1
|
Wang J, He Y. Toward individualized connectomes of brain morphology. Trends Neurosci 2024; 47:106-119. [PMID: 38142204 DOI: 10.1016/j.tins.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
The morphological brain connectome (MBC) delineates the coordinated patterns of local morphological features (such as cortical thickness) across brain regions. While classically constructed using population-based approaches, there is a growing trend toward individualized modeling. Currently, the methods for individualized MBCs are varied, posing challenges for method selection and cross-study comparisons. Here, we summarize how individualized MBCs are modeled through low-order methods (correlation-, divergence-, distance-, and deviation-based methods) describing relations in brain morphology, as well as high-order methods capturing similarities in these low-order relations. We discuss the merits and limitations of different methods, examining them in the context of robustness, reproducibility, and reliability. We highlight the importance of elucidating the cellular and molecular mechanisms underlying the individualized connectome, and establishing normative benchmarks to assess individual variation in development, aging, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China.
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Qiu X, Li J, Pan F, Yang Y, Zhou W, Chen J, Wei N, Lu S, Weng X, Huang M, Wang J. Aberrant single-subject morphological brain networks in first-episode, treatment-naive adolescents with major depressive disorder. PSYCHORADIOLOGY 2023; 3:kkad017. [PMID: 38666133 PMCID: PMC10939346 DOI: 10.1093/psyrad/kkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 04/28/2024]
Abstract
Background Neuroimaging-based connectome studies have indicated that major depressive disorder (MDD) is associated with disrupted topological organization of large-scale brain networks. However, the disruptions and their clinical and cognitive relevance are not well established for morphological brain networks in adolescent MDD. Objective To investigate the topological alterations of single-subject morphological brain networks in adolescent MDD. Methods Twenty-five first-episode, treatment-naive adolescents with MDD and 19 healthy controls (HCs) underwent T1-weighted magnetic resonance imaging and a battery of neuropsychological tests. Single-subject morphological brain networks were constructed separately based on cortical thickness, fractal dimension, gyrification index, and sulcus depth, and topologically characterized by graph-based approaches. Between-group differences were inferred by permutation testing. For significant alterations, partial correlations were used to examine their associations with clinical and neuropsychological variables in the patients. Finally, a support vector machine was used to classify the patients from controls. Results Compared with the HCs, the patients exhibited topological alterations only in cortical thickness-based networks characterized by higher nodal centralities in parietal (left primary sensory cortex) but lower nodal centralities in temporal (left parabelt complex, right perirhinal ectorhinal cortex, right area PHT and right ventral visual complex) regions. Moreover, decreased nodal centralities of some temporal regions were correlated with cognitive dysfunction and clinical characteristics of the patients. These results were largely reproducible for binary and weighted network analyses. Finally, topological properties of the cortical thickness-based networks were able to distinguish the MDD adolescents from HCs with 87.6% accuracy. Conclusion Adolescent MDD is associated with disrupted topological organization of morphological brain networks, and the disruptions provide potential biomarkers for diagnosing and monitoring the disease.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Fen Pan
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Yuping Yang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Weihua Zhou
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Jinkai Chen
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Ning Wei
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310013, China
- The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou 310013, China
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
| |
Collapse
|
3
|
