1
|
Canzian J, Borba JV, Resmim CM, Mohammed KA, Pretzel CW, Adedara IA, Rosemberg DB. The dopamine transporter inhibition using GBR 12909 as a novel pharmacological tool to assess bipolar disorder-like neurobehavioral phenotypes in zebrafish. Behav Brain Res 2025; 477:115302. [PMID: 39442564 DOI: 10.1016/j.bbr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dopamine (DA) is a neurotransmitter that plays an important role in brain physiology. Changes in DA-mediated signaling have been implicated with the pathophysiology of various neuropsychiatric conditions. Bipolar disorder (BD) is a mental disorder, characterized by alterning between manic/hypomanic and depressive mood. In experimental research, the pharmacological inhibition of DA reuptake using GBR 12909 serves as a tool to elicit BD-like phenotypes. Alternative model organisms, such as the zebrafish (Danio rerio), have been considered important systems for investigating the neurobehavioral changes involved in different neuropsychiatric conditions, including BD. Here, we discuss the use of GBR 12909 as a novel pharmacological strategy to mimic BD-like phenotypes in zebrafish models. We also emphasize the well-conserved DA-mediated signaling in zebrafish and the early expression of dopaminergic biomarkers in the brain, especially focusing on dopamine transporter (DAT), the main target of GBR 12909. Finally, we discuss potential advantages and limitations in the field, the perspectives of using GBR 12909 in BD research, and how distinct validation criteria (i.e., face, predictive, and construct validity) can be assessed in translational approaches using zebrafish-based models.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
2
|
Chaves-Filho AJM, Soares MVR, Jucá PM, Oliveira TDQ, Clemente DCDS, Monteiro CEDS, Silva FGO, de Aquino PEA, Macedo DS. Doxycycline reversal of amphetamine-induced mania-like behavior is related to adjusting brain monoamine abnormalities and antioxidant effects in primary hippocampal neurons. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6017-6035. [PMID: 38386042 DOI: 10.1007/s00210-024-03009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Mania is associated with disturbed dopaminergic transmission in frontotemporal regions. D-amphetamine (AMPH) causes increased extracellular DA levels, considered an acknowledged mania model in rodents. Doxycycline (DOXY) is a second-generation tetracycline with promising neuroprotective properties. Here, we tested the hypothesis that DOXY alone or combined with Lithium (Li) could reverse AMPH-induced mania-like behavioral alterations in mice by the modulation of monoamine levels in brain areas related to mood regulation, as well as cytoprotective and antioxidant effects in hippocampal neurons. Male Swiss mice received AMPH or saline intraperitoneal (IP) injections for 14 days. Between days 8-14, mice receive further IP doses of DOXY, Li, or their combination. For in vitro studies, we exposed hippocampal neurons to DOXY in the presence or absence of AMPH. DOXY alone or combined with Li reversed AMPH-induced risk-taking behavior and hyperlocomotion. DOXY also reversed AMPH-induced hippocampal and striatal hyperdopaminergia. In AMPH-exposed hippocampal neurons, DOXY alone and combined with Li presented cytoprotective and antioxidant effects, while DOXY+Li also increased the expression of phospho-Ser133-CREB. Our results add novel evidence for DOXY's ability to reverse mania-like features while revealing that antidopaminergic activity in some brain areas, such as the hippocampus and striatum, as well as hippocampal cytoprotective effects may account for this drug's antimanic action. This study provides additional rationale for designing clinical trials investigating its potential as a mood stabilizer agent.
Collapse
Affiliation(s)
- Adriano José Maia Chaves-Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Tatiana de Queiroz Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Dino Cesar da Silva Clemente
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Carlos Eduardo da Silva Monteiro
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro Everson Alexandre de Aquino
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Rua Cel. Nunes de Melo 1000, Fortaleza, CE, 60431-270, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq), São Paulo, Brazil.
