1
|
Qiao J, Tao S, Sun Y, Shi J, Chen Y, Tian S, Yao Z, Lu Q. The Effects of Variation in the GABA A Receptor Gene on Anxious Depression are Mediated by the Functional Connectivity Between the Amygdala and Middle Frontal Gyrus. Neuropsychiatr Dis Treat 2024; 20:1781-1796. [PMID: 39346029 PMCID: PMC11438461 DOI: 10.2147/ndt.s468290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background γ-aminobutyric acid (GABA) and its main receptor, the GABAA receptor, are implicated in major depressive disorder (MDD). Anxious depression (AD) is deemed to be a primary subtype of MDD. The amygdala and the dorsolateral prefrontal cortex (DLPFC) are key brain regions involved in emotional regulation. These regions contain the most GABAA receptors. Although the GABAergic deficit hypothesis of MDD is generally accepted, few studies have demonstrated how GABAA receptor gene polymorphisms affect the functions of specific brain regions, in particular, the amygdala and the DLPFC. Methods The sample comprised 83 patients with AD, 70 patients with non-anxious depression (NAD), and 62 healthy controls (HC). All participants underwent genotyping for polymorphisms of GABAA receptor subunit genes, followed by a resting-state fMRI scan. The HAMD-17 was used to evaluate the severity of MDD. ANOVA was performed to obtain the difference in the imaging data, GABAA receptor multi-locus genetic profile scores (MGPS), and HAMD-17 scores among three groups, then the significant differences between AD and NAD groups were identified. Mediating effect analysis was used to explore the role of functional connectivity (FC) between the amygdala and DLPFC in the association between the GABAA receptor gene MGPS and AD clinical features. Results Compared with the NAD group, the AD group had a higher GABAA receptor MGPS. AD patients exhibited a negative correlation between the MGPS and FC of the right centromedial (CM) subregion, and the right middle frontal gyrus (MFG). A negative correlation was also observed between the MGPS and anxiety/somatic symptoms. More importantly, the right CM and right MFG connectivity mediated the association between the GABAA receptor MGPS and anxiety/somatic symptoms in patients with AD. Conclusion The decreased FC between the right MFG and right CM subregion mediates the association between GABAA receptor MGPS and AD.
Collapse
Affiliation(s)
- Juan Qiao
- Department of Psychology, Xuzhou East Hospital Affiliated to Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shiwan Tao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yurong Sun
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Jiabo Shi
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Shui Tian
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| | - Zhijian Yao
- Department of Psychiatry, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
- Nanjing Brain Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, People’s Republic of China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Li LJ, Mo Y, Shi ZM, Huang XB, Ning YP, Wu HW, Yang XH, Zheng W. Psilocybin for major depressive disorder: a systematic review of randomized controlled studies. Front Psychiatry 2024; 15:1416420. [PMID: 39376971 PMCID: PMC11456834 DOI: 10.3389/fpsyt.2024.1416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives The purpose of this systematic review of randomized controlled trials (RCTs) was to evaluate the effectiveness, safety, and tolerability of psilocybin in adult patients with major depressive disorder (MDD). Methods A systematic search (up to September 14, 2023) was conducted for RCTs that examined the efficacy, safety, and tolerability of psilocybin in physically healthy adult patients with MDD. Three independent researchers extracted data from publications where the primary outcome was a change in depressive symptoms, and key secondary outcomes were changes in anxiety symptoms and suicidal ideation, discontinuation rates for any reason, and adverse drug reactions (ADRs). Results Five RCTs with 472 adult patients with MDD on psilocybin (n = 274) and controls (n = 198) were included. Two of the five RCTs (40%) reported mixed results, while the other three (60%) found that psilocybin had a beneficial effect on MDD treatment. Four RCTs (80%) assessing the anxiolytic effects of psilocybin for treating MDD found that psilocybin was significantly more effective than the control group in improving anxiety symptoms. Psilocybin was more effective than the control group in improving suicidal ideation in one out of five RCTs. Discontinuation rates were similar for any reason between the psilocybin group (2-13%) and the control group (4-21%) (P > 0.05). Four RCTs (80%) reported ADRs in detail. The most common ADR in both groups was headache. Conclusion Psilocybin was effective in improving depressive symptoms in over half of the included studies and reduced anxiety symptoms in patients with MDD. The long-term efficacy and safety of psilocybin for MDD treatment needs to be further investigated in large RCTs.