Marawi T, Ainsworth NJ, Zhukovsky P, Rashidi-Ranjbar N, Rajji TK, Tartaglia MC, Voineskos AN, Mulsant BH. Brain-cognition relationships in late-life depression: a systematic review of structural magnetic resonance imaging studies. Transl Psychiatry 2023; 13:284. [PMID: 37598228 PMCID: PMC10439902 DOI: 10.1038/s41398-023-02584-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Most patients with late-life depression (LLD) have cognitive impairment, and at least one-third meet diagnostic criteria for mild cognitive impairment (MCI), a prodrome to Alzheimer's dementia (AD) and other neurodegenerative diseases. However, the mechanisms linking LLD and MCI, and brain alterations underlying impaired cognition in LLD and LLD + MCI remain poorly understood. METHODS To address this knowledge gap, we conducted a systematic review of studies of brain-cognition relationships in LLD or LLD + MCI to identify circuits underlying impaired cognition in LLD or LLD + MCI. We searched MEDLINE, PsycINFO, EMBASE, and Web of Science databases from inception through February 13, 2023. We included studies that assessed cognition in patients with LLD or LLD + MCI and acquired: (1) T1-weighted imaging (T1) measuring gray matter volumes or thickness; or (2) diffusion-weighted imaging (DWI) assessing white matter integrity. Due to the heterogeneity in studies, we only conducted a descriptive synthesis. RESULTS Our search identified 51 articles, resulting in 33 T1 studies, 17 DWI studies, and 1 study analyzing both T1 and DWI. Despite limitations, reviewed studies suggest that lower thickness or volume in the frontal and temporal regions and widespread lower white matter integrity are associated with impaired cognition in LLD. Lower white matter integrity in the posterior cingulate region (precuneus and corpus callosum sub-regions) was more associated with impairment executive function and processing speed than with memory. CONCLUSION Future studies should analyze larger samples of participants with various degrees of cognitive impairment and go beyond univariate statistical models to assess reliable brain-cognition relationships in LLD.
Collapse
Affiliation(s)
- Tulip Marawi
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nicholas J Ainsworth
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Zhukovsky
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Neda Rashidi-Ranjbar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Toronto, ON, Canada
| | - Tarek K Rajji
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Benoit H Mulsant
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Dai YR, Wu YK, Chen X, Zeng YW, Li K, Li JT, Su YA, Zhu LL, Yan CG, Si TM. Eight-week antidepressant treatment changes intrinsic functional brain topology in first-episode drug-naïve patients with major depressive disorder. J Affect Disord 2023; 329:225-234. [PMID: 36858265 DOI: 10.1016/j.jad.2023.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND A recent study revealed disrupted topological organization of whole-brain networks in patients with major depressive disorder (MDD); however, these results were mostly driven by recurrent MDD patients, rather than first-episode drug-naïve (FEDN) patients. Furthermore, few longitudinal studies have explored the effects of antidepressant therapy on the topological organization of whole-brain networks. METHODS We collected clinical and neuroimaging data from 159 FEDN MDD patients and 152 normal controls (NCs). A total of 115 MDD patients completed an eight-week antidepressant treatment procedure. Topological features of brain networks were calculated using graph theory-based methods and compared between FEDN MDD patients and NCs, as well as before and after treatment. RESULTS Decreased global efficiency, local efficiency, small-worldness, and modularity were found in pretreatment FEDN MDD patients compared with NCs. Nodal degrees, betweenness, and efficiency decreased in several networks compared with NCs. After antidepressant treatment, the global efficiency increased, while the local efficiency, the clustering coefficient of the network, the path length, and the normalized characteristic path length decreased. Moreover, the reduction rate of the normalized characteristic path length was positively correlated with the reduction rate of retardation factor scores. LIMITATIONS The interaction effects of groups and time on the topological features were not explored because of absence of the eighth-week data of NC group. CONCLUSIONS The topological architecture of functional brain networks is disrupted in FEDN MDD patients. After antidepressant therapy, the global efficiency shifted toward recovery, but the local efficiency deteriorated, suggesting a correlation between recovery of retardation symptoms and global efficiency.
