1
|
Gao Y, Zhao P, Wang C, Fang K, Pan Y, Zhang Y, Miao Z, Wang M, Wei M, Zou W, Liu M, Peng K. Buqi Huoxue Tongnao prescription protects against chronic cerebral hypoperfusion via regulating PI3K/AKT and LXRα/CYP7A1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155844. [PMID: 38959552 DOI: 10.1016/j.phymed.2024.155844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) has been confirmed as one of the pathogenesis underlying vascular cognitive impairment. A series of pathological changes, including inflammation, oxidative stress, and apoptosis, are involved in this pathophysiology and contribute to cognitive impairment and neuropathological alterations. The traditional Chinese medicine (TCM) of Buqi Huoxue Tongnao (BQHXTN) prescription possesses a remarkable clinical efficacy for treating patients with CCH, but still lacks a scientific foundation for its pharmacological mechanisms. PURPOSE To investigate the role and underlying mechanism of the effects of BQHXTN on CCH both in vitro and in vivo. METHODS In this study, we established a two-vessel occlusion (2-VO) induced CCH model in Sprague-Dawley rats, an oxygen-glucose deprivation model in BV2 cells, and a steatosis cell model in L02 cells to reveal the underlying mechanisms of BQHXTN by behavioral test, histopathological analysis and the detection of pro-inflammatory cytokine, apoptotic factors and reactive oxide species. Donepezil hydrochloride and Buyang Huanwu decoction were used as positive drugs. RESULTS Compared with the 2-VO group, BQHXTN treatment at three doses significantly enhanced the memory and learning abilities in the Y-maze and novel object recognition tests. The hematoxylin-eosin staining indicated that BQHXTN protected against hippocampal injury induced by CCH. Of note, in both in vivo and in vitro experiments, BQHXTN prominently inhibited the production of IL-1β, TNF-α, cleaved-caspase 3, and iNOS by regulating the PI3K/AKT pathway, consequently exerting anti-inflammatory, anti-apoptotic, and antioxidant effects. Moreover, it provided the first initial evidence that BQHXTN treatment mitigated dyslipidemia by increasing the LXRα/CYP7A1 expression, thereby delaying the neuropathological process. CONCLUSION In summary, these findings firstly revealed the pharmacodynamics and mechanism of BQHXTN, that is, BQHXTN could alleviate cognitive impairment, neuropathological alterations and dyslipidemia in CCH rats by activating PI3K/AKT and LXRα/CYP7A1 signaling pathways, as well as providing a TCM treatment strategy for CCH.
Collapse
Affiliation(s)
- Yinhuang Gao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China; Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Chunyan Wang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Keren Fang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Yueqing Pan
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhishuo Miao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meirong Wang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minlong Wei
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Menghua Liu
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China; Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Kang Peng
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China.
| |
Collapse
|
2
|
Li Y, Lu J, Zhang J, Gui W, Xie W. Molecular insights into enriched environments and behavioral improvements in autism: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1328240. [PMID: 38362032 PMCID: PMC10867156 DOI: 10.3389/fpsyt.2024.1328240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
Aims Autism is a multifaceted developmental disorder of the nervous system, that necessitates novel therapeutic approaches beyond traditional medications and psychosomatic therapy, such as appropriate sensory integration training. This systematic mapping review aims to synthesize existing knowledge on enriching environmental interventions as an alternative avenue for improving autism, guiding future research and practice. Method A comprehensive search using the terms ASD and Enriched Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and OVID databases. Most of the literature included in this review was derived from animal model experiments, with a particular focus on assessing the effect of EE on autism-like behavior, along with related pathways and molecular mechanisms. Following extensive group discussion and screening, a total of 19 studies were included for analysis. Results Enriched environmental interventions exhibited the potential to induce both behavioral and biochemical changes, ameliorating autism-like behaviors in animal models. These improvements were attributed to the targeting of BDNF-related pathways, enhanced neurogenesis, and the regulation of glial inflammation. Conclusion This paper underscores the positive impact of enriched environmental interventions on autism through a review of existing literature. The findings contribute to a deeper understanding of the underlying brain mechanisms associated with this intervention.
Collapse
Affiliation(s)
- Yutong Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Lu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenxin Gui
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Weijie Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tong Y, Zhao G, Shuang R, Wang H, Zeng N. Saikosaponin a activates tet1/dll3/notch1 signalling and promotes hippocampal neurogenesis to improve depression-like behavior in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117289. [PMID: 37844745 DOI: 10.1016/j.jep.2023.117289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri, also named "Chaihu" in Chinese, is a substance derived from the dry roots of Bupleurum chinense DC. [Apiaceae] and Bupleurum scorzonerifolium Willd. [Apiaceae]. Radix Bupleuri was initially recorded as a medicinal herb in Shen Nong Ben Cao Jing, the earliest monograph concerning traditional Chinese medicine (TCM). Ever since, Radix Bupleuri has been broadly used to alleviate exterior syndrome, disperse heat, modulate the liver-qi, and elevate yang-qi in TCM. Radix Bupleuri has also been utilized as an important component in Xiaoyaosan, a classical formula for relieving depression, which was originated from the famous Chinese medical book called "Tai Ping Hui Min He Ji Ju Fang" in Song Dynasty. Currently, many valuable pharmacological effects of Radix Bupleuri have been explored, such as antidepressant, neuroprotective activities, antiinflammation, anticancer, immunoregulation, etc. Former studies have illustrated that Saikosaponin A (SSa), one of the primary active components of Radix Bupleuri, possesses potential antidepressant properties. However, the underlying mechanisms still remain unknown. AIM OF THE STUDY We used a chronic social defeat stress (CSDS) mouse model to explore the ameliorative effects and potential mechanisms of SSa in depressive disorder in vivo. MATERIALS AND METHODS The CSDS mouse model was established and mice underwent behavioral studies using assays such as the social interaction test (SIT), sucrose preference test (SPT), forced-swim test (FST), tail suspension test (TST), and open field test (OFT). Western blotting, immunofluorescence, and Golgi staining were performed to investigate signaling pathway activity, and alterations in synaptic spines in the hippocampus. To model the anticipated interaction between SSa and Tet1, molecular docking and microscale thermophoresis (MST) techniques were employed. Finally, sh-RNA Tet1 was employed for validation via lentiviral transfection in CSDS mice to confirm the requirement of Tet1 for SSA efficacy. RESULTS SSa dramatically reduced depressed symptoms, boosted the expression of Tet1, Notch, DLL3, and BDNF, encouraged hippocampus development, and enhanced the dendritic spine density of hippocampal neurons. In contrast, Tet1 knockdown in CSDS mice dampened the beneficial effects of SSa on depressive symptoms. CONCLUSIONS Therefore, our results suggest that SSa significantly activates the Tet1/Notch/DLL3 signaling pathways and promotes hippocampal neurogenesis to exert antidepressant effects in the CSDS mouse model in vivo. The present results also provide new insight into the importance of the Tet1/DLL3/Notch pathways as potential targets for novel antidepressant development.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Ruonan Shuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
4
|
Zheng J, Peng S, Cui L, Liu X, Li T, Zhao Z, Li Y, Hu Y, Zhang M, Xu L, Zhang J. Enriched environment attenuates hippocampal theta and gamma rhythms dysfunction in chronic cerebral hypoperfusion via improving imbalanced neural afferent levels. Front Cell Neurosci 2023; 17:985246. [PMID: 37265581 PMCID: PMC10231328 DOI: 10.3389/fncel.2023.985246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/27/2023] [Indexed: 06/03/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is increasingly recognized as a common cognitive impairment-causing mechanism. However, no clinically effective drugs to treat cognitive impairment due to CCH have been identified. An abnormal distribution of neural oscillations was found in the hippocampus of CCH rats. By releasing various neurotransmitters, distinct afferent fibers in the hippocampus influence neuronal oscillations in the hippocampus. Enriched environments (EE) are known to improve cognitive levels by modulating neurotransmitter homeostasis. Using EE as an intervention, we examined the levels of three classical neurotransmitters and the dynamics of neural oscillations in the hippocampus of the CCH rat model. The results showed that EE significantly improved the balance of three classical neurotransmitters (acetylcholine, glutamate, and GABA) in the hippocampus, enhanced the strength of theta and slow-gamma (SG) rhythms, and dramatically improved neural coupling across frequency bands in CCH rats. Furthermore, the expression of the three neurotransmitter vesicular transporters-vesicular acetylcholine transporters (VAChT) and vesicular GABA transporters (VGAT)-was significantly reduced in CCH rats, whereas the expression of vesicular glutamate transporter 1 (VGLUT1) was abnormally elevated. EE partially restored the expression of the three protein levels to maintain the balance of hippocampal afferent neurotransmitters. More importantly, causal mediation analysis showed EE increased the power of theta rhythm by increasing the level of VAChT and VGAT, which then enhanced the phase amplitude coupling of theta-SG and finally led to an improvement in the cognitive level of CCH. These findings shed light on the role of CCH in the disruption of hippocampal afferent neurotransmitter balance and neural oscillations. This study has implications for our knowledge of disease pathways.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingling Cui
- Department of Anesthesiology, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xi Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Li
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Zhenyu Zhao
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Yaqing Li
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - Yuan Hu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Miao Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linling Xu
- Clinical Medical Research Center for Dementia and Cognitive Impairment in Hubei Province, Wuhan, China
| | - JunJian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Zhao YF, Verkhratsky A, Tang Y, Illes P. Astrocytes and major depression: The purinergic avenue. Neuropharmacology 2022; 220:109252. [PMID: 36122663 DOI: 10.1016/j.neuropharm.2022.109252] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric illnesses worldwide which impairs the social functioning of the afflicted patients. Astrocytes promote homeostasis of the CNS and provide defense against various types of harmful influences. Increasing evidence suggests that the number, morphology and function of astrocytes are deteriorated in the depressed brain and the malfunction of the astrocytic purinergic system appears to participate in the pathophysiology of MDD. Adenosine 5'-triphosphate (ATP) released from astrocytes modulates depressive-like behavior in animal models and probably also clinical depression in patients. Astrocytes possess purinergic receptors, such as adenosine A2A receptors (Rs), and P2X7, P2Y1, and P2Y11Rs, which mediate neuroinflammation, neuro(glio)transmission, and synaptic plasticity in depression-relevant areas of the brain (e.g. medial prefrontal cortex, hippocampus, amygdala nuclei). By contrast, astrocytic A1Rs are neuroprotective and immunosuppressive. In the present review, we shall discuss the release of purines from astrocytes, and the expression/function of astrocytic purinergic receptors. Subsequently, we shall review in more detail novel evidence indicating that the dysregulation of astrocytic purinergic signaling actively contributes to the pathophysiology of depression and shall discuss possible therapeutic options based on knowledge recently acquired in this field.
Collapse
Affiliation(s)
- Y F Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - A Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PL, UK; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT, 01102, Vilnius, Lithuania
| | - Y Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - P Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany.
| |
Collapse
|