1
|
Oliva V, Fico G, De Prisco M, Gonda X, Rosa AR, Vieta E. Bipolar disorders: an update on critical aspects. Lancet Reg Health Eur 2025; 48:101135. [DOI: 10.1016/j.lanepe.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Cao HL, Yu H, Xue R, Yang X, Ma X, Wang Q, Deng W, Guo WJ, Li ML, Li T. Convergence and divergence in neurostructural signatures of unipolar and bipolar depressions: Insights from surface-based morphometry and prospective follow-up. J Affect Disord 2024; 366:8-15. [PMID: 39173928 DOI: 10.1016/j.jad.2024.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is often misidentified as unipolar depression (UD) during its early stages, typically until the onset of the first manic episode. This study aimed to explore both shared and unique neurostructural changes in patients who transitioned from UD to BD during follow-up, as compared to those with UD. METHODS This study utilized high-resolution structural magnetic resonance imaging (MRI) to collect brain data from individuals initially diagnosed with UD. During the average 3-year follow-up, 24 of the UD patients converted to BD (cBD). For comparison, the study included 48 demographically matched UD patients who did not convert and 48 healthy controls. The MRI data underwent preprocessing using FreeSurfer, followed by surface-based morphometry (SBM) analysis to identify cortical thickness (CT), surface area (SA), and cortical volume (CV) among groups. RESULTS The SBM analysis identified shared neurostructural characteristics between the cBD and UD groups, specifically thinner CT in the right precentral cortex compared to controls. Unique to the cBD group, there was a greater SA in the right inferior parietal cortex compared to the UD group. Furthermore, no significant correlations were observed between cortical morphological measures and cognitive performance and clinical features in the cBD and UD groups. LIMITATIONS The sample size is relatively small. CONCLUSIONS Our findings suggest that while cBD and UD exhibit some common alterations in cortical macrostructure, numerous distinct differences are also present. These differences offer valuable insights into the neuropathological underpinnings that distinguish these two conditions.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Rui Xue
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wan-Jun Guo
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
3
|
Xu Y, Cheng X, Li Y, Shen H, Wan Y, Ping L, Yu H, Cheng Y, Xu X, Cui J, Zhou C. Shared and Distinct White Matter Alterations in Major Depression and Bipolar Disorder: A Systematic Review and Meta-Analysis. J Integr Neurosci 2024; 23:170. [PMID: 39344242 DOI: 10.31083/j.jin2309170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Identifying white matter (WM) microstructural similarities and differences between major depressive disorder (MDD) and bipolar disorder (BD) is an important way to understand the potential neuropathological mechanism in emotional disorders. Numerous diffusion tensor imaging (DTI) studies over recent decades have confirmed the presence of WM anomalies in these two affective disorders, but the results were inconsistent. This study aimed to determine the statistical consistency of DTI findings for BD and MDD by using the coordinate-based meta-analysis (CBMA) approach. METHODS We performed a systematic search of tract-based spatial statistics (TBSS) studies comparing MDD or BD with healthy controls (HC) as of June 30, 2024. The seed-based d-mapping (SDM) was applied to investigate fractional anisotropy (FA) changes. Meta-regression was then used to analyze the potential correlations between demographics and neuroimaging alterations. RESULTS Regional FA reductions in the body of the corpus callosum (CC) were identified in both of these two diseases. Besides, MDD patients also exhibited decreased FA in the genu and splenium of the CC, as well as the left anterior thalamic projections (ATP), while BD patients showed FA reduction in the left median network, and cingulum in addition to the CC. CONCLUSIONS The results highlighted that altered integrity in the body of CC served as the shared basis of MDD and BD, and distinct microstructural WM abnormalities also existed, which might induce the various clinical manifestations of these two affective disorders. The study was registered on PROSPERO (http://www.crd.york.ac.uk/PROSPERO), registration number: CRD42022301929.