Collapse
Affiliation(s)
- You-Ran Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yan-Kun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Ya-Wei Zeng
- PLA Strategic support Force Characteristic Medical Center, Beijing 100101, China
| | - Ke Li
- PLA Strategic support Force Characteristic Medical Center, Beijing 100101, China
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lin-Lin Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
5
|
Varghese S, Frey BN, Schneider MA, Kapczinski F, de Azevedo Cardoso T. Functional and cognitive impairment in the first episode of depression: A systematic review. Acta Psychiatr Scand 2022; 145:156-185. [PMID: 34758106 DOI: 10.1111/acps.13385] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/27/2021] [Accepted: 11/07/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To describe the cognitive and functional impairment in individuals with the first episode of major depressive disorder (MDD) as compared to controls and individuals with recurrent MDD. Also to describe the functional and cognitive trajectory after the first episode of MDD. METHODS A total of 52 studies were included in our systematic review. 32 studies compared the cognitive performance between first episode of depression (FED) and controls, 11 studies compared the cognitive performance between recurrent depression (RD) and FED, 10 compared global functioning between RD and FED, four studies assessed cognition in FED over time, and two studies assessed global functioning in FED over time. RESULTS The majority of studies (n = 22/32, 68.8%) found that FED subjects performed significantly worse than controls on cognitive tests, with processing speed (n = 12) and executive/working memory (n = 11) being the most commonly impaired domains. Seven out of 11 studies (63.6%) found that RD performed significantly worse than FED, with verbal learning and memory being the most commonly impaired domain (n = 4). Most studies (n = 7/10, 70%) did not find a significant difference in global functioning between RD and FED. In three of four longitudinal studies assessing cognition, subgroup analyses were used instead of directly assessing cognition in FED over time while the remaining study found significant cognitive declines over time in FED when compared to controls. The two longitudinal studies assessing functional trajectory found that functioning significantly improved over time, possibly due to the improvement of depressive symptoms. CONCLUSION There is strong evidence that cognitive impairment is present during the first episode of depression, and individuals with multiple episodes display greater cognitive impairment than individuals with a single episode. Future studies aimed at identifying predictors of cognitive and functional impairment after the first episode of depression are needed to describe the functional and cognitive trajectory of individuals with the first episode of MDD over time.
Collapse
Affiliation(s)
- Shawn Varghese
- Undergraduate Medical Education (UGME), McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Maiko A Schneider
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Youth Wellness Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Flavio Kapczinski
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, Rio Grande do Sul, Brazil.,Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Taiane de Azevedo Cardoso
- Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
van Montfort SJT, van Dellen E, Stam CJ, Ahmad AH, Mentink LJ, Kraan CW, Zalesky A, Slooter AJC. Brain network disintegration as a final common pathway for delirium: a systematic review and qualitative meta-analysis. NEUROIMAGE-CLINICAL 2019; 23:101809. [PMID: 30981940 PMCID: PMC6461601 DOI: 10.1016/j.nicl.2019.101809] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 01/05/2023]
Abstract
Delirium is an acute neuropsychiatric syndrome characterized by altered levels of attention and awareness with cognitive deficits. It is most prevalent in elderly hospitalized patients and related to poor outcomes. Predisposing risk factors, such as older age, determine the baseline vulnerability for delirium, while precipitating factors, such as use of sedatives, trigger the syndrome. Risk factors are heterogeneous and the underlying biological mechanisms leading to vulnerability for delirium are poorly understood. We tested the hypothesis that delirium and its risk factors are associated with consistent brain network changes. We performed a systematic review and qualitative meta-analysis and included 126 brain network publications on delirium and its risk factors. Findings were evaluated after an assessment of methodological quality, providing N=99 studies of good or excellent quality on predisposing risk factors, N=10 on precipitation risk factors and N=7 on delirium. Delirium was consistently associated with functional network disruptions, including lower EEG connectivity strength and decreased fMRI network integration. Risk factors for delirium were associated with lower structural connectivity strength and less efficient structural network organization. Decreased connectivity strength and efficiency appear to characterize structural brain networks of patients at risk for delirium, possibly impairing the functional network, while functional network disintegration seems to be a final common pathway for the syndrome. Delirium is consistently associated with functional network impairments. Risk factors are associated with lower structural connectivity strength. Risk factors are associated with a less efficient structural network organization. Structural impairments make the functional network more vulnerable to deterioration. Functional network disintegration seems to be a final common pathway for delirium.
Collapse
Affiliation(s)
- S J T van Montfort
- Department of Intensive Care Medicine and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - E van Dellen
- Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Melbourne Neuropsychiatry Center, Department of Psychiatry, Level 3, Alan Gilbert Building, 161 Barry Street, Carlton South, 3053 Victoria, University of Melbourne and Melbourne Health, Australia
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - A H Ahmad
- Department of Intensive Care Medicine and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Faculty of Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands
| | - L J Mentink
- Department of Intensive Care Medicine and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - C W Kraan
- Department of Intensive Care Medicine and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - A Zalesky
- Melbourne Neuropsychiatry Center, Department of Psychiatry, Level 3, Alan Gilbert Building, 161 Barry Street, Carlton South, 3053 Victoria, University of Melbourne and Melbourne Health, Australia
| | - A J C Slooter
- Department of Intensive Care Medicine and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Naidu AS, Vasudev A, Burhan AM, Ionson E, Montero-Odasso M. Does Dual-Task Gait Differ in those with Late-Life Depression versus Mild Cognitive Impairment? Am J Geriatr Psychiatry 2019; 27:62-72. [PMID: 30420282 DOI: 10.1016/j.jagp.2018.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To compare the dual-task gait performance of older adults with Late-Life Depression (LLD) versus Mild Cognitive Impairment (MCI). DESIGN Cross-sectional study with three matched groups: LLD, MCI and non-depressed and cognitively intact (NDCI). SETTING LLD group participants were recruited from geriatric psychiatry clinics in London, Ontario. Matched participants meeting criteria for the MCI or NDCI groups were previously recruited for other research studies from geriatric clinics and the community. PARTICIPANTS Individuals aged 60-85 who met criteria for mild-moderate LLD (N=23) without a diagnosis of a neurocognitive disorder. MEASUREMENTS Participants completed questionnaires regarding mood, cognition and physical activity. Gait speed was recorded using an electronic walkway during simple and dual-task gait (walking while naming animals aloud). Dual-task cost (DTC) is the percentage change in gait speed between simple and dual-task gait. It is a clinically relevant indicator of fall risk and is strongly associated with cognitive decline. For comparison, 23 MCI and 23 NDCI participants, matched with respect to age, sex and comorbidities, were randomly selected from existing research databases. RESULTS Each group had 8 males and 15 females, with mean age of 69.0-69.6 years. The mean (±SD) DTC of the NDCI, LLD and MCI groups were statistically different at 2.4±11.4%, 11.8±9.9% and 22.2±16.7%, respectively. CONCLUSION Older adults with LLD perform worse on dual-task gait than NDCI; however, they are less impaired than those with MCI. The elevated DTC seen in LLD is likely because of underlying executive dysfunction that is less significant than in those with MCI.
Collapse
Affiliation(s)
- Anish S Naidu
- Gait and Brain Lab, Lawson Health Research Institute, London, ON; Parkwood Institute, St. Joseph's Health Care, London, ON; Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON
| | - Akshya Vasudev
- Gait and Brain Lab, Lawson Health Research Institute, London, ON; Parkwood Institute, St. Joseph's Health Care, London, ON; Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON; Division of Geriatric Psychiatry, Department of Psychiatry, University of Western Ontario, London, ON
| | - Amer M Burhan
- Gait and Brain Lab, Lawson Health Research Institute, London, ON; Parkwood Institute, St. Joseph's Health Care, London, ON; Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON; Division of Geriatric Psychiatry, Department of Psychiatry, University of Western Ontario, London, ON
| | - Emily Ionson
- Gait and Brain Lab, Lawson Health Research Institute, London, ON; Parkwood Institute, St. Joseph's Health Care, London, ON; Division of Geriatric Psychiatry, Department of Psychiatry, University of Western Ontario, London, ON
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Lawson Health Research Institute, London, ON; Parkwood Institute, St. Joseph's Health Care, London, ON; Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON; Division of Geriatric Medicine, Department of Medicine, University of Western Ontario, London, ON.
| |
Collapse
|