC (pgACC) region to calculate concentrations of tNAA, tCr, tCho, and mI. Twenty-eight OCD and 28 HC subjects were included in the statistical analysis. We compared differences between groups for all selected metabolites and in OCD patients we analyzed the relationship between metabolite levels and symptom severity, medication status, age, and the duration of illness. RESULTS Significant decreases in tCr (U = 253.00, p = 0.022) and mI (U = 197.00, p = 0.001) in the pgACC were observed in the OCD group. No statistically significant differences were found in tNAA and tCho levels; however, tCho revealed a trend towards lower concentrations in OCD patients (U = 278.00, p = 0.062). Metabolic concentrations showed no significant correlations with the age and duration of illness. The correlation statistics found a significant negative correlation between tCr levels and YBOCS compulsions subscale (cor = -0.380, p = 0.046). tCho and YBOCS compulsions subscale showed a trend towards a negative correlation (cor = -0.351, p = 0.067). Analysis of subgroups with or without medication showed no differences. CONCLUSIONS Patients with OCD present metabolic disruption in the pgACC. The decrease in tCr shows an important relationship with OCD symptomatology. tCr as a marker of cerebral bioenergetics may also be considered as a biomarker of the severity of compulsions. The study failed to prove that metabolic changes correlate with the medication status or the duration of illness. It seems that a disruption in the balance between these metabolites and their transmission may play a role in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Eliška Kosová
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dita Pajuelo
- Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Iveta Fajnerová
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Greguš
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Stopková
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Antonín Škoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Fürstová
- National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Španiel
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Han X, Wang W, Ma LH, AI-Ramahi I, Botas J, MacKenzie K, Allen GI, Young DW, Liu Z, Maletic-Savatic M. SPA-STOCSY: an automated tool for identifying annotated and non-annotated metabolites in high-throughput NMR spectra. Bioinformatics 2023; 39:btad593. [PMID: 37792497 PMCID: PMC10568371 DOI: 10.1093/bioinformatics/btad593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023] Open
Abstract
MOTIVATION Nuclear magnetic resonance spectroscopy (NMR) is widely used to analyze metabolites in biological samples, but the analysis requires specific expertise, it is time-consuming, and can be inaccurate. Here, we present a powerful automate tool, SPatial clustering Algorithm-Statistical TOtal Correlation SpectroscopY (SPA-STOCSY), which overcomes challenges faced when analyzing NMR data and identifies metabolites in a sample with high accuracy. RESULTS As a data-driven method, SPA-STOCSY estimates all parameters from the input dataset. It first investigates the covariance pattern among datapoints and then calculates the optimal threshold with which to cluster datapoints belonging to the same structural unit, i.e. the metabolite. Generated clusters are then automatically linked to a metabolite library to identify candidates. To assess SPA-STOCSY's efficiency and accuracy, we applied it to synthesized spectra and spectra acquired on Drosophila melanogaster tissue and human embryonic stem cells. In the synthesized spectra, SPA outperformed Statistical Recoupling of Variables (SRV), an existing method for clustering spectral peaks, by capturing a higher percentage of the signal regions and the close-to-zero noise regions. In the biological data, SPA-STOCSY performed comparably to the operator-based Chenomx analysis while avoiding operator bias, and it required <7 min of total computation time. Overall, SPA-STOCSY is a fast, accurate, and unbiased tool for untargeted analysis of metabolites in the NMR spectra. It may thus accelerate the use of NMR for scientific discoveries, medical diagnostics, and patient-specific decision making. AVAILABILITY AND IMPLEMENTATION The codes of SPA-STOCSY are available at https://github.com/LiuzLab/SPA-STOCSY.
Collapse
Affiliation(s)
- Xu Han
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Wanli Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Graduate Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, United States
| | - Li-Hua Ma
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ismael AI-Ramahi
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Kevin MacKenzie
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, United States
| | - Genevera I Allen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Electrical and Computer Engineering, Statistics, and Computer Science, Rice University, Houston, TX 77005-1827, United States
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
9
|
Kosová E, Pajuelo D, Greguš D, Brunovský M, Stopková P, Fajnerová I, Horáček J. Glutamatergic abnormalities in the pregenual anterior cingulate cortex in obsessive-compulsive disorder using magnetic resonance spectroscopy: A controlled study. Psychiatry Res Neuroimaging 2023; 335:111721. [PMID: 37832259 DOI: 10.1016/j.pscychresns.2023.111721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In this study, we utilized proton magnetic resonance spectroscopy (MRS) to understand the role of glutamate (Glu), glutamine (Gln), and gamma-aminobutyric acid (GABA) of OCD patients in the pregenual anterior cingulate cortex (pgACC). In total, 54 patients with OCD and 54 healthy controls (HC) matched for age and sex were included in the study. They underwent MRS in the pgACC region to calculate the concentrations of Glu, Gln, GABA, and Glu + Gln (Glx). After quality control of the MRS data, 21 OCD and 21 HC were statistically analyzed. The severity of symptoms were evaluated using the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the statistical analysis, we compared differences between groups for the metabolites; in the OCD we analyzed the correlations with symptom severity, medication status, age, and duration of illness. A significant decrease in Glx, in Glu, and in Gln in the pgACC were observed in the OCD compared to HC. The correlation statistics showed a significant positive correlation between Glu levels and the YBOCS compulsions subscale. The results indicate that patients with OCD present a disturbance in glutamatergic metabolism in the pgACC. The results also demonstrate that these changes correlate with the severity of compulsions.
Collapse
Affiliation(s)
- Eliška Kosová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Dita Pajuelo
- National Institute of Mental Health, Klecany, Czech Republic; MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - David Greguš
- National Institute of Mental Health, Klecany, Czech Republic
| | - Martin Brunovský
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Stopková
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iveta Fajnerová
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Luo G, Wang S, Yao S, Quan D, Guo G, Gao J, Zheng H. Direct changes of neurometabolic concentrations in the pregenual anterior cingulate cortex among obsessive-compulsive patients after repetitive transcranial magnetic stimulation treatment. J Affect Disord 2023; 333:79-85. [PMID: 37080494 DOI: 10.1016/j.jad.2023.04.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND AIM Although Repetitive Transcranial Magnetic Stimulation (rTMS) is a promising new noninvasive brain stimulation therapy, its underlying mechanisms of action remain unknown. OCD patients exhibit impaired response control and attention shifting, which is linked to some brain areas such as anterior cingulate cortex and basal ganglia. OCD patients also display altered neurometabolic concentrations in cortical cortical-striatal-thalamic-cortical (CSTC). In this study, we aimed to elucidate efficacy of rTMS treatment in alleviating related symptoms and pregenual anterior cingulate cortex (pACC) neurometabolites. METHODS OCD patients were randomly divided into either drug (n = 23) or drug + rTMS (n = 29) groups, and those in the latter group subjected to 4-week rTMS treatment. All participants were visited twice, at baseline and follow-up after four weeks. During both visits, all patients were subjected to 1H-MRS, then Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Global Assessment Function (GAF) used to assess severity of obsessive-compulsive symptoms. We also evaluated synchronous anxiety and depression by Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI), Hamilton Anxiety Scale (HAM-A) and Hamilton Depression Scale (HAM-D). RESULTS After 4 weeks of treatment, patients in the Drug + rTMS group displayed significantly lower Y-BOCS (p = 0.038), BDI (p = 0.009), HAM-D (p = 0.013), HAM-A (p = 0.012) scores than their counterparts in the Drug group. Conversely, patients in the Drug + rTMS group had significantly higher tNAA concentrations (p = 0.030) than those in the Drug group. Notably, the Drug + rTMS group exhibited higher, but insignificant Glu (p = 0.055) and Glx (p = 0.068) concentrations compared to the Drug group. Partial correlation analysis revealed a significant negative correlation between post HAM-A scores and 4-week change of pACC glutamate levels in the Drug + rTMS group (r = -0.434, p = 0.02). CONCLUSION rTMS treatment is an efficacious treatment therapy for OCD, mainly by inducing changes in neurometabolites.
Collapse
Affiliation(s)
- Guowei Luo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siyu Yao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junling Gao
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Huirong Zheng
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; South China University of Technology School of Medicine, Guangzhou, China; Shantou University Medical College, Shantou, China.
| |
Collapse
|
11
|
Wang J, Hua G, Wang S, Guo G, Quan D, Yao S, Zheng H. Glutamatergic neurotransmission is affected by low-frequency repetitive transcranial magnetic stimulation over the supplemental motor cortex of patients with obsessive-compulsive disorder. J Affect Disord 2023; 325:762-769. [PMID: 36681305 DOI: 10.1016/j.jad.2023.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In obsessive-compulsive disorder (OCD), glutamatergic neurotransmission dysfunction played key roles in pathophysiology. The current research assessed changes of neurometabolites in the bilateral striatum of OCD patients receiving low-frequency repetitive transcranial magnetic stimulation (rTMS) using 1H proton magnetic resonance spectroscopy (1H-MRS). METHODS 52 OCD patients were divided into rTMS treatment group (29) and the control group (medication only) (22). The levels of neurometabolites in the bilateral striatum of patients with OCD were measured using MRS before and after treatment. All participants were taking medication prior to the treatment and the process. RESULTS Following rTMS treatment, Yale-Brown Obsessive-Compulsive Scale (YBOCS) score was significantly decreased in the rTMS group compared with the control group. Glutamate (Glu) and glutamate and glutamine complexes (Glx) in the bilateral striatum of the rTMS treatment response group increased significantly with the improvement of OCD. Glu in the bilateral striatum and Glx in the right striatum were positively correlated with compulsion after the treatment. CONCLUSIONS The physiopathological mechanism of OCD may be related to the glutamatergic dysfunction, and the low-frequency repetitive transcranial magnetic stimulation applied to the supplementary motor area can improve OCD symptoms by modulating glutamatergic levels in the bilateral striatum of patients with OCD.
Collapse
Affiliation(s)
- Jian Wang
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guanmin Hua
- Guangzhou Yuexiu District Hospital of Chinese Medicine, Guangzhou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siyu Yao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huirong Zheng
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China.
| |
Collapse
|
12
|
Beheshti M, Rabiei N, Taghizadieh M, Eskandari P, Mollazadeh S, Dadgostar E, Hamblin MR, Salmaninejad A, Emadi R, Mohammadi AH, Mirazei H. Correlations between single nucleotide polymorphisms in obsessive-compulsive disorder with the clinical features or response to therapy. J Psychiatr Res 2023; 157:223-238. [PMID: 36508934 DOI: 10.1016/j.jpsychires.2022.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD. Among the internal factors, genetic modifications play a critical role in the pathophysiological process. Despite many investigations performed to determine the candidate genes, the precise genetic factors involved in the disease remain largely undetermined. The present review summarizes the single nucleotide polymorphisms that have been proposed to be associated with OCD symptoms, early onset disease, neuroimaging results, and response to therapy. This information could help us to draw connections between genetics and OCD symptoms, better characterize OCD in individual patients, understand OCD prognosis, and design more targeted personalized treatment approaches.
Collapse
Affiliation(s)
- Masoumeh Beheshti
- Pathophysiology Laboratory, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pariya Eskandari
- Department of Biology, School of Basic Sciences, University of Guilan, Rasht, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Raziye Emadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirazei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Abstract
Obsessive-compulsive disorder (OCD) has a bidirectional relationship with metabolic disorders. The purposes of this review are to decipher the links between OCD and metabolic disorders and to explore the etiological mechanism of OCD in metabolism, which may aid in early identification of and tailored interventions for OCD and metabolic disorders.
Collapse
|
14
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
15
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Luo Q, Liu W, Jin L, Chang C, Peng Z. Classification of Obsessive-Compulsive Disorder Using Distance Correlation on Resting-State Functional MRI Images. Front Neuroinform 2021; 15:676491. [PMID: 34744676 PMCID: PMC8564498 DOI: 10.3389/fninf.2021.676491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Both the Pearson correlation and partial correlation methods have been widely used in the resting-state functional MRI (rs-fMRI) studies. However, they can only measure linear relationship, although partial correlation excludes some indirect effects. Recent distance correlation can discover both the linear and non-linear dependencies. Our goal was to use the multivariate pattern analysis to compare the ability of such three correlation methods to distinguish between the patients with obsessive-compulsive disorder (OCD) and healthy control subjects (HCSs), so as to find optimal correlation method. The main process includes four steps. First, the regions of interest are defined by automated anatomical labeling (AAL). Second, functional connectivity (FC) matrices are constructed by the three correlation methods. Third, the best discriminative features are selected by support vector machine recursive feature elimination (SVM-RFE) with a stratified N-fold cross-validation strategy. Finally, these discriminative features are used to train a classifier. We had a total of 128 subjects out of which 61 subjects had OCD and 67 subjects were normal. All the three correlation methods with SVM have achieved good results, among which distance correlation is the best [accuracy = 93.01%, specificity = 89.71%, sensitivity = 95.08%, and area under the receiver-operating characteristic curve (AUC) = 0.94], followed by Pearson correlation and partial correlation is the last. The most discriminative regions of the brain for distance correlation are right dorsolateral superior frontal gyrus, orbital part of left superior frontal gyrus, orbital part of right middle frontal gyrus, right anterior cingulate and paracingulate gyri, left the supplementary motor area, and right precuneus, which are the promising biomarkers of OCD.
Collapse
Affiliation(s)
- Qian Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China
| | - Weixiang Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China
| | - Lili Jin
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Ziwen Peng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
17
|
Batistuzzo MC, Sottili BA, Shavitt RG, Lopes AC, Cappi C, de Mathis MA, Pastorello B, Diniz JB, Silva RMF, Miguel EC, Hoexter MQ, Otaduy MC. Lower Ventromedial Prefrontal Cortex Glutamate Levels in Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:668304. [PMID: 34168581 PMCID: PMC8218991 DOI: 10.3389/fpsyt.2021.668304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Recent studies using magnetic resonance spectroscopy (1H-MRS) indicate that patients with obsessive-compulsive disorder (OCD) present abnormal levels of glutamate (Glu) and gamma aminobutyric acid (GABA) in the frontal and striatal regions of the brain. These abnormalities could be related to the hyperactivation observed in cortico-striatal circuits of patients with OCD. However, most of the previous 1H-MRS studies were not capable of differentiating the signal from metabolites that overlap in the spectrum, such as Glu and glutamine (Gln), and referred to the detected signal as the composite measure-Glx (sum of Glu and Gln). In this study, we used a two-dimensional JPRESS 1H-MRS sequence that allows the discrimination of overlapping metabolites by observing the differences in J-coupling, leading to higher accuracy in the quantification of all metabolites. Our objective was to identify possible alterations in the neurometabolism of OCD, focusing on Glu and GABA, which are key neurotransmitters in the brain that could provide insights into the underlying neurochemistry of a putative excitatory/inhibitory imbalance. Secondary analysis was performed including metabolites such as Gln, creatine (Cr), N-acetylaspartate, glutathione, choline, lactate, and myo-inositol. Methods: Fifty-nine patients with OCD and 42 healthy controls (HCs) underwent 3T 1H-MRS in the ventromedial prefrontal cortex (vmPFC, 30 × 25 × 25 mm3). Metabolites were quantified using ProFit (version 2.0) and Cr as a reference. Furthermore, Glu/GABA and Glu/Gln ratios were calculated. Generalized linear models (GLMs) were conducted using each metabolite as a dependent variable and age, sex, and gray matter fraction (fGM) as confounding factors. GLM analysis was also used to test for associations between clinical symptoms and neurometabolites. Results: The GLM analysis indicated lower levels of Glu/Cr in patients with OCD (z = 2.540; p = 0.011). No other comparisons reached significant differences between groups for all the metabolites studied. No associations between metabolites and clinical symptoms were detected. Conclusions: The decreased Glu/Cr concentrations in the vmPFC of patients with OCD indicate a neurochemical imbalance in the excitatory neurotransmission that could be associated with the neurobiology of the disease and may be relevant for the pathophysiology of OCD.
Collapse
Affiliation(s)
- Marcelo C Batistuzzo
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Department of Methods and Techniques in Psychology, Pontifical Catholic University, São Paulo, Brazil
| | - Bruna A Sottili
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| | - Roseli G Shavitt
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio C Lopes
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Carolina Cappi
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Alice de Mathis
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Bruno Pastorello
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| | - Juliana B Diniz
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Renata M F Silva
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria C Otaduy
- Laboratory of Magnetic Resonance (LIM44), Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), São Paulo, Brazil
| |
Collapse
|
18
|
Biria M, Cantonas LM, Banca P. Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) Imaging in Obsessive-Compulsive Disorder. Curr Top Behav Neurosci 2021; 49:231-268. [PMID: 33751502 DOI: 10.1007/7854_2020_201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterised by structural and functional deficits in the cortico-striato-thalamic-cortical (CSTC) circuitry and abnormal neurochemical changes are thought to modulate these deficits. The hypothesis that an imbalanced concentration of the brain neurotransmitters, in particular glutamate (Glu) and gamma-amino-butyric acid (GABA), could impair the normal functioning of the CSTC, thus leading to OCD symptoms, has been tested in humans using magnetic resonance spectroscopy (MRS) and positron emission tomography (PET). This chapter summarises these neurochemical findings and represents an attempt to condense such scattered literature. We also discuss potential challenges in the field that may explain the inconsistent findings and suggest ways to overcome them. There is some convergent research from MRS pointing towards abnormalities in the brain concentration of neurometabolite markers of neuronal integrity, such as N-acetylaspartate (NAA) and choline (Cho). Lower NAA levels have been found in dorsal and rostral ACC of OCD patients (as compared to healthy volunteers), which increase after CBT and SSRI treatment, and higher Cho concentration has been reported in the thalamus of the OCD brain. However, findings for other neurometabolites are very inconsistent. Studies have reported abnormalities in the concentrations of creatine (Cr), GABA, glutamate (Glu), glutamine (Gln), Ins (myo-inositol), and serotonin (5-HT), but most of the results were not replicated. The question remains whether the NAA and Cho findings are genuinely the only neurochemical abnormalities in OCD or whether the lack of consistent findings for the other neurometabolites is caused by the lower magnetic field (1-3 Tesla (T)) used by the studies conducted so far, their small sample sizes or a lack of proper control for medication effects. To answer these questions and to further inform the biological underpinning of the symptoms and the cognitive problems at the basis of OCD we need better controlled studies using clear medicated vs unmedicated groups, larger sample sizes, stronger magnetic fields (e.g. at 7 T), and more consistency in the definition of the regions of interest.
Collapse
Affiliation(s)
- Marjan Biria
- Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Paula Banca
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Yue J, Zhong S, Luo A, Lai S, He T, Luo Y, Wang Y, Zhang Y, Shen S, Huang H, Wen S, Jia Y. Correlations Between Working Memory Impairment and Neurometabolites of the Prefrontal Cortex in Drug-Naive Obsessive-Compulsive Disorder. Neuropsychiatr Dis Treat 2021; 17:2647-2657. [PMID: 34421300 PMCID: PMC8373305 DOI: 10.2147/ndt.s296488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
PURPOSE This study aimed to investigate the mechanism of working memory (WM) impairment in drug-naive obsessive-compulsive disorder (OCD) by using neuropsychological tests and proton magnetic resonance spectroscopy (1H-MRS). PATIENTS AND METHODS A total of 55 patients with drug-naive OCD and 55 healthy controls (HCs) were recruited for this study. The working memory (WM) was evaluated using the digit span test (DST), visual space memory test (VSMT), and the 2-back task and stroop color word test (SCWT). The bilateral metabolite levels of the prefrontal cortex (PFC) were evaluated by 1H-MRS, then determined the ratios of N-acetyl aspartate (NAA), choline-containing compounds (Cho), and myo-inositol (MI) to creatine (Cr). The independent sample t-test was used to analyse the differences in WM performance and neurometabolite ratios. Multivariate linear regression analysis was performed to screen the influential factors of WM, with an introduction level of 0.05 and a rejection level of 0.10. RESULTS 1) Patients with OCD performed significantly worse on DST (score), VSMT (score), 2-back task (accuracy rate), SCWT (execution time) when compared with HCs. 2) NAA/Cr and Cho/Cr in the left PFC (lPFC) and MI/Cr ratios in the bilateral PFC of OCD patients were significantly lower when compared to HCs. 3) For OCD patients, the NAA/Cr ratio in the lPFC was negatively correlated with the score of DST (forwards), the Cho/Cr ratio in the lPFC was positively correlated with the accuracy rate of 2-back task, and the MI/Cr ratio in the right PFC (rPFC) was positively correlated with the score of DST (forwards) and the accuracy rate of VSMT. We also found that the compulsive symptoms showed a positive correlation with MI/Cr ratio of the rPFC. CONCLUSION Drug-naive OCD patients have demonstrated WM impairments, including phonological loop, visual-spatial sketchpad and central executive system, and the WM impairments might be associated with hypometabolism in the PFC, especially the lPFC.
Collapse
Affiliation(s)
- Jihui Yue
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, People's Republic of China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Aimin Luo
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong Province, People's Republic of China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Tingting He
- School of Management, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuchong Luo
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, People's Republic of China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shenglin Wen
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, People's Republic of China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
20
|
Li K, Zhang H, Yang Y, Zhu J, Wang B, Shi Y, Li X, Meng Z, Lv L, Zhang H. Abnormal functional network of the thalamic subregions in adult patients with obsessive-compulsive disorder. Behav Brain Res 2019; 371:111982. [PMID: 31141727 DOI: 10.1016/j.bbr.2019.111982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022]
Abstract
The thalamus plays an important role in pathological mechanisms underlying obsessive-compulsive disorder (OCD). As the thalamus is a heterogeneous brain region, functional connectivity (FC) between thalamic subregions and other brain regions is worth investigating in OCD. In addition, the relationship between abnormal FC and clinical symptoms is still unclear. In this study, we used resting-state functional magnetic resonance imaging to scan 45 OCD patients and 43 well-matched healthy controls (HCs). Thalamic subregions were defined according to the Human Brainnetome Atlas. The fractional amplitude of low-frequency fluctuations (fALFF) and FC seeding-based connectivity were compared using a two-sample t-test. Correlations between abnormal FC and clinical symptoms were analyzed in OCD patients. Compared with HCs, increased fALFF was found in the bilateral thalamus, and increased FC was observed between the right posterior parietal thalamus (PPtha) and left middle occipital gyrus (LMOG) and between the right occipital thalamus (Otha) and right middle occipital gyrus (RMOG) in OCD patients. In addition, OCD patients had reduced FC between the left sensory thalamus (Stha) and left orbital inferior frontal gyrus, right PPtha and left prefrontal cortex, and between the right Otha and left inferior parietal gyrus (LIPG), respectively. Within the OCD group, the FC between right PPtha-LMOG was correlated with severity of clinical symptoms. These results revealed that the FC between the thalamus and occipital lobe is related to obsessive-compulsive symptoms in OCD patients. This finding provides more accurate information about the involvement of the thalamus in the pathophysiology of OCD.
Collapse
Affiliation(s)
- Kun Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Haisan Zhang
- Radiology department, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Jianli Zhu
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Bi Wang
- Radiology department, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Yanli Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Xianrui Li
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Zhang Meng
- Department of Psychology, Xinxiang Medical University, Henan, 453003, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China.
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Department of Psychology, Xinxiang Medical University, Henan, 453003, China.
| |
Collapse
|
21
|
Chen Y, Meng Z, Zhang Z, Zhu Y, Gao R, Cao X, Tan L, Wang Z, Zhang H, Li Y, Fan Q. The right thalamic glutamate level correlates with functional connectivity with right dorsal anterior cingulate cortex/middle occipital gyrus in unmedicated obsessive-compulsive disorder: A combined fMRI and 1H-MRS study. Aust N Z J Psychiatry 2019; 53:207-218. [PMID: 30354192 DOI: 10.1177/0004867418806370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The imbalance in neurotransmitter and neuronal metabolite concentration within cortico-striato-thalamo-cortical (CSTC) circuit contributes to obsessive-compulsive disorder's (OCD) onset. Previous studies showed that glutamate mediated upregulation of resting-state activity in healthy people. However, there have been few studies investigating the correlational features between functional and neurochemical alterations in OCD. METHODS We utilize a combined resting-state functional magnetic resonance imaging (rs-fMRI) and proton magnetic resonance spectroscopy (1H-MRS) approach to investigate the altered functional connectivity (FC) in association with glutamatergic dysfunction in OCD pathophysiology. Three regions of interest are investigated, i.e., medial prefrontal cortex and bilateral thalamus, for seed-based whole-brain FC analysis as well as MRS data acquisition. There are 23 unmedicated adult OCD patients and 23 healthy controls recruited for brain FC analysis. Among them, 12 OCD and 8 controls are performed MRS data acquisition. RESULTS Besides abnormal FC within CSTC circuit, we also find altered FCs in large-scale networks outside CSTC circuit, including occipital area and limbic and motor systems. The decreased FC between right thalamus and right middle occipital gyrus (MOG) is correlated with glutamatergic signal within right thalamus in OCD patients. Moreover, the FC between right thalamus and right dorsal anterior cingulate cortex (dACC) is associated with glutamate level in right thalamus, specifically in patient's group. Finally, the FC between right thalamus and right MOG is correlated with patient's Yale-Brown Obsessive Compulsive Scale (YBOCS) compulsion and total scores, while the right thalamic glutamatergic signal is associated with YBOCS-compulsion score. CONCLUSION Our findings showed that the coupled intrinsic functional-biochemical alterations existed both within CSTC circuit and from CSTC to occipital lobe in OCD pathophysiology.
Collapse
Affiliation(s)
- Yongjun Chen
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Developmental Behavioral Pediatric and Children Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyu Meng
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Zongfeng Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajing Zhu
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Gao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Cao
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tan
- 4 Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyin Zhang
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Li
- 3 School of Biomedical Engineering and Institute for Medical Imaging Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Fan
- 1 Rehabilitation Department, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
de Salles Andrade JB, Giori IG, Melo-Felippe FB, Vieira-Fonseca T, Fontenelle LF, Kohlrausch FB. Glutamate transporter gene polymorphisms and obsessive-compulsive disorder: A case-control association study. J Clin Neurosci 2019; 62:53-59. [PMID: 30661718 DOI: 10.1016/j.jocn.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 11/28/2022]
Abstract
The etiology of obsessive-compulsive disorder (OCD) is largely unknown, but family, twin, neuroimaging, and pharmacological studies suggest that glutamatergic system plays a significant role on its underlying pathophysiology. We performed an association analysis of six Single Nucleotide Polymorphisms (SNPs) within SLC1A1 gene (rs12682807, rs2075627, rs3780412, rs301443, rs301430, rs301434) in a group of 199 patients and 200 healthy controls. Symptom profiles were evaluated using the Florida Obsessive-Compulsive Inventory (FOCI) and the Obsessive-Compulsive Inventory-Revised (OCI-R). SNPs were analyzed by Taqman® methodology (Thermo Fisher, Brazil). The genotype distributions were in Hardy-Weinberg equilibrium. The A-A-G (rs301434-rs3780412-rs301443) haplotype was twice as common in OCD as in controls (P = 0.02). We also found significant differences between male patients and controls for rs301443 in a dominant model (P = 0.04) and a protective effect of GG genotype of rs2072657 in women (P = 0.02). Regarding clinical characteristics, the G-A (rs301434-rs3780412) haplotype was almost twice more common in patients with vs. without hoarding (P = 0.04). Further analyses showed significant associations between hoarding and rs301434 (P = 0.04) and rs3780412 (P = 0.04) in women, both in a dominant model. A dominant effect was also observed on ordering dimension for rs301434 (P = 0.01, in women) and rs301443 (P = 0.04). Finally, the rs2072657 showed a recessive effect on neutralization (P = 0.04) and checking (P = 0.03, in men). These preliminary results demonstrated that the SLC1A1 may contribute to some extent the susceptibility to OCD and its symptoms. However, additional studies are still needed.
Collapse
Affiliation(s)
- Juliana B de Salles Andrade
- Programa de Transtornos Obsessivo-Compulsivos e de Ansiedade, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Isabele G Giori
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Fernanda B Melo-Felippe
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Tamiris Vieira-Fonseca
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Leonardo F Fontenelle
- Programa de Transtornos Obsessivo-Compulsivos e de Ansiedade, Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil; School of Psychological Sciences, MONASH University, Australia
| | - Fabiana B Kohlrausch
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, Brazil.
| |
Collapse
|
23
|
Betka S, Harris L, Rae C, Palfi B, Pfeifer G, Sequeira H, Duka T, Critchley H. Signatures of alcohol use in the structure and neurochemistry of insular cortex: a correlational study. Psychopharmacology (Berl) 2019; 236:2579-2591. [PMID: 31011757 PMCID: PMC6695346 DOI: 10.1007/s00213-019-05228-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
RATIONALE Insular cortex supports the representation of motivational feelings through the integration of interoceptive information concerning bodily physiology. Compromised insular integrity is implicated in alcohol and drug use disorders. Alcohol-associated insular dysfunction may arise through aberrant glutamatergic neurotransmission associated with selective neuronal death and atrophy. OBJECTIVE In a sample of alcohol users, we combined magnetic resonance spectroscopy (MRS) with voxel and surface-based morphometry (VBM, SBM) to test the hypothesis that the neurochemical and structural properties of the insula relate to alcohol use. METHODS Twenty-three healthy individuals were characterized by measures of alcohol use and subjective craving. Right mid-insula glutamate/glutamine (Glx) and total N-acetylaspartate/N-acetyl-aspartylglutamate (TNAA) concentrations were measured using MRS. Right insular structure was quantified using VBM and SBM parameters. We tested for predictive associations between these neuroimaging and behavioral/psychometric measures using Bayesian statistics. RESULTS Reduced insular Glx concentration was associated with increased alcohol compulsions and, to a lesser extent, with greater alcohol use severity. Anecdotal evidence for a negative relationship between alcohol use severity and levels of insular gyrification was also observed. CONCLUSIONS This study is, to date, the first characterization of the neurochemical and morphological integrity of insular cortex in alcohol users. Our data seem to reveal a negative relationship between alcohol use and the neurochemical and structural integrity of the insula, a critical substrate for motivational behavior. These neurobiological characteristics might contribute to loss of control toward compulsive drinking with prolonged and excessive alcohol use.
Collapse
Affiliation(s)
- Sophie Betka
- Trafford Centre, Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton, BN1 9RY, UK.
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, UK.
- University of Lille, SCALab, CNRS UMR 9193, 59045, Lille, France.
| | - Lisa Harris
- Radiological Science, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Charlotte Rae
- Trafford Centre, Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton, BN1 9RY, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Bence Palfi
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- School of Psychology, University of Sussex, Brighton, UK
| | - Gaby Pfeifer
- Trafford Centre, Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton, BN1 9RY, UK
| | | | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, BN1 9QH, UK
- Sussex Addiction Research and Intervention Centre (SARIC), University of Sussex, Brighton, UK
| | - Hugo Critchley
- Trafford Centre, Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton, BN1 9RY, UK
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| |
Collapse
|
24
|
Hazari N, Narayanaswamy JC, Venkatasubramanian G. Neuroimaging findings in obsessive-compulsive disorder: A narrative review to elucidate neurobiological underpinnings. Indian J Psychiatry 2019; 61:S9-S29. [PMID: 30745673 PMCID: PMC6343409 DOI: 10.4103/psychiatry.indianjpsychiatry_525_18] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Obsessive compulsive disorder (OCD) is a common psychiatric illness and significant research has been ongoing to understand its neurobiological basis. Neuroimaging studies right from the 1980s have revealed significant differences between OCD patients and healthy controls. Initial imaging findings showing hyperactivity in the prefrontal cortex (mainly orbitofrontal cortex), anterior cingulate cortex and caudate nucleus led to the postulation of the cortico-striato-thalamo-cortical (CSTC) model for the neurobiology of OCD. However, in the last two decades emerging evidence suggests the involvement of widespread associative networks, including regions of the parietal cortex, limbic areas (including amygdala) and cerebellum. This narrative review discusses findings from structural [Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging(DTI)], functional [(functional MRI (fMRI), Single photon emission computed tomography (SPECT), Positron emission tomography (PET), functional near-infrared spectroscopy (fNIRS)], combined structural and functional imaging studies and meta-analyses. Subsequently, we collate these findings to describe the neurobiology of OCD including CSTC circuit, limbic system, parietal cortex, cerebellum, default mode network and salience network. In future, neuroimaging may emerge as a valuable tool for personalised medicine in OCD treatment.
Collapse
Affiliation(s)
- Nandita Hazari
- Department of Psychiatry, Vidyasagar Institute of Mental Health and Neurosciences, Delhi, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, OCD Clinic, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, OCD Clinic, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
25
|
Choi WT, Tosun M, Jeong HH, Karakas C, Semerci F, Liu Z, Maletić-Savatić M. Metabolomics of mammalian brain reveals regional differences. BMC SYSTEMS BIOLOGY 2018; 12:127. [PMID: 30577853 PMCID: PMC6302375 DOI: 10.1186/s12918-018-0644-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The mammalian brain is organized into regions with specific biological functions and properties. These regions have distinct transcriptomes, but little is known whether they may also differ in their metabolome. The metabolome, a collection of small molecules or metabolites, is at the intersection of the genetic background of a given cell or tissue and the environmental influences that affect it. Thus, the metabolome directly reflects information about the physiologic state of a biological system under a particular condition. The objective of this study was to investigate whether various brain regions have diverse metabolome profiles, similarly to their genetic diversity. The answer to this question would suggest that not only the genome but also the metabolome may contribute to the functional diversity of brain regions. Methods We investigated the metabolome of four regions of the mouse brain that have very distinct functions: frontal cortex, hippocampus, cerebellum, and olfactory bulb. We utilized gas- and liquid- chromatography mass spectrometry platforms and identified 215 metabolites. Results Principal component analysis, an unsupervised multivariate analysis, clustered each brain region based on its metabolome content, thus providing the unique metabolic profile of each region. A pathway-centric analysis indicated that olfactory bulb and cerebellum had most distinct metabolic profiles, while the cortical parenchyma and hippocampus were more similar in their metabolome content. Among the notable differences were distinct oxidative-anti-oxidative status and region-specific lipid profiles. Finally, a global metabolic connectivity analysis using the weighted correlation network analysis identified five hub metabolites that organized a unique metabolic network architecture within each examined brain region. These data indicate the diversity of global metabolome corresponding to specialized regional brain function and provide a new perspective on the underlying properties of brain regions. Conclusion In summary, we observed many differences in the metabolome among the various brain regions investigated. All four brain regions in our study had a unique metabolic signature, but the metabolites came from all categories and were not pathway-centric. Electronic supplementary material The online version of this article (10.1186/s12918-018-0644-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William T Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,The National Library of Medicine Training Program in Biomedical Informatics, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mehmet Tosun
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hyun-Hwan Jeong
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cemal Karakas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. .,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA. .,Quantitative Computational Biology Program, Baylor College of Medicine, Houston, TX, USA.
| | - Mirjana Maletić-Savatić
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. .,Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA. .,Quantitative Computational Biology Program, Baylor College of Medicine, Houston, TX, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Abdolhosseinzadeh S, Sina M, Ahmadiani A, Asadi S, Shams J. Genetic and pharmacogenetic study of glutamate transporter (SLC1A1) in Iranian patients with obsessive-compulsive disorder. J Clin Pharm Ther 2018; 44:39-48. [PMID: 30315580 DOI: 10.1111/jcpt.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/11/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Obsessive-compulsive disorder (OCD) is a chronic neuropsychiatric disorder. Selective serotonin reuptake inhibitors (SSRIs) are the first line of medication for OCD treatment; however, 40%-60% of patients with OCD do not respond to SSRIs adequately. There are growing pieces of evidence which suggest a significant role for the glutamatergic system in the genesis of OCD and its consequent treatment. In the present study, we aimed to assess the association of SLC1A1 polymorphisms (rs301430, rs2228622 and rs3780413) with OCD and its clinical characteristics, as well as the importance of these SNPs in the response of OCD patients to SSRI pharmacotherapy. METHODS Sample study consisted of 243 OCD cases and 221 control subjects. Patients were treated 12 weeks with fluvoxamine (daily dose: 150-300 mg). Based on the reduction in obsessive and compulsive severity scores using Y-BOCS severity scale, patients were classified as responders, non-responders and refractory. A total of 239, 228 and 215 patients were genotyped for rs301430, rs2228622 and rs3780413, respectively, by the means of PCR-RFLP. RESULTS AND DISCUSSION No association was detected between SLC1A1 SNPs and OCD, except an association between the familial form of the disease in males with rs2228622 (P = 0.033). The results of pharmacogenetic studies revealed the associations of two SLC1A1 SNPs, rs2228622 (P = 0.031) and rs3780413 (P = 0.008), with treatment response. WHAT IS NEW AND CONCLUSION Results of the current study suggest a role for the glutamate transporter in OCD treatment response with SSRIs which should encourage researchers to further investigate the importance of glutamate transporter in OCD pharmacogenetics.
Collapse
Affiliation(s)
| | - Marzie Sina
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Shams
- Behavioral Sciences Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
27
|
Wang R, Fan Q, Zhang Z, Chen Y, Zhu Y, Li Y. Anterior thalamic radiation structural and metabolic changes in obsessive-compulsive disorder: A combined DTI-MRS study. Psychiatry Res Neuroimaging 2018; 277:39-44. [PMID: 29807209 DOI: 10.1016/j.pscychresns.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/13/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Numerous studies indicate the cortico-striato-thalamo-cortical (CSTC) circuit plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD). The anterior thalamic radiation (ATR), as a major fiber in the fronto-thalamic circuitry, contributes to symptomology of OCD. However, the underlying biochemical mechanism in relation with its structural alteration remains not understood. This study investigated the structural abnormality of ATR and its correlation with thalamic metabolic alteration in OCD, using diffusion tensor image (DTI) and proton magnetic resonance spectroscopy (1H-MRS). Twenty-six unmedicated adult OCD patients and twenty-six matched healthy controls participated in DTI study. Thirteen OCD patients and thirteen healthy controls, a subset of DTI participants, took part in MRS study. The results showed that mean fiber length of right ATR negatively correlated with ipsilateral thalamic choline (Cho) level in OCD patients. Additionally, significantly higher Cho concentration was detected in right thalamus of OCD patients compared to healthy controls. Moreover, the mean fractional anisotropy (FA) value of right ATR positively correlated with patients Yale-Brown Obsessive Compulsive Scale (YBOCS) total score, as well as YBOCS compulsion score. These results suggested the coupling of structural and metabolic changes in right ATR, which might serve as a multi-modal biomarker contributing to the pathogenesis of OCD.
Collapse
Affiliation(s)
- Ruilin Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China.
| | - Zongfeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030,China
| | - Yajing Zhu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
28
|
Moon CM, Jeong GW. Associations of neurofunctional, morphometric and metabolic abnormalities with clinical symptom severity and recognition deficit in obsessive-compulsive disorder. J Affect Disord 2018; 227:603-612. [PMID: 29172053 DOI: 10.1016/j.jad.2017.11.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/29/2017] [Accepted: 11/12/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) causes neural dysfunction associated with cognitive deficit and emotional dysregulation. This study assessed the associations of the neurofunctional changes, gray matter (GM) and white matter (WM) volume alterations in conjunction with in vivo metabolic changes on the working memory tasks in patients with OCD. METHODS Eighteen patients with OCD and 18 healthy controls matched for age, sex, and educational levels underwent high-resolution T1-weighted magnetic resonance imaging (MRI), event-related functional MRI (fMRI), and proton magnetic resonance spectroscopy (1H-MRS) at 3T. RESULTS In fMRI, patients with OCD showed lower activities in the cerebellum, inferior temporal gyrus, orbitofrontal gyrus, dorsolateral prefrontal cortex and calcarine gyrus compared to the controls. In VBM, the patients showed significantly reduced GM volumes, especially in the cerebellum, hippocampus, and superior temporal gyrus, together with significantly reduced WM volumes in the retrolenticular part of the internal capsule, dorsolateral prefrontal cortex (DLPFC) and orbitofrontal gyrus. In 1H-MRS, the ratios of N-acetylaspartate/creatine and choline/creatine were significantly lower in the DLPFC of the patients than in the controls, whereas the ratio of β∙γ-glutamine-glutamate/creatine was significantly higher in the patients than in the controls. LIMITATIONS This study examined small numbers of subjects in each one of the groups. CONCLUSIONS The findings will be helpful to aid us in understanding of neurocognitive impairment in OCD, and thus, enhancing the diagnostic accuracy for OCD by additional information on the associated brain functional deficit, cerebral volume change and metabolic abnormality.
Collapse
Affiliation(s)
- Chung-Man Moon
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea
| | - Gwang-Woo Jeong
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea; Department of Radiology, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
29
|
Maron E, Lan CC, Nutt D. Imaging and Genetic Approaches to Inform Biomarkers for Anxiety Disorders, Obsessive-Compulsive Disorders, and PSTD. Curr Top Behav Neurosci 2018; 40:219-292. [PMID: 29796838 DOI: 10.1007/7854_2018_49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anxiety disorders are the most common mental health problem in the world and also claim the highest health care cost among various neuropsychiatric disorders. Anxiety disorders have a chronic and recurrent course and cause significantly negative impacts on patients' social, personal, and occupational functioning as well as quality of life. Despite their high prevalence rates, anxiety disorders have often been under-diagnosed or misdiagnosed, and consequently under-treated. Even with the correct diagnosis, anxiety disorders are known to be difficult to treat successfully. In order to implement better strategies in diagnosis, prognosis, treatment decision, and early prevention for anxiety disorders, tremendous efforts have been put into studies using genetic and neuroimaging techniques to advance our understandings of the underlying biological mechanisms. In addition to anxiety disorders including panic disorder, generalised anxiety disorder (GAD), specific phobias, social anxiety disorders (SAD), due to overlapping symptom dimensions, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder (PTSD) (which were removed from the anxiety disorder category in DSM-5 to become separate categories) are also included for review of relevant genetic and neuroimaging findings. Although the number of genetic or neuroimaging studies focusing on anxiety disorders is relatively small compare to other psychiatric disorders such as psychotic disorders or mood disorders, various structural abnormalities in the grey or white matter, functional alterations of activity during resting-state or task conditions, molecular changes of neurotransmitter receptors or transporters, and genetic associations have all been reported. With continuing effort, further genetic and neuroimaging research may potentially lead to clinically useful biomarkers for the prevention, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Eduard Maron
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK.
- Department of Psychiatry, University of Tartu, Tartu, Estonia.
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia.
| | - Chen-Chia Lan
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - David Nutt
- Neuropsychopharmacology Unit, Centre for Academic Psychiatry, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
30
|
Fan S, Cath DC, van den Heuvel OA, van der Werf YD, Schöls C, Veltman DJ, Pouwels PJW. Abnormalities in metabolite concentrations in tourette's disorder and obsessive-compulsive disorder-A proton magnetic resonance spectroscopy study. Psychoneuroendocrinology 2017; 77:211-217. [PMID: 28104554 DOI: 10.1016/j.psyneuen.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Abnormal glutamatergic transmission in cortico-striato-thalamo-cortical (CSTC) circuits is thought to be involved in the pathophysiology of Tourette's disorder (TD) and obsessive-compulsive disorder (OCD). Using proton magnetic resonance spectroscopy, the current study aimed to investigate regional concentrations of glutamatergic compounds in TD and OCD patients in comparison to healthy control subjects (HC). MATERIAL AND METHODS Twenty-three TD patients, 20 OCD patients and 22 HC were included. Short echo-time single-voxel 3T MRS was obtained from dorsal anterior cingulate cortex (dACC) and midline bilateral thalamus. RESULTS The 3-group comparison showed a significant difference in choline concentration in the thalamus. Thalamic choline was highest in OCD patients, showing a significant difference with TD, and a trend compared to HC (post-hoc analyses). Glutamine in dACC correlated negatively with tic severity scores in TD patients, while glutamate in thalamus correlated positively with anxiety severity scores in OCD patients. CONCLUSIONS These findings suggest subtle differences in metabolites in CSTC areas between TD and OCD. Alterations of choline concentrations seem to be both regional (only in thalamus, not in dACC) and disease specific in OCD pathology. The findings need replication in larger groups, but encourage further research into glutamatergic metabolites in TD and OCD.
Collapse
Affiliation(s)
- Siyan Fan
- Division of Social and Behavioural Science, Utrecht University, Utrecht, The Netherlands; Department of Anatomy and Neurosciences, VU university medical center (VUmc), Amsterdam, The Netherlands; Department of Psychiatry, VUmc, Amsterdam, The Netherlands.
| | - Danielle C Cath
- Division of Social and Behavioural Science, Utrecht University, Utrecht, The Netherlands; Altrecht Academic Anxiety Center, Utrecht, The Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy and Neurosciences, VU university medical center (VUmc), Amsterdam, The Netherlands; Department of Psychiatry, VUmc, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, The Netherlands; The OCD team, Haukeland University Hospital, Bergen, Norway
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU university medical center (VUmc), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, The Netherlands
| | - Caroline Schöls
- Division of Social and Behavioural Science, Utrecht University, Utrecht, The Netherlands; Altrecht Academic Anxiety Center, Utrecht, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, VUmc, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Neuroscience Campus Amsterdam, VU/VUmc, Amsterdam, The Netherlands; Department of Physics & Medical Technology, VUmc, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Toxoplasma-infected subjects report an Obsessive-Compulsive Disorder diagnosis more often and score higher in Obsessive-Compulsive Inventory. Eur Psychiatry 2016; 40:82-87. [PMID: 27992837 DOI: 10.1016/j.eurpsy.2016.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Latent toxoplasmosis, the life-long presence of dormant stages of Toxoplasma in immunoprivileged organs and of anamnestic IgG antibodies in blood, affects about 30% of humans. Infected subjects have an increased incidence of various disorders, including schizophrenia. Several studies, as well as the character of toxoplasmosis-associated disturbance of neurotransmitters, suggest that toxoplasmosis could also play an etiological role in Obsessive-Compulsive Disorder (OCD). METHODS The aim of the present cross-sectional study performed on a population of 7471 volunteers was to confirm the association between toxoplasmosis and OCD, and toxoplasmosis and psychological symptoms of OCD estimated by the standard Obsessive-Compulsive Inventory-Revised (OCI-R). RESULTS Incidence of OCD was 2.18% (n=39) in men and 2.28% (n=83) in women. Subjects with toxoplasmosis had about a 2.5 times higher odds of OCD and about a 2.7 times higher odds of learning disabilities. The incidence of 18 other neuropsychiatric disorders did not differ between Toxoplasma-infected and Toxoplasma-free subjects. The infected subjects, even the OCD-free subjects, scored higher on the OCI-R. LIMITATIONS Examined subjects provided the information about their toxoplasmosis and OCD statuses themselves, which could result in underrating the strength of observed associations. CONCLUSIONS The results confirmed earlier reports of the association between toxoplasmosis and OCD. They also support recent claims that latent toxoplasmosis is in fact a serious disease with many impacts on quality of life of patients.
Collapse
|
32
|
Emamzadehfard S, Kamaloo A, Paydary K, Ahmadipour A, Zeinoddini A, Ghaleiha A, Mohammadinejad P, Zeinoddini A, Akhondzadeh S. Riluzole in augmentation of fluvoxamine for moderate to severe obsessive-compulsive disorder: Randomized, double-blind, placebo-controlled study. Psychiatry Clin Neurosci 2016; 70:332-41. [PMID: 27106362 DOI: 10.1111/pcn.12394] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
AIM The aim of the present randomized, double-blind, placebo-controlled, 8-week trial was to assess the efficacy and tolerability of riluzole augmentation of fluvoxamine in treatment of patients with moderate to severe obsessive-compulsive disorder. METHODS Patients were randomized into two parallel groups to receive fluvoxamine plus placebo or fluvoxamine plus riluzole (50 mg twice daily). All patients, regardless of their treatment group, received fluvoxamine at 100 mg/day for the initial 4 weeks of the study followed by 200 mg/day of fluvoxamine for the rest of the trial course. A total of 50 patients (25 in each group) were evaluated for response to treatment using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) at baseline and at weeks 4, 8 and 10. Side-effects were recorded using predesigned checklists in each visit. Repeated-measure analysis of variance showed a significant effect for time × treatment interaction in the Y-BOCS total score and a significant effect for time × treatment interaction in the Y-BOCS Compulsive subscale score between the two groups. RESULTS Repeated-measure analysis of variance showed a significant effect for time × treatment interaction (Greenhouse-Geisser corrected: F = 4.07, d.f. = 1.22, P = 0.04) in the Y-BOCS total score and a significant effect for time × treatment interaction (Greenhouse-Geisser corrected: F = 4.45, d.f. = 1.33, P = 0.028) in the Y-BOCS Compulsive subscale score between the two groups. Riluzole augmentation therapy demonstrated higher, partial or complete treatment response according to the Y-BOCS total scores. CONCLUSION Riluzole may be of clinical use as an adjuvant agent to fluvoxamine in treatment of moderate to severe obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Sahra Emamzadehfard
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Kamaloo
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Koosha Paydary
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ahmadipour
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ghaleiha
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Payam Mohammadinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Zeinoddini
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Paydary K, Akamaloo A, Ahmadipour A, Pishgar F, Emamzadehfard S, Akhondzadeh S. N-acetylcysteine augmentation therapy for moderate-to-severe obsessive-compulsive disorder: randomized, double-blind, placebo-controlled trial. J Clin Pharm Ther 2016; 41:214-9. [PMID: 26931055 DOI: 10.1111/jcpt.12370] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/03/2016] [Indexed: 01/12/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE N-acetylcysteine (NAC) has been proposed as a potential therapy for obsessive-compulsive disorder (OCD) as it may regulate the exchange of glutamate and prevent its pre-oxidant effects. The aim of the present double-blind, placebo-controlled trial was to assess the efficacy and tolerability of NAC augmentation in moderate-to-severe (OCD) treatment. METHODS In this randomized, double-blind, two-centre, placebo-controlled, 10-week trial, patients with moderate-to-severe OCD were enrolled. Patients were randomized into two parallel groups to receive fluvoxamine (200 mg daily) plus placebo or fluvoxamine (200 mg daily) plus NAC (2000 mg daily). A total of 44 patients (22 in each group) were visited to evaluate response to therapy using the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) at baseline, and at weeks 4, 8 and 10. Side effects were recorded using predesigned checklists upon each visit. RESULTS AND DISCUSSION Repeated-measures ANOVA showed a significant effect for time × treatment interaction (Greenhouse-Geisser corrected: F = 5·14, d.f. = 1·64, P = 0·012) in the Y-BOCS total score and a significant effect for time × treatment interaction (Greenhouse-Geisser corrected: F = 5·44, d.f. = 1·54, P = 0·011) in the Y-BOCS obsession subscale between the two groups. WHAT IS NEW AND CONCLUSION Our results showed that NAC might be effective as an augmentative agent in the treatment of moderate-to-severe OCD. TRIAL REGISTRATION Iranian Registry of Clinical Trials (www.irct.ir): IRCT201405271556N60.
Collapse
Affiliation(s)
- K Paydary
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - A Akamaloo
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - A Ahmadipour
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - F Pishgar
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - S Emamzadehfard
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - S Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|