Collapse
Affiliation(s)
- Li-Juan Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yu Mo
- Department of Psychology, The Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Zhan-Ming Shi
- Department of Psychology, Chongqing Jiangbei Mental Health Center, Chongqing, China
| | - Xing-Bing Huang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Hua-Wang Wu
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Kwaśny A, Kwaśna J, Wilkowska A, Szarmach J, Słupski J, Włodarczyk A, Cubała WJ. Ketamine treatment for anhedonia in unipolar and bipolar depression: a systematic review. Eur Neuropsychopharmacol 2024; 86:20-34. [PMID: 38917771 DOI: 10.1016/j.euroneuro.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 06/27/2024]
Abstract
Ketamine, an N-methyl-D-aspartate receptor antagonist, is a racemic mixture of esketamine and arketamine used to treat unipolar and bipolar depression. Preliminary reports indicate that it may be beneficial for depressed patients reporting symptoms of anhedonia. In this systematic review we aim to assess and analyze the existing body of evidence regarding the therapeutic effects of ketamine on the domain of anhedonia. Electronic databases (PubMed, APA Psycinfo and Web of Science) were searched from inception to November 2023. Protocol was registered in PROSPERO under the identifier CRD42023476603. A total of twenty-two studies, including four randomized-controlled trials and eighteen open-label trials were included. All studies reported alleviation of anhedonia symptoms following ketamine or esketamine administration, regardless of the number of infusions. Several important limitations were included, first and foremost low number of placebo-controlled randomized-controlled trials. This review indicates a potential anti-anhedonic effect of ketamine in patients with depression. Several trials used neuroimaging techniques which confirm ketamine's effect on functional connectivity correlating with the improvement in anhedonia. Despite considerable variations in methodology and the specific brain regions investigated, these studies collectively point towards ketamine's neuroplastic effects in mitigating anhedonia.
Collapse
Affiliation(s)
- Aleksander Kwaśny
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland.
| | - Julia Kwaśna
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Joanna Szarmach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Jakub Słupski
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Adam Włodarczyk
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Wiesław Jerzy Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
4
|
Fu L, Ren J, Lei X, Wang Y, Chen X, Zhang R, Li Q, Teng X, Guo C, Wu Z, Yu L, Wang D, Chen Y, Qin J, Yuan A, Zhang C. Association of anhedonia with brain-derived neurotrophic factor and interleukin-10 in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111023. [PMID: 38701878 DOI: 10.1016/j.pnpbp.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Anhedonia, a core symptom of major depressive disorder (MDD), manifests in two forms: anticipatory and consummatory, reflecting a diminished capacity to anticipate or enjoy pleasurable activities. Prior studies suggest that brain-derived neurotrophic factor (BDNF) and interleukin-10 (IL-10) may play key roles in the emergence of anhedonia in MDD. The specific relationships between these biomarkers and the two forms of anhedonia remain unclear. This study investigated the potential links between BDNF, IL-10, and both forms of anhedonia in MDD patients. METHODS This study included 43 participants diagnosed with MDD and 58 healthy controls. It involved detailed assessments of depression and anxiety levels, anticipatory and consummatory pleasure, cognitive functions, and a broad spectrum of plasma biomarkers, such as C-reactive protein, various interleukins, and BDNF. Using partial correlation, variables related to pleasant experiences were identified. Stepwise multiple linear regression analysis was applied to pinpoint the independent predictors of anhedonia in the MDD group. RESULTS Demographically, both groups were comparable in terms of age, sex, body mass index, educational year, and marital status. Individuals with MDD displayed markedly reduced levels of anticipatory and consummatory pleasure, higher anxiety, and depression scores compared to healthy controls. Additionally, cognitive performance was notably poorer in the MDD group. These patients also had lower plasma diamine oxidase levels. Analysis linked anhedonia to impaired delayed memory. Regression results identified IL-10 and BDNF as independent predictors of anticipatory and consummatory anhedonia, respectively. CONCLUSION These findings demonstrate that anticipatory and consummatory anhedonia are influenced by independent factors, thereby providing critical insights into the distinct neuroimmunological mechanisms that underlie various forms of anhedonia. Clinicl Trial Registration Number: NCT03790085.
Collapse
Affiliation(s)
- Lirong Fu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Ren
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Lei
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yewei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Teng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyue Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinmei Qin
- Mental Health Center of Xuhui District, Shanghai, China.
| | - Aihua Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Liang Y, You Z, Chen X, Liu G, Li W, Wang C, Lan X, Luo Z, Mai S, Zhang F, Zeng Y, Chen Y, Chen Y, Ning Y, Zhou Y. Long-term quality of life after repeated ketamine infusions in anxious and nonanxious patients with depression. J Affect Disord 2024; 349:394-399. [PMID: 38211748 DOI: 10.1016/j.jad.2024.01.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND There have been many studies on the benefits of repeated ketamine infusions on patients' depression but few on the impact of ketamine on patients' long-term quality of life (QoL). This study investigated long-term QoL in individuals with depression, both anxious and nonanxious. METHODS A total of 107 individuals with a diagnosis of depression were included in the study. The patients were evaluated on Days 0, 13 and 26 and Months 6 and 9, and they received six ketamine infusions over the course of two weeks. The World Health Organization Quality of Life-BREF (WHOQOL-BREF) Scale and the Patient Health Questionnaire-9 (PHQ-9) Scale were used to measure depressive symptoms and QoL. Linear mixed models were used to evaluate depressive symptoms and QoL during ketamine treatment. RESULTS A total of 67.2 % of patients were diagnosed with anxious depression. In the long term, there were no significant differences in the time-by-group interactions for general QoL (F = 0.510; P = 0.676), physical QoL (F = 2.092; P = 0.102), psychological QoL (F = 0.102; P = 0.959), social QoL (F = 2.180; P = 0.091), or environmental QoL (F = 1.849; P = 0.139) between the two groups. LIMITATIONS The main limitation of this study is its open-label design. CONCLUSION The improvement in depression symptoms and QoL following ketamine treatment was not impacted by the presence or absence of anxiety in patients who were depressed prior to treatment. Only occasionally did depressed individuals with anxiety experience a worsening of their quality of life compared to those without anxiety.
Collapse
Affiliation(s)
- Yanmei Liang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Zerui You
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyu Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Guanxi Liu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weicheng Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chengyu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Xiaofeng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Zhanjie Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Siming Mai
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Fan Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Yexian Zeng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Yifang Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China
| | - Yiying Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Metal Disorders, Guangzhou, China.
| |
Collapse
|
6
|
McIntyre RS, Alsuwaidan M, Baune BT, Berk M, Demyttenaere K, Goldberg JF, Gorwood P, Ho R, Kasper S, Kennedy SH, Ly-Uson J, Mansur RB, McAllister-Williams RH, Murrough JW, Nemeroff CB, Nierenberg AA, Rosenblat JD, Sanacora G, Schatzberg AF, Shelton R, Stahl SM, Trivedi MH, Vieta E, Vinberg M, Williams N, Young AH, Maj M. Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry 2023; 22:394-412. [PMID: 37713549 PMCID: PMC10503923 DOI: 10.1002/wps.21120] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Treatment-resistant depression (TRD) is common and associated with multiple serious public health implications. A consensus definition of TRD with demonstrated predictive utility in terms of clinical decision-making and health outcomes does not currently exist. Instead, a plethora of definitions have been proposed, which vary significantly in their conceptual framework. The absence of a consensus definition hampers precise estimates of the prevalence of TRD, and also belies efforts to identify risk factors, prevention opportunities, and effective interventions. In addition, it results in heterogeneity in clinical practice decision-making, adversely affecting quality of care. The US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have adopted the most used definition of TRD (i.e., inadequate response to a minimum of two antidepressants despite adequacy of the treatment trial and adherence to treatment). It is currently estimated that at least 30% of persons with depression meet this definition. A significant percentage of persons with TRD are actually pseudo-resistant (e.g., due to inadequacy of treatment trials or non-adherence to treatment). Although multiple sociodemographic, clinical, treatment and contextual factors are known to negatively moderate response in persons with depression, very few factors are regarded as predictive of non-response across multiple modalities of treatment. Intravenous ketamine and intranasal esketamine (co-administered with an antidepressant) are established as efficacious in the management of TRD. Some second-generation antipsychotics (e.g., aripiprazole, brexpiprazole, cariprazine, quetiapine XR) are proven effective as adjunctive treatments to antidepressants in partial responders, but only the olanzapine-fluoxetine combination has been studied in FDA-defined TRD. Repetitive transcranial magnetic stimulation (TMS) is established as effective and FDA-approved for individuals with TRD, with accelerated theta-burst TMS also recently showing efficacy. Electroconvulsive therapy is regarded as an effective acute and maintenance intervention in TRD, with preliminary evidence suggesting non-inferiority to acute intravenous ketamine. Evidence for extending antidepressant trial, medication switching and combining antidepressants is mixed. Manual-based psychotherapies are not established as efficacious on their own in TRD, but offer significant symptomatic relief when added to conventional antidepressants. Digital therapeutics are under study and represent a potential future clinical vista in this population.
