1
|
Chen X, Tang R, Jin Y, Wu L, Liang Y, Xu K, He P, Guo Y, Li J. Similarities and Differences in Resting-State Brain Activity Changes of Distinct Chronic Pain Types. Oral Dis 2025. [PMID: 39901770 DOI: 10.1111/odi.15271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVES To explore neural similarities and differences between visceral and somatic pain by comparing spontaneous brain activity in patients with chronic temporomandibular disorder (TMD) and irritable bowel syndrome (IBS). METHODS Twenty eight IBS patients, 21 TMD patients, and 28 healthy controls (HC) underwent resting-state fMRI and behavioral assessments. The correlations between fMRI metrics such as the amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC), and clinical manifestations were further analyzed. RESULTS Compared with HC, both patient groups demonstrated increased ALFF in right parahippocampal gyrus (PHG), insula, medial superior frontal gyrus (SFGmed), precentral gyrus (PreCG), and increased ReHo in right SFGmed and left supplementary motor area (SMA). Compared with IBS patients, TMD patients exhibited reduced ALFF in right SFGmed and insula, increased ALFF in right PHG and PreCG, decreased ReHo in right SFGmed and left lingual gyrus, and increased ReHo in left SMA. Both patient groups exhibited enhanced right PHG-related FC in left precuneus and right cingulate gyrus, and right insula-related FC in left superior temporal gyrus and right paracentral lobule. Specifically, IBS patients showed higher FC between right PHG and orbitofrontal cortex than TMD patients, which was negatively correlated with mood and gastrointestinal symptoms. Mediation analysis revealed that pain in TMD and gastrointestinal symptoms in IBS mediated these relationships. CONCLUSION Visceral and somatic pain share abnormal activity in multiple brain networks. Abnormalities in affective region present potential neuroimaging markers for pain disorders, with depression in somatic pain linked to pain intensity and in visceral pain to gastrointestinal symptoms.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Ruoyu Tang
- Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
| | - Yihan Jin
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Liqiang Wu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yidan Liang
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Kuanghui Xu
- Department of Radiology, Zhejiang Hospital, Zhejiang, Hangzhou, China
| | - Ping He
- Department of Orthodontics, Hangzhou Stomatological Hospital, Hangzhou, China
| | - Yun Guo
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang, Hangzhou, China
| |
Collapse
|
2
|
Yang L, Zhang L, Liu Y, Liu J, Li K, Cai J. The different impacts of pain-related negative emotion and trait negative emotion on brain function in patients with inflammatory bowel disease. Sci Rep 2024; 14:23897. [PMID: 39396081 PMCID: PMC11470934 DOI: 10.1038/s41598-024-75237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic, non-specific intestinal diseases that could comorbid with varieties of negative emotional constructs, including pain-related negative emotions and trait negative emotions; however, the link between brain functions and different dimensions of negative emotions remains largely unknown. Ninety-eight patients with IBD and forty-six healthy subjects were scanned using a 3.0-T functional magnetic resonance imaging scanner. The amplitudes of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) were used to assess resting-state brain activity. Partial least squares (PLS) correlation was employed to assess the relationship among abnormal brain activities, pain-related and trait negative emotions. Compared to controls, patients with IBD exhibited higher values of ALFF in the right anterior cingulate cortex (ACC), lower values of ALFF in the left postcentral gyrus, and higher values of DC in the bilateral ACC. Multivariate PLS correlation analysis revealed the brain scores of the ACC were correlated with pain-related negative emotions, the brain salience in the left postcentral gyrus was associated with the higher-order trait depression. These findings can enhance our comprehension of how pain-related negative emotion and trait negative emotion affect the brains of patients with IBD in distinct ways.
Collapse
Affiliation(s)
- Ling Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Yuzhong District, Chongqing, 400000, China
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Lingqin Zhang
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Yan Liu
- Gastroenterology Department, Chong Qing General Hospital, Chongqing University, Chongqing, China
| | - Jixin Liu
- School of Life Science and Technology, Center for Brain Imaging, Xidian University, Xi'an, China
| | - Kang Li
- Radiology Department, Chongqing General Hospital, Chongqing University, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China.
| | - Jinhua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Yuzhong District, Chongqing, 400000, China.
- Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
| |
Collapse
|
3
|
Cheng L, Zhang J, Xi H, Li M, Hu S, Yuan W, Wang P, Chen L, Zhan L, Jia X. Abnormalities of brain structure and function in cervical spondylosis: a multi-modal voxel-based meta-analysis. Front Neurosci 2024; 18:1415411. [PMID: 38948928 PMCID: PMC11211609 DOI: 10.3389/fnins.2024.1415411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Previous neuroimaging studies have revealed structural and functional brain abnormalities in patients with cervical spondylosis (CS). However, the results are divergent and inconsistent. Therefore, the present study conducted a multi-modal meta-analysis to investigate the consistent structural and functional brain alterations in CS patients. Methods A comprehensive literature search was conducted in five databases to retrieve relevant resting-state functional magnetic resonance imaging (rs-fMRI), structural MRI and diffusion tensor imaging (DTI) studies that measured brain functional and structural differences between CS patients and healthy controls (HCs). Separate and multimodal meta-analyses were implemented, respectively, by employing Anisotropic Effect-size Signed Differential Mapping software. Results 13 rs-fMRI studies that used regional homogeneity, amplitude of low-frequency fluctuations (ALFF) and fractional ALFF, seven voxel-based morphometry (VBM) studies and one DTI study were finally included in the present research. However, no studies on surface-based morphometry (SBM) analysis were included in this research. Due to the insufficient number of SBM and DTI studies, only rs-fMRI and VBM meta-analyses were conducted. The results of rs-fMRI meta-analysis showed that compared to HCs, CS patients demonstrated decreased regional spontaneous brain activities in the right lingual gyrus, right middle temporal gyrus (MTG), left inferior parietal gyrus and right postcentral gyrus (PoCG), while increased activities in the right medial superior frontal gyrus, bilateral middle frontal gyrus and right precuneus. VBM meta-analysis detected increased GMV in the right superior temporal gyrus (STG) and right paracentral lobule (PCL), while decreased GMV in the left supplementary motor area and left MTG in CS patients. The multi-modal meta-analysis revealed increased GMV together with decreased regional spontaneous brain activity in the left PoCG, right STG and PCL among CS patients. Conclusion This meta-analysis revealed that compared to HCs, CS patients had significant alterations in GMV and regional spontaneous brain activity. The altered brain regions mainly included the primary visual cortex, the default mode network and the sensorimotor area, which may be associated with CS patients' symptoms of sensory deficits, blurred vision, cognitive impairment and motor dysfunction. The findings may contribute to understanding the underlying pathophysiology of brain dysfunction and provide references for early diagnosis and treatment of CS. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, CRD42022370967.
Collapse
Affiliation(s)
- Lulu Cheng
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
- Shanghai Center for Research in English Language Education, Shanghai International Studies University, Shanghai, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hongyu Xi
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Wenting Yuan
- School of Western Studies, Heilongjiang University, Harbin, China
- English Department, Heilongjiang International University, Harbin, China
| | - Peng Wang
- Department of Language, Literature and Communication, Faculty of Humanities, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Psychology, Education, and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Lanfen Chen
- School of Medical Imaging, Shandong Second Medical University, Weifang, Shandong, China
| | - Linlin Zhan
- School of Western Studies, Heilongjiang University, Harbin, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
4
|
Han L, Xu Q, Meng P, Xu R, Nan J. Brain identification of IBS patients based on GBDT and multiple imaging techniques. Phys Eng Sci Med 2024; 47:651-662. [PMID: 38416373 DOI: 10.1007/s13246-024-01394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
The brain biomarker of irritable bowel syndrome (IBS) patients is still lacking. The study aims to explore a new technology studying the brain alterations of IBS patients based on multi-source brain data. In the study, a decision-level fusion method based on gradient boosting decision tree (GBDT) was proposed. Next, 100 healthy subjects were used to validate the effectiveness of the method. Finally, the identification of brain alterations and the pain evaluation in IBS patients were carried out by the fusion method based on the resting-state fMRI and DWI for 46 patients and 46 controls selected randomly from 100 healthy subjects. The results showed that the method can achieve good classification between IBS patients and controls (accuracy = 95%) and pain evaluation of IBS patients (mean absolute error = 0.1977). Moreover, both the gain-based and the permutation-based evaluation instead of statistical analysis showed that left cingulum bundle contributed most significantly to the classification, and right precuneus contributed most significantly to the evaluation of abdominal pain intensity in the IBS patients. The differences seem to suggest a probable but unexplored separation about the central regions between the identification and progression of IBS. This finding may provide one new thought and technology for brain alteration related to IBS.
Collapse
Affiliation(s)
- Li Han
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Qian Xu
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Panting Meng
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Ruyun Xu
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China
| | - Jiaofen Nan
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Chogle A, El-Chammas K, Santucci N, Grimm M, Dorfman L, Graham K, Kelly DR, Dranove JE, Rosen R, Nurko S, Croffie J, Balakrishnan K, Chiou EH, Zhang L, Simpson P, Karrento K. A multicenter registry study on percutaneous electrical nerve field stimulation for pediatric disorders of gut-brain interaction. J Pediatr Gastroenterol Nutr 2024; 78:817-826. [PMID: 38451058 DOI: 10.1002/jpn3.12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVES Percutaneous electrical nerve field stimulation (PENFS) has demonstrated promise in single-center trials for pediatric abdominal pain-related disorders of gut-brain interaction (DGBI). Our aim was to explore efficacy of PENFS as standard therapy for DGBI in a registry involving multiple pediatric gastroenterology referral centers. METHODS This was a multicenter, prospective open-label registry of children (8-18 years) undergoing PENFS for DGBI at seven tertiary care gastroenterology clinics. DGBI subtypes were classified by Rome IV criteria. Parents and patients completed Abdominal Pain Index (API), Nausea Severity Scale (NSS), and Functional Disability Inventory (FDI) questionnaires before, during therapy and at follow-up visits up to 1 year later. RESULTS A total of 292 subjects were included. Majority (74%) were female with median (interquartile range [IQR]) age 16.3 (14.0, 17.7) years. Most (68%) met criteria for functional dyspepsia and 61% had failed ≥4 pharmacologic therapies. API, NSS, and FDI scores showed significant declines within 3 weeks of therapy, persisting long-term in a subset. Baseline (n = 288) median (IQR) child-reported API scores decreased from 2.68 (1.84, 3.58) to 1.99 (1.13, 3.27) at 3 weeks (p < 0.001) and 1.81 (0.85, 3.20) at 3 months (n = 75; p < 0.001). NSS scores similarly improved from baseline, persisting at three (n = 74; p < 0.001) and 6 months later (n = 55; p < 0.001). FDI scores displayed similar reductions at 3 months (n = 76; p = 0.01) but not beyond. Parent-reported scores were consistent with child reports. CONCLUSIONS This large, comprehensive, multicenter registry highlights efficacy of PENFS for gastrointestinal symptoms and functionality for pediatric DGBI.
Collapse
Affiliation(s)
- Ashish Chogle
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Orange County, Orange, California, USA
| | - Khalil El-Chammas
- Department of Pediatrics, Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Neha Santucci
- Department of Pediatrics, Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Monica Grimm
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition & Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lev Dorfman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kahleb Graham
- Department of Pediatrics, Division of Pediatric Gastroenterology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Daniel R Kelly
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Atrium Health Levine Children's Hospital, Charlotte, North Carolina, USA
| | - Jason E Dranove
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Atrium Health Levine Children's Hospital, Charlotte, North Carolina, USA
| | - Rachel Rosen
- Center for Motility and Functional Gastrointestinal Disorders, Division of Gastroenterology, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Samuel Nurko
- Center for Motility and Functional Gastrointestinal Disorders, Division of Gastroenterology, Children's Hospital Boston, Boston, Massachusetts, USA
| | - Joseph Croffie
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keshawadhana Balakrishnan
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Eric H Chiou
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Liyun Zhang
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition & Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pippa Simpson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition & Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Katja Karrento
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition & Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Kong N, Zhou F, Zhang F, Gao C, Wu L, Guo Y, Gao Y, Lin J, Xu M. Morphological and regional spontaneous functional aberrations in the brain associated with Crohn's disease: a systematic review and coordinate-based meta-analyses. Cereb Cortex 2024; 34:bhae116. [PMID: 38566507 DOI: 10.1093/cercor/bhae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Crohn's disease is an acknowledged "brain-gut" disorder with unclear physiopathology. This study aims to identify potential neuroimaging biomarkers of Crohn's disease. Gray matter volume, cortical thickness, amplitude of low-frequency fluctuations, and regional homogeneity were selected as indices of interest and subjected to analyses using both activation likelihood estimation and seed-based d mapping with permutation of subject images. In comparison to healthy controls, Crohn's disease patients in remission exhibited decreased gray matter volume in the medial frontal gyrus and concurrently increased regional homogeneity. Furthermore, gray matter volume reduction in the medial superior frontal gyrus and anterior cingulate/paracingulate gyri, decreased regional homogeneity in the median cingulate/paracingulate gyri, superior frontal gyrus, paracentral lobule, and insula were observed. The gray matter changes of medial frontal gyrus were confirmed through both methods: decreased gray matter volume of medial frontal gyrus and medial superior frontal gyrus were identified by activation likelihood estimation and seed-based d mapping with permutation of subject images, respectively. The meta-regression analyses showed a positive correlation between regional homogeneity alterations and patient age in the supplementary motor area and a negative correlation between gray matter volume changes and patients' anxiety scores in the medial superior frontal gyrus. These anomalies may be associated with clinical manifestations including abdominal pain, psychiatric disorders, and possibly reflective of compensatory mechanisms.
Collapse
Affiliation(s)
- Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Feini Zhou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yifan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yiyuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiangnan Lin
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
7
|
Zhao M, Hao Z, Li M, Xi H, Hu S, Wen J, Gao Y, Antwi CO, Jia X, Yu Y, Ren J. Functional changes of default mode network and structural alterations of gray matter in patients with irritable bowel syndrome: a meta-analysis of whole-brain studies. Front Neurosci 2023; 17:1236069. [PMID: 37942144 PMCID: PMC10627928 DOI: 10.3389/fnins.2023.1236069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) is a brain-gut disorder with high global prevalence, resulting from abnormalities in brain connectivity of the default mode network and aberrant changes in gray matter (GM). However, the findings of previous studies about IBS were divergent. Therefore, we conducted a meta-analysis to identify common functional and structural alterations in IBS patients. Methods Altogether, we identified 12 studies involving 194 IBS patients and 230 healthy controls (HCs) from six databases using whole-brain resting state functional connectivity (rs-FC) and voxel-based morphometry. Anisotropic effect-size signed differential mapping (AES-SDM) was used to identify abnormal functional and structural changes as well as the overlap brain regions between dysconnectivity and GM alterations. Results Findings indicated that, compared with HCs, IBS patients showed abnormal rs-FC in left inferior parietal gyrus, left lingual gyrus, right angular gyrus, right precuneus, right amygdala, right median cingulate cortex, and left hippocampus. Altered GM was detected in the fusiform gyrus, left triangular inferior frontal gyrus (IFG), right superior marginal gyrus, left anterior cingulate gyrus, left rectus, left orbital IFG, right triangular IFG, right putamen, left superior parietal gyrus and right precuneus. Besides, multimodal meta-analysis identified left middle frontal gyrus, left orbital IFG, and right putamen as the overlapped regions. Conclusion Our results confirm that IBS patients have abnormal alterations in rs-FC and GM, and reveal brain regions with both functional and structural alterations. These results may contribute to understanding the underlying pathophysiology of IBS. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022351342.
Collapse
Affiliation(s)
- Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Hongyu Xi
- School of Western Languages, Heilongjiang University, Harbin, China
| | - Su Hu
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Jianjie Wen
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yanyan Gao
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Collins Opoku Antwi
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yang Yu
- Department of Psychiatry, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Ren
- School of Psychology, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent, Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
8
|
Meng P, Cheng B, Pan C, Liu L, Cheng S, Yang X, Chen Y, Li C, Zhang H, Zhang Z, Zhang J, He D, Shi S, Chu X, Cai Q, Zhang N, Qin X, Zhao Y, Wei W, Jia Y, Wen Y, Zhang F. Evaluating the role of anxiety on the association between irritable bowel syndrome and brain volumes: a mediation analysis in the UK Biobank cohort. Brain Commun 2023; 5:fcad116. [PMID: 37091589 PMCID: PMC10116581 DOI: 10.1093/braincomms/fcad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/24/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
There is a strong link between irritable bowel syndrome and brain volumes, yet, to date, research examining the mediators of this association has been little. Based on the phenotypic data of 15 248 participants from the UK Biobank, a two-stage mediation analysis was performed to assess the association among brain volumes, anxiety, and irritable bowel syndrome. In the first stage, we identified the candidate mediating role of anxiety for irritable bowel syndrome associated with brain volumes using regression models. Then, we quantified the magnitude of the mediation effects by evaluating the average causal-mediated effect and proportion of mediation through performing mediation analyses in the R package in the second stage. In the first stage, we identified the partly mediating role of anxiety in the association between irritable bowel syndrome and the volume of thalamus (P left = 1.16 × 10-4, P right = 2.41 × 10-4), and grey matter (P left = 3.22 × 10-2, P right = 1.18 × 10-2) in the VIIIa cerebellum. In the second stage, we observed that the proportion of the total effect of irritable bowel syndrome on volume of thalamus mediated by anxiety was 14.3% for the left region (β Average causal-mediated effect = -0.008, P Average causal-mediated effect = 0.004) and 14.6% for the right region (β Average causal-mediated effect = -0.007, P Average causal-mediated effect = 0.006). Anxiety mediated 30.8% for the left region (β Average causal-mediated effect = -0.013, P Average causal-mediated effect = 0.002) and 21.6% for the right region (β Average causal-mediated effect = -0.010, P Average causal-mediated effect x= 0.018) of the total effect of irritable bowel syndrome on the volume of grey matter in the VIIIa cerebellum. Our study revealed the indirect mediating role of anxiety in the association between irritable bowel syndrome and brain volumes, promoting our understanding of the functional mechanisms of irritable bowel syndrome and its related psychosocial factors.
Collapse
Affiliation(s)
| | | | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chun’e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Sirong Shi
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoge Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qingqing Cai
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Na Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoyue Qin
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yijing Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wenming Wei
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Feng Zhang
- Correspondence to: Feng Zhang Key Laboratory of Trace Elements and Endemic Diseases National Health Commission of the People’s Republic of China School of Public Health, Health Science Center Xi’an Jiaotong University, No. 76 Yan Ta West Road, Xi’an 710061, China E-mail:
| |
Collapse
|
9
|
Tajerian M, Amrami M, Betancourt JM. Is there hemispheric specialization in the chronic pain brain? Exp Neurol 2022; 355:114137. [PMID: 35671801 PMCID: PMC10723052 DOI: 10.1016/j.expneurol.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Organismal bilateral symmetry is associated with near-identical halves of the central nervous system, with certain functions displaying specialization through one brain hemisphere. The processing of pain in the brain as well as brain plasticity in the context of painful injuries have garnered much attention in recent decades. Noninvasive brain imaging studies in pain-free human subjects have identified multiple brain regions that are linked to the sensory and affective components of pain. Longlasting adaptations in brains of chronic pain sufferers have likewise been described, suggesting a mechanism for pain chronification. Invasive molecular and biochemical studies in animal models have expanded on these findings, with added emphasis on the role of specific genes and molecules involved. To date, the extent of hemispheric asymmetry in the context of pain is not well-understood. This topical review evaluates the evidence of hemispheric specialization observed in humans and rodent models of pain and compares it to findings where such asymmetry is absent. Our review shows conflicting information regarding the existence of pain-related asymmetry, and if so, the side to which it can be localized. This could be due to the heterogeneity of pain processing pathways, heterogeneity in study parameters, as well as differences in data reporting. With the advent of progressively sophisticated non-invasive tools that can be used in human subjects, in addition to more precise methods to visualize and control specific brain regions or neuronal ensembles in animal models, we predict that the next few decades will witness a better understanding of the supraspinal control and processing of chronic pain, including the role of each of its hemispheres.
Collapse
Affiliation(s)
- Maral Tajerian
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Michael Amrami
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA
| | - John Michael Betancourt
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|