| |
Collapse
|
3
|
Gölöncsér F, Baranyi M, Tod P, Maácz F, Sperlágh B. P2X7 receptor inhibition alleviates mania-like behavior independently of interleukin-1β. iScience 2024; 27:109284. [PMID: 38444608 PMCID: PMC10914489 DOI: 10.1016/j.isci.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1β maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1β. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/β-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/β-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/β-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1β.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Fruzsina Maácz
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| |
Collapse
|
4
|
Valvassori SS, Possamai-Della T, Aguiar-Geraldo JM, Sant’Ana RG, Dal-Pont GC, Pescador B, Zugno AI, Quevedo J, Dal-Pizzol F. Sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model. Eur J Neurosci 2024; 59:1153-1168. [PMID: 37350331 PMCID: PMC10746835 DOI: 10.1111/ejn.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
The present study aimed to evaluate if sepsis sensitizes behavioural and biochemical responses induced by m-amphetamine. For this, Wistar rats were submitted to the cecal ligation and puncture. After 30 days of cecal ligation and puncture procedure, the animals were submitted to a single intraperitoneal injection of saline or m-amphetamine (.25, .50, or 1.0 mg/kg). Locomotor behaviour was assessed 2 h after the administration. Interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, dopamine-cAMP-regulated phosphoprotein of 32,000 kDa (DARPP-32) and neuronal calcium sensor (NCS-1) levels were evaluated in the frontal cortex, hippocampus and striatum. Also, brain-derived neurotrophic factor (BDNF), neuronal growth factor and glial-derived neurotrophic factor levels were assessed in the hippocampus. M-amphetamine alone (.25 and 1.0 mg/kg) increased rats' locomotion and exploratory behaviour compared with the Sham + Sal. Animals from the cecal ligation and puncture + m-amphetamine (.5 and/or 1.0 mg/kg) group showed an increase in locomotion, exploratory and risk-like behaviour when compared with the Sham + Saline group and with its respective Sham groups. Cecal ligation and puncture increased interleukin levels compared with the Sham + Sal. However, cecal ligation and puncture animals that received m-amphetamine (1 mg/kg) increased even more, these inflammatory parameters compared with the Sham + Sal and the cecal ligation and puncture + saline group. M-amphetamine at lower doses increased neurotrophic factors, but higher doses decreased these parameters in the brain of cecal ligation and puncture rats. M-amphetamine dose-dependently increased DARPP-32 and NCS-1 levels in cecal ligation and puncture rats in some structures. In conclusion, these results demonstrate that sepsis sensitizes behavioural amphetamine responses while inducing inflammatory and neurotrophic vulnerability in the cecal ligation and puncture model.
Collapse
Affiliation(s)
- Samira S. Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M. Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rômulo Goronci Sant’Ana
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C. Dal-Pont
- Translational Health Research Laboratory, Alto Vale do Rio do Peixe University, Caçador, Brazil
| | - Bruna Pescador
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Alexandra I. Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
5
|
Chang WH, Hsu HT, Lin CC, An LM, Lee CH, Ko HH, Lin CL, Lo YC. Linalool, a Fragrance Compound in Plants, Protects Dopaminergic Neurons and Improves Motor Function and Skeletal Muscle Strength in Experimental Models of Parkinson's Disease. Int J Mol Sci 2024; 25:2514. [PMID: 38473763 DOI: 10.3390/ijms25052514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD.
Collapse
Affiliation(s)
- Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Te Hsu
- Department of Anesthesia, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 80756, Taiwan
- Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Cheng Lin
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Li-Mei An
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
6
|
Valvassori SS, da Rosa RT, Dal-Pont GC, Varela RB, Mastella GA, Daminelli T, Fries GR, Quevedo J, Zugno AI. Haloperidol alters neurotrophic factors and epigenetic parameters in an animal model of schizophrenia induced by ketamine. Int J Dev Neurosci 2023; 83:691-702. [PMID: 37635268 DOI: 10.1002/jdn.10296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Richard T da Rosa
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gustavo A Mastella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Thiani Daminelli
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
7
|
Brito RMDM, da Silva MCM, Vieira-Santos F, de Almeida Lopes C, Souza JLN, Bastilho AL, de Barros Fernandes H, de Miranda AS, de Oliveira ACP, de Almeida Vitor RW, de Andrade-Neto VF, Bueno LL, Fujiwara RT, Magalhães LMD. Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice. Brain Behav Immun Health 2023; 30:100652. [PMID: 37396335 PMCID: PMC10308216 DOI: 10.1016/j.bbih.2023.100652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023] Open
Abstract
Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Maria Carolina Machado da Silva
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Lazoski Bastilho
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Heliana de Barros Fernandes
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Wagner de Almeida Vitor
- Laboratory of Toxoplasmosis, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Biosciences Centre, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luísa Mourão Dias Magalhães
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Zhang S, Hu S, Dong W, Huang S, Jiao Z, Hu Z, Dai S, Yi Y, Gong X, Li K, Wang H, Xu D. Prenatal dexamethasone exposure induces anxiety- and depressive-like behavior of male offspring rats through intrauterine programming of the activation of NRG1-ErbB4 signaling in hippocampal PV interneurons. Cell Biol Toxicol 2023; 39:657-678. [PMID: 34189720 DOI: 10.1007/s10565-021-09621-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Dexamethasone is a commonly used synthetic glucocorticoid in the clinic. As a compound that can cross the placental barrier to promote fetal lung maturation, dexamethasone is extensively used in pregnant women at risk of premature delivery. However, the use of glucocorticoids during pregnancy increases the risk of neurodevelopmental disorders. In the present study, we observed anxiety- and depressive-like behavior changes and hyperexcitability of hippocampal neurons in adult rat offspring with previous prenatal dexamethasone exposure (PDE); the observed changes were related to in utero damage of parvalbumin interneurons. A programmed change in neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ErbB4) signaling was the key to the damage of parvalbumin interneurons in the hippocampus of PDE offspring. Anxiety- and depressive-like behavior, NRG1-ErbB4 signaling activation, and damage of parvalbumin interneurons in PDE offspring were aggravated after chronic stress. The intervention of NRG1-ErbB4 signaling contributed to the improvement in dexamethasone-mediated injury to parvalbumin interneurons. These results suggested that PDE might cause anxiety- and depressive-like behavior changes in male rat offspring through the programmed activation of NRG1-ErbB4 signaling, resulting in damage to parvalbumin interneurons and hyperactivity of the hippocampus. Intrauterine programming of neuregulin 1 (NRG1)-Erb-b2 receptor tyrosine kinase 4 (ERBB4) overactivation by dexamethasone mediates anxiety- and depressive-like behavior in male rat offspring.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Songqiang Huang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohan Gong
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Dan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
9
|
D'Urso G, Toscano E, Barone A, Palermo M, Dell'Osso B, Di Lorenzo G, Mantovani A, Martinotti G, Fornaro M, Iasevoli F, de Bartolomeis A. Transcranial direct current stimulation for bipolar depression: systematic reviews of clinical evidence and biological underpinnings. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110672. [PMID: 36332699 DOI: 10.1016/j.pnpbp.2022.110672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/08/2022]
Abstract
Despite multiple available treatments for bipolar depression (BD), many patients face sub-optimal responses. Transcranial direct current stimulation (tDCS) has been advocated in the management of different conditions, including BD, especially in treatment-resistant cases. The optimal dose and timing of tDCS, the mutual influence with other concurrently administered interventions, long-term efficacy, overall safety, and biological underpinnings nonetheless deserve additional assessment. The present study appraised the existing clinical evidence about tDCS for bipolar depression, delving into the putative biological underpinnings with a special emphasis on cellular and molecular levels, with the ultimate goal of providing a translational perspective on the matter. Two separate systematic reviews across the PubMed database since inception up to August 8th 2022 were performed, with fourteen clinical and nineteen neurobiological eligible studies. The included clinical studies encompass 207 bipolar depression patients overall and consistently document the efficacy of tDCS, with a reduction in depression scores after treatment ranging from 18% to 92%. The RCT with the largest sample clearly showed a significant superiority of active stimulation over sham. Mild-to-moderate and transient adverse effects are attributed to tDCS across these studies. The review of neurobiological literature indicates that several molecular mechanisms may account for the antidepressant effect of tDCS in BD patients, including the action on calcium homeostasis in glial cells, the enhancement of LTP, the regulation of neurotrophic factors and inflammatory mediators, and the modulation of the expression of plasticity-related genes. To the best of our knowledge, this is the first study on the matter to concurrently provide a synthesis of the clinical evidence and an in-depth appraisal of the putative biological underpinnings, providing consistent support for the efficacy, safety, and tolerability of tDCS.
Collapse
Affiliation(s)
- Giordano D'Urso
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy.
| | - Elena Toscano
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Annarita Barone
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Mario Palermo
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, Ospedale Luigi Sacco Polo Universitario, ASST Fatebenefratelli Sacco, Milan, Italy; Department of Psychiatry and Behavioural Sciences, Bipolar Disorders Clinic, Stanford University, CA, USA; CRC "Aldo Ravelli" for Neuro-technology & Experimental Brain Therapeutics, University of Milan, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Department of Systems Medicine, Tor Vergata University of Rome, Italy; Psychiatric and Clinical Psychology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Mantovani
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio" Università degli Studi del Molise, Campobasso, Italy; Dipartimento di Salute Mentale e delle Dipendenze, Azienda Sanitaria Regionale del Molise (ASReM), Campobasso, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, Clinical Sciences, University Gabriele d'Annunzio, Chieti-Pescara, Italy; Department of Pharmacy, Pharmacology, Clinical Sciences, University of Hertfordshire, Herts, UK
| | - Michele Fornaro
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Clinical Unit of Psychiatry and Psychology, Unit of Treatment Resistance in Psychiatry, Laboratory of Neuromodulation, Laboratory of Molecular and Translational Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Clinical Department of Head and Neck, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
10
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
11
|
Tang S, Zhang H, Xia Y, Luo S, Liu Y, Duan X, Zou Z, Chen C, Zhou L, Qiu J. Exposure to di (2-ethylhexyl) phthalate causes locomotor increase and anxiety-like behavior via induction of oxidative stress in brain. Toxicol Mech Methods 2023; 33:113-122. [PMID: 35818324 DOI: 10.1080/15376516.2022.2100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is one of the most prevalent xenoestrogen endocrine disruptor in daily life. A growing number of studies showed that DEHP could exhibit long-term adverse health effects on the human body, particularly in the liver, kidneys, heart and reproductive systems. However, the impact of oral intake of DEHP on the nervous system is extremely limited. In the present study, the adult C57BL/6J male mice were intragastrically administered with two dosages of DEHP for 35 days. The behavioral parameters were assessed using the elevated plus maze and open-field test. The mRNA expression levels of neuropeptides and the oxidative stress-associated proteins were detected by qPCR and western blot seperately. The histopathologic alterations of the brain were observed by H&E and Nissl staining. The results demonstrated that DEHP exposure could result in neurobehavioral impairments such as locomotor increase and anxiety-like behavior. Furthermore, pathological damages were clearly observed in the cerebral cortex and hippocampus, accompanied by a decrease in neuropeptides and an increase in oxidative stress, which were all positively correlated with the dose of DEHP. Together, these findings provide valuable clues into the DEHP-induced neurotoxicity.
Collapse
Affiliation(s)
- Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yijun Liu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
İnal N, Cavusoglu B, Ermiş Ç, Turan S, Gormez V, Karabay N. Reduced Cortical Thicknesses of Adolescents with Bipolar Disorder and Relationship with Brain-derived Neurotrophic Factor. Scand J Child Adolesc Psychiatr Psychol 2023; 11:78-86. [PMID: 37377456 PMCID: PMC10291755 DOI: 10.2478/sjcapp-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Background Cortical thickness (CT) and brain-derived neurotrophic factor (BDNF) were widely investigated in bipolar disorder (BD). Previous studies focused on the association between the volume of subcortical regions and neurotrophic factor levels. Objective In this study, we aimed to evaluate the association of the CT in youth with early-onset BD with BDNF levels as a potential peripheral marker of neuronal integrity. Method Twenty-three euthymic patients having a clinical diagnosis of BD and 17 healthy subjects as an age-matched control group with neuroimaging and blood BDNF levels were found eligible for CT measurement. A structural magnetic resonance scan (MRI) and timely blood samples were drawn. Results Youth with BD exhibited lower cortical thickness in caudal part of left (L) middle frontal gyrus, right (R) paracentral gyrus, triangular part of R inferior frontal gyrus, R pericalcarine region, R precentral gyrus, L precentral gyrus, R superior frontal gyrus and L superior frontal gyrus when compared to healthy controls. The effect sizes of these differences were moderate to large (d=0.67-0.98) There was a significant correlation between BDNF levels with caudal part of the R anterior cingulate gyrus (CPRACG) in adolescents with BD (r=0.49, p=0.023). Conclusion As a special region for mood regulation, the CT of the caudal part of the R anterior cingulate gyrus had a positive correlation with BDNF. Regarding the key role of CPRACG for affective regulation skills, our results should be replicated in future follow-up studies, investigating a predictive neuroimaging biomarker for the early-onset BD.
Collapse
Affiliation(s)
- Neslihan İnal
- Department of Child and Adolescent Psychiatry, Dokuz Eylul University, Izmir, Turkey
| | | | - Çağatay Ermiş
- Department of Children and Adolescent Psyhciatry, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Uludag University, Bursa, Turkey
| | - Vahdet Gormez
- Department of Child and Adolescent Psychiatry, Medeniyet University Göztepe Training and Research Hospital, Istanbul, Turkey
| | - Nuri Karabay
- Department of Radiology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
13
|
Zhang YH, Wang N, Lin XX, Wang JY, Luo F. Application of Cognitive Bias Testing in Neuropsychiatric Disorders: A Mini-Review Based on Animal Studies. Front Behav Neurosci 2022; 16:924319. [PMID: 35846788 PMCID: PMC9283837 DOI: 10.3389/fnbeh.2022.924319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive biases can arise from cognitive processing under affective states and reflect the impact of emotion on cognition. In animal studies, the existing methods for detecting animal emotional state are still relatively limited, and cognitive bias test has gradually become an important supplement. In recent years, its effectiveness in animal research related to neuropsychiatric disorders has been widely verified. Some studies have found that cognitive bias test is more sensitive than traditional test methods such as forced swimming test and sucrose preference test in detecting emotional state. Therefore, it has great potential to become an important tool to measure the influence of neuropsychiatric disorder-associated emotions on cognitive processing. Moreover, it also can be used in early drug screening to effectively assess the potential effects or side effects of drugs on affective state prior to clinical trials. In this mini-review, we summarize the application of cognitive bias tests in animal models of neuropsychiatric disorders such as depression, anxiety, bipolar disorder, and pain. We also discussed its critical value in the identification of neuropsychiatric disorders and the validation of therapeutic approaches.
Collapse
Affiliation(s)
- Yu-Han Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Ning Wang,
| | - Xiao-Xiao Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Fiore M, Petrella C, Coriale G, Rosso P, Fico E, Ralli M, Greco A, De Vincentiis M, Minni A, Polimeni A, Vitali M, Messina MP, Ferraguti G, Tarani F, de Persis S, Ceccanti M, Tarani L. Markers of Neuroinflammation in the Serum of Prepubertal Children with Fetal Alcohol Spectrum Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:854-868. [PMID: 34852752 DOI: 10.2174/1871527320666211201154839] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fetal Alcohol Spectrum Disorders (FASD) are the manifestation of the damage caused by alcohol consumption during pregnancy. Children with Fetal Alcohol Syndrome (FAS), the extreme FASD manifestation, show both facial dysmorphology and mental retardation. Alcohol consumed during gestational age prejudices brain development by reducing, among others, the synthesis and release of neurotrophic factors and neuroinflammatory markers. Alcohol drinking also induces oxidative stress. HYPOTHESIS/OBJECTIVE The present study aimed to investigate the potential association between neurotrophins, neuroinflammation, and oxidative stress in 12 prepubertal male and female FASD children diagnosed as FAS or partial FAS (pFAS). METHODS Accordingly, we analyzed, in the serum, the level of BDNF and NGF and the oxidative stress, as Free Oxygen Radicals Test (FORT) and Free Oxygen Radicals Defense (FORD). Moreover, serum levels of inflammatory mediators (IL-1α, IL-2, IL-6, IL-10, IL-12, MCP-1, TGF-β, and TNF-α) involved in neuroinflammatory and oxidative processes have been investigated. RESULTS We demonstrated low serum levels of NGF and BDNF in pre-pubertal FASD children with respect to healthy controls. These changes were associated with higher serum presence of TNF- α and IL-1α. Quite interestingly, an elevation in the FORD was also found despite normal FORT levels. Moreover, we found a potentiation of IL-1α, IL-2, IL-10, and IL-1α1 in the analyzed female compared to male children. CONCLUSION The present investigation shows an imbalance in the peripheral neuroimmune pathways that could be used in children as early biomarkers of the deficits observed in FASD.
Collapse
Affiliation(s)
- Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Giovanna Coriale
- Centro Riferimento Alcologico Regione Lazio, ASL Roma 1, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | | | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | | | | | | | - Francesca Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| | | | - Mauro Ceccanti
- SITAC, Societa' Italiana per il Trattamento dell'Alcolismo, Roma Italy SIFASD, Società Italiana Sindrome Feto-Alcolica, Roma, Italy
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, Italy
| |
Collapse
|
15
|
Lee WC, Chang HM, Huang MC, Pan CH, Su SS, Tsai SY, Chen CC, Kuo CJ. Increased medical utilization and psychiatric comorbidity following a new diagnosis of methamphetamine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 48:245-254. [PMID: 34670448 DOI: 10.1080/00952990.2021.1979990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Evidence of patterns of medical utilization and distribution of comorbidities among individuals using methamphetamine remains limited. OBJECTIVE This study aims to investigate changes in medical utilization and comorbidities before and after a diagnosis of methamphetamine use disorder. METHODS A total of 3321 cases (79% were male) of methamphetamine use disorder between January 1, 1996, and December 31, 2012, were identified from Psychiatric Inpatient Medical Claims database in Taiwan. Information was collected on demographics, diagnoses, and medical utilizations. The date of newly diagnosed with methamphetamine use disorder was defined as the baseline. Mirror-image study design was used to compare changes in medical utilization and comorbidities between the pre-baseline period (within 1 year before diagnosis) and the post-baseline period (within 1 year after diagnosis). Conditional logistic regression was used to estimate changes in medical utilization and comorbidities. RESULTS Most cases (77%) were first identified in a psychiatric department. There is a significant increase (P < .001) in psychiatric admission (odds ratio[OR] = 2.19), psychiatric emergency visits (OR = 1.31), and psychiatric outpatient visits (OR = 1.15) after diagnosis. Multivariable analysis revealed significantly increased risks (P < .001) of non-methamphetamine drug induced mental disorders (adjusted OR[aOR] = 29.47), schizophrenia (aOR = 2.62), bipolar disorder (aOR = 2.14), organic mental disorder (aOR = 1.82), and upper respiratory tract infection (aOR = 2.03) after diagnosis. CONCLUSIONS We found significant increases of medical utilization and psychiatric comorbidities after diagnosed with methamphetamine use disorder. These findings may reflect the problem of delayed diagnosis and treatment. Enhancement of early identification of methamphetamine use disorder in general practice is required for early intervention and decreased subsequent morbidities.
Collapse
Affiliation(s)
- Wan-Chen Lee
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Hu-Ming Chang
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Ming-Chyi Huang
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Hung Pan
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Sheng-Siang Su
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Shang-Ying Tsai
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chiao-Chicy Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Psychiatry, Mackay Medical College, Taipei, Taiwan
| | - Chian-Jue Kuo
- Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
17
|
de Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets 2020; 24:1225-1238. [PMID: 33141605 DOI: 10.1080/14728222.2020.1846720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Neurotrophin-3 (NT-3) is thought to play a role in the neurobiological processes implicated in mood and anxiety disorders. NT-3 is a potential pharmacological target for mood disorders because of its effects on monoamine neurotransmitters, regulation of synaptic plasticity and neurogenesis, brain-derived neurotrophic factor (BDNF) signaling boosting, and modulation of the hypothalamic-pituitary-adrenal (HPA) axis. The mechanisms underlying NT-3 anxiolytic properties are less clear and require further exploration and definition. Areas covered: The evidence that supports NT-3 as a pharmacological target for anxiety and mood disorders is presented and this is followed by a reflection on the quandaries, stumbling blocks, and future perspectives for this novel target. Expert opinion: There is evidence for miRNAs being key post-transcriptional regulators of neurotrophin-3 receptor gene (NTRK3) in anxiety disorders; however, the anxiolytic properties of NT-3 need further examination and delineation. Moreover, NT-3 expression by non-neuronal cells and its role in brain circuits that participate in anxiety and mood disorders require further scrutiny. Further work is vital before progression into clinical trials can be realized.
Collapse
Affiliation(s)
- A S de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil.,Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - J L V M de Barros
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX, Brazil
| |
Collapse
|
18
|
Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. ACTA ACUST UNITED AC 2020; 42:536-551. [PMID: 32267339 PMCID: PMC7524405 DOI: 10.1590/1516-4446-2019-0732] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/27/2019] [Indexed: 01/10/2023]
Abstract
Bipolar disorder (BD) is a chronic mental illness characterized by changes in mood that alternate between mania and hypomania or between depression and mixed states, often associated with functional impairment. Although effective pharmacological and non-pharmacological treatments are available, several patients with BD remain symptomatic. The advance in the understanding of the neurobiology underlying BD could help in the identification of new therapeutic targets as well as biomarkers for early detection, prognosis, and response to treatment in BD. In this review, we discuss genetic, epigenetic, molecular, physiological and neuroimaging findings associated with the neurobiology of BD. Despite the advances in the pathophysiological knowledge of BD, the diagnosis and management of the disease are still essentially clinical. Given the complexity of the brain and the close relationship between environmental exposure and brain function, initiatives that incorporate genetic, epigenetic, molecular, physiological, clinical, environmental data, and brain imaging are necessary to produce information that can be translated into prevention and better outcomes for patients with BD.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samira S Valvassori
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Alexandre P Diaz
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA
| | - Camila N Lima
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gabriel R Fries
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders Louis A. Faillace, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth, Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, UTHealth, Houston, TX, USA
| |
Collapse
|
19
|
Costa KCM, Brancaglion GA, Almeida CADF, de Amorim GES, Veloso LL, Lião LDS, de Souza GAP, Pinheiro BP, Ângelo ML, Ruginsk SG, Brandão WN, Marcourakis T, Ceron CS, Coelho LFL, Torres LH. No effect of prior Dengue virus 1 infection in mouse dams on long-term behavioral profiles in offspring infected with Zika virus during gestation. Neurosci Lett 2020; 739:135448. [PMID: 33129847 DOI: 10.1016/j.neulet.2020.135448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne Flavivirus structurally and antigenically related to Dengue virus (DENV). Zika virus has been associated with congenital anomalies and most ZIKV outbreaks have occurred in endemic areas of DENV. The present study investigated the effects of prior DENV serotype 1 (DENV1) immunity in immunocompetent female Swiss mice on gestational ZIKV infection in offspring. Physical/reflex development, locomotor activity, anxiety, visual acuity, and brain-derived neurotrophic factor (BDNF) levels were evaluated in offspring during infancy and adolescence. Anti-DENV1 and anti-ZIKV antibodies were detected in sera of the progenitors, whereas no ZIKV genomes were detected in the offspring brain. Pups from dams with only DENV1 immunity presented alterations of physical/reflex development. Pups from all infected dams exhibited time-related impairments in locomotor activity and anxiolytic-like behavior. Offspring from DENV/ZIKV-infected dams exhibited impairments in visual acuity during infancy but not during adolescence, which was consistent with morphometric analysis of the optic nerve. Pups from DENV1-, ZIKV-, and DENV/ZIKV-infected dams exhibited a decrease in BDNF levels during infancy and an increase during adolescence in distinct brain regions. In summary, we found no influence of prior DENV1 immunity on gestational ZIKV infection in offspring, with the exception of alterations of early visual parameters, and an increase in BDNF levels in the hippocampus during adolescence.
Collapse
Affiliation(s)
- Karla Cristinne Mancini Costa
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Gustavo Andrade Brancaglion
- Federal University of Alfenas, Institute of Biomedical Sciences, Department of Microbiology and Immunology, Alfenas, MG, CEP: 37130-000, Brazil
| | | | - Gabriel Estevam Santos de Amorim
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Luciana Lopes Veloso
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Lucas da Silva Lião
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Gabriel Augusto Pires de Souza
- Federal University of Alfenas, Institute of Biomedical Sciences, Department of Microbiology and Immunology, Alfenas, MG, CEP: 37130-000, Brazil
| | - Bruna Pereira Pinheiro
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Marilene Lopes Ângelo
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Silvia Graciela Ruginsk
- Federal University of Alfenas, Institute of Biomedical Sciences, Department of Physiological Sciences, Alfenas, MG, CEP: 37130-000, Brazil
| | - Wesley Nogueira Brandão
- University of São Paulo, Institute of Biomedical Sciences, Department of Immunology, São Paulo, SP, CEP: 05508-000, Brazil
| | - Tania Marcourakis
- University of São Paulo, School of Pharmaceutical Sciences, Department of Clinical and Toxicological Analysis, São Paulo, SP, CEP: 05508-000, Brazil
| | - Carla Speroni Ceron
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil
| | - Luiz Felipe Leomil Coelho
- Federal University of Alfenas, Institute of Biomedical Sciences, Department of Microbiology and Immunology, Alfenas, MG, CEP: 37130-000, Brazil
| | - Larissa Helena Torres
- Federal University of Alfenas, School of Pharmaceutical Sciences, Department of Food and Drugs, Alfenas, MG, CEP: 37130-000, Brazil.
| |
Collapse
|
20
|
S Valvassori S, H Cararo J, Peper-Nascimento J, L Ferreira C, F Gava F, C Dal-Pont G, L Andersen M, Quevedo J. Protein kinase C isoforms as a target for manic-like behaviors and oxidative stress in a dopaminergic animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109940. [PMID: 32243997 DOI: 10.1016/j.pnpbp.2020.109940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is a chronic condition characterized by severe mood swings alternating between episodes of mania and depression. Evidence indicates that protein kinase C (PKC) and oxidative stress are important therapeutic targets for BD. However, what PKC isoforms that are precisely involved in this effect are unknown. Therefore, we evaluated the effects of the intracerebroventricular (ICV) injection of PKC inhibitors (lithium (Li), tamoxifen (TMX), PKCα inhibitor (iPKCα), PKCγ inhibitor (iPKCγ), and PKCε inhibitor (iPKCε)) on the manic-like behaviors and oxidative stress parameters (4-hydroxy-2-nonenal (4-HNE), 8-isoprostane (8-ISO), carbonyl groups, 3-nitrotyrosine (3-NT), glutathione peroxidase (GPx) and glutathione reductase (GR)) in the brains of rats submitted to the model of mania induced by methamphetamine (m-AMPH). Animals received a single ICV infusion of artificial cerebrospinal fluid, Li, TMX, iPKCα, iPKCγ or iPKCε followed by an intraperitoneal injection of saline or m-AMPH before the behavioral analysis (open-field task). Oxidative stress was evaluated in the striatum, frontal cortex, and hippocampus. ICV injection of Li, TMX or iPKCε blocked the m-AMPH-induced increase in the manic-like behaviors - crossings, rearings, visits to the center, sniffing, and grooming. ICV infusion of iPKCα triggered a decrease in these behaviors induced by m-AMPH. Besides, the iPKCε administration significantly prevented the oxidative damage to lipids and proteins, as well as disturbances in the activity of antioxidant enzymes induced by m-AMPH. The findings of the present study suggest that PKCε isoform is strongly implied in the antimanic and antioxidant effects of Li, TMX, and the other PKC inhibitors in the model of mania.
Collapse
Affiliation(s)
- Samira S Valvassori
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil.
| | - José H Cararo
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | | | - Camila L Ferreira
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Fernanda F Gava
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Gustavo C Dal-Pont
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil
| | - Monica L Andersen
- Departament of Psychobiology, Federal University of São Paulo, Brazil
| | - João Quevedo
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Brazil; Center of Excellence on Mood Disorders, The University of Texas Health Science Center at Houston (UTHealth), TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX, USA; Translational Psychiatry Program, The University of Texas Health Science Center at Houston (UTHealth), TX, USA
| |
Collapse
|
21
|
Chaves Filho AJM, Cunha NL, de Souza AG, Soares MVR, Jucá PM, de Queiroz T, Oliveira JVS, Valvassori SS, Barichello T, Quevedo J, de Lucena D, Macedo DS. The GLP-1 receptor agonist liraglutide reverses mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: Relevance for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109872. [PMID: 31954756 DOI: 10.1016/j.pnpbp.2020.109872] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Metabolic and psychiatric disorders present a bidirectional relationship. GLP-1 system, known for its insulinotropic effects, has also been associated with numerous regulatory effects in cognitive and emotional processing. GLP-1 receptors (GLP-1R) agonists present neuroprotective and antidepressant/anxiolytic properties. However, the effects of GLP-1R agonism in bipolar disorder (BD) mania and the related cognitive disturbances remains unknown. Here, we investigated the effects of the GLP-1R agonist liraglutide (LIRA) at monotherapy or combined with lithium (Li) against D-amphetamine (AMPH)-induced mania-like symptoms, brain oxidative and BDNF alterations in mice. Swiss mice received AMPH 2 mg/kg or saline for 14 days. Between days 8-14, they received LIRA 120 or 240 μg/kg, Li 47.5 mg/kg or the combination Li + LIRA, on both doses. After behavioral evaluation the brain areas prefrontal cortex (PFC), hippocampus and amygdala were collected. AMPH induced hyperlocomotion, risk-taking behavior and multiple cognitive deficits which resemble mania. LIRA reversed AMPH-induced hyperlocomotion, working and recognition memory impairments, while Li + LIRA240 rescued all behavioral changes induced by AMPH. LIRA reversed AMPH-induced hippocampal oxidative and neurotrophic changes. Li + LIRA240 augmented Li antioxidant effects and greatly reversed AMPH-induced BDNF changes in PFC and hippocampus. LIRA rescued the weight gain induced by Li in the course of mania model. Therefore, LIRA can reverse some mania-like behavioral alterations and combined with Li augmented the mood stabilizing and neuroprotective properties of Li. This study points to LIRA as a promising adjunctive tool for BD treatment and provides the first rationale for the design of clinical trials investigating its possible antimanic effect.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Natássia Lopes Cunha
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Alana Gomes de Souza
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michele Verde-Ramo Soares
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Paloma Marinho Jucá
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Tatiana de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Victor Souza Oliveira
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Joao Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - David de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Coadministration of lithium and celecoxib reverses manic-like behavior and decreases oxidative stress in a dopaminergic model of mania induced in rats. Transl Psychiatry 2019; 9:297. [PMID: 31723123 PMCID: PMC6853972 DOI: 10.1038/s41398-019-0637-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
The present study intends to investigate the effect of lithium (Li) and celecoxib (Cel) coadministration on the behavioral status and oxidative stress parameters in a rat model of mania induced by dextroamphetamine (d-AMPH). Male Wistar rats were treated with d-AMPH or saline (Sal) for 14 days; on the 8th day of treatment, rats received lithium (Li), celecoxib (Cel), Li plus Cel, or water until day 14. Levels of oxidative stress parameters were evaluated in the serum, frontal cortex, and hippocampus. d-AMPH administration induced hyperlocomotion in rats, which was significantly reversed by Li and Cel coadministration. In addition, d-AMPH administration induced damage to proteins and lipids in the frontal cortex and hippocampus of rats. All these impairments were reversed by treatment with Li and/or Cel, in a way dependent on cerebral area and biochemical analysis. Li and Cel coadministration reversed the d-AMPH-induced decrease in catalase activity in cerebral structures. The activity of glutathione peroxidase was decreased in the frontal cortex of animals receiving d-AMPH, and treatment with Li, Cel, or a combination thereof reversed this alteration in this structure. Overall, data indicate hyperlocomotion and alteration in oxidative stress biomarkers in the cerebral structures of rats receiving d-AMPH. Li and Cel coadministration can mitigate these modifications, comprising a potential novel approach for BD therapy.
Collapse
|