Collapse
Affiliation(s)
- Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mohammad Alsuwaidan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Berk
- Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
- Deakin University IMPACT Institute, Geelong, VIC, Australia
| | - Koen Demyttenaere
- Department of Psychiatry, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Joseph F Goldberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Gorwood
- Department of Psychiatry, Sainte-Anne Hospital, Paris, France
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy and Center of Brain Research, Molecular Neuroscience Branch, Medical University of Vienna, Vienna, Austria
| | - Sidney H Kennedy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Josefina Ly-Uson
- Department of Psychiatry and Behavioral Medicine, University of The Philippines College of Medicine, Manila, The Philippines
| | - Rodrigo B Mansur
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - R Hamish McAllister-Williams
- Northern Center for Mood Disorders, Translational and Clinical Research Institute, Newcastle University, and Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Andrew A Nierenberg
- Dauten Family Center for Bipolar Treatment Innovation, Massachusetts General Hospital, Boston, MA, USA
| | - Joshua D Rosenblat
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gerard Sanacora
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Alan F Schatzberg
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Shelton
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen M Stahl
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Madhukar H Trivedi
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Eduard Vieta
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Maj Vinberg
- Mental Health Centre, Northern Zealand, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Nolan Williams
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan H Young
- Department of Psychological Medicine, King's College London, London, UK
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
7
|
Zheng W, Yang XH, Gu LM, Tan JQ, Zhou YL, Wang CY, Ning YP. A comparison of the antianhedonic effects of repeated ketamine infusions in melancholic and non-melancholic depression. Front Psychiatry 2022; 13:1033019. [PMID: 36620669 PMCID: PMC9813595 DOI: 10.3389/fpsyt.2022.1033019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Melancholic depression may respond differently to certain treatments. The aim of this study was to compare the antianhedonic effects of six intravenous injections of 0.5 mg/kg ketamine in patients with melancholic and non-melancholic depression, which remain largely unknown. METHODS Individuals experiencing melancholic (n = 30) and non-melancholic (n = 105) depression were recruited and assessed for anhedonic symptoms using the Montgomery-Åsberg Depression Rating Scale (MADRS). The presence of melancholic depression was measured with the depression scale items at baseline based on DSM-5 criteria. RESULTS A total of 30 (22.2%) patients with depression fulfilled the DSM-5 criteria for melancholic depression. Patients with melancholic depression had a non-significant lower antianhedonic response (43.3 vs. 50.5%, t = 0.5, p > 0.05) and remission (20.0 vs. 21.0%, t = 0.01, p > 0.05) to repeated-dose ketamine infusions than those with non-melancholic depression. The melancholic group had significantly lower MADRS anhedonia subscale scores than the non-melancholic group at day 26 (p < 0.05). CONCLUSION After six ketamine infusions, the improvement of anhedonic symptoms was found in both patients with melancholic and non-melancholic depression, and the efficacy was similar in both groups.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin-Hu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Mei Gu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Qiang Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan-Ling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng-Yu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|