Collapse
Affiliation(s)
- Yinghong Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Xiaodong Cheng
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Ying Li
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Hailong Shen
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yu Wan
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Liangliang Ping
- Department of Psychiatry, Xiamen Xianyue Hospital, 361012 Xiamen, Fujian, China
| | - Hao Yu
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan, China
| | - Jian Cui
- Department of Psychiatry, Shandong Daizhuang Hospital, 272075 Jining, Shandong, China
| | - Cong Zhou
- School of Mental Health, Jining Medical University, 272002 Jining, Shandong, China
- Department of Psychology, Affiliated Hospital of Jining Medical University, 272067 Jining, Shandong, China
| |
Collapse
|
4
|
Wu H, Zhang Q, Wan L, Chen Y, Zhang Y, Wang L, Jin S. Effect of γ-tACS on prefrontal hemodynamics in bipolar disorder: A functional near-infrared study. J Psychiatr Res 2024; 175:227-234. [PMID: 38744162 DOI: 10.1016/j.jpsychires.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES Transcranial alternating current stimulation (tACS) is a potential therapeutic psychiatric tool that has been shown to modulate clinical symptoms and brain function by inducing brain oscillations. However, direct evidence on the effects of gamma-tACS (γ-tACS) on Bipolar I Disorder (BD-I) is limited. In the present study we used functional near-infrared spectroscopy to explore prefrontal hemodynamic changes in BD-I patients receiving combined γ-tACS intervention in addition to pharmacological treatment. METHODS Only 39 male patients with BD-I in the acute manic phase were included, and they were randomly divided into an intervention group (n = 18) and a control group (n = 21). The intervention group received γ-tACS treatment on a weekday for a total of 10 sessions in the right prefrontal cortex and left prefrontal cortex. All participants were pretested (baseline) and posttested (2 weeks after) with questionnaires to assess clinical symptoms and cognitive abilities, and with functional near infrared spectroscopy (fNIRS) to assess spontaneous cortical hemodynamic activities. RESULTS Compared to the control group, the intervention group had greater increases in Montreal Cognitive Assessment (MoCA) scores, and greater decreases in Bech-Rafaelsen Mania Rating Scale (BRMS) scores. In the intervention group, functional connectivity (FC) was significantly greater in the left hemisphere. γ-tACS treatment resulted in a left hemispheric lateralization effect of resting state FC in BD-I patients, increasing the hemodynamic activity of the patient's left prefrontal cortex. CONCLUSIONS γ-tACS can improve cognitive impairment and mood symptoms with BD-I patients in an acute manic episode by enhancing FC in the patients' left prefrontal cortex.
Collapse
Affiliation(s)
- Huiling Wu
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| | - Qinghui Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| | - Li Wan
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China; Anhui Provincial Key Laboratory of Philosophy and Social Sciences for Intelligent Intervention of Adolescent Mental Health and Crisis, Anhui, 230061, China.
| | - Yaqun Chen
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| | - Yuyang Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| | - Long Wang
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| | - Shengchun Jin
- Affiliated Psychological Hospital of Anhui Medical University, Anhui Mental Health Center, Hefei Fourth People's Hospital, Hefei, Anhui, 230026, China; National Clinical Research Center for Mental Disorders-Anhui Branch, Hefei, Anhui, 230026, China; Anhui Clinical Research Center for Mental Disorders, Anhui, 230026, China
| |
Collapse
|
5
|
Kong N, Zhou F, Zhang F, Gao C, Wu L, Guo Y, Gao Y, Lin J, Xu M. Morphological and regional spontaneous functional aberrations in the brain associated with Crohn's disease: a systematic review and coordinate-based meta-analyses. Cereb Cortex 2024; 34:bhae116. [PMID: 38566507 DOI: 10.1093/cercor/bhae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Crohn's disease is an acknowledged "brain-gut" disorder with unclear physiopathology. This study aims to identify potential neuroimaging biomarkers of Crohn's disease. Gray matter volume, cortical thickness, amplitude of low-frequency fluctuations, and regional homogeneity were selected as indices of interest and subjected to analyses using both activation likelihood estimation and seed-based d mapping with permutation of subject images. In comparison to healthy controls, Crohn's disease patients in remission exhibited decreased gray matter volume in the medial frontal gyrus and concurrently increased regional homogeneity. Furthermore, gray matter volume reduction in the medial superior frontal gyrus and anterior cingulate/paracingulate gyri, decreased regional homogeneity in the median cingulate/paracingulate gyri, superior frontal gyrus, paracentral lobule, and insula were observed. The gray matter changes of medial frontal gyrus were confirmed through both methods: decreased gray matter volume of medial frontal gyrus and medial superior frontal gyrus were identified by activation likelihood estimation and seed-based d mapping with permutation of subject images, respectively. The meta-regression analyses showed a positive correlation between regional homogeneity alterations and patient age in the supplementary motor area and a negative correlation between gray matter volume changes and patients' anxiety scores in the medial superior frontal gyrus. These anomalies may be associated with clinical manifestations including abdominal pain, psychiatric disorders, and possibly reflective of compensatory mechanisms.
Collapse
Affiliation(s)
- Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Feini Zhou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Fan Zhang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yifan Guo
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yiyuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Jiangnan Lin
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Maosheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou 310006, China
| |
Collapse
|
6
|
Cattarinussi G, Pouya P, Grimaldi DA, Dini MZ, Sambataro F, Brambilla P, Delvecchio G. Cortical alterations in relatives of patients with bipolar disorder: A review of magnetic resonance imaging studies. J Affect Disord 2024; 345:234-243. [PMID: 37865341 DOI: 10.1016/j.jad.2023.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a severe mental disorder characterized by high heritability rates. Widespread brain cortical alterations have been reported in BD patients, mostly involving the frontal, temporal and parietal regions. Importantly, also unaffected relatives of BD patients (BD-RELs) present abnormalities in cortical measures, which are not influenced by disease-related factors, such as medication use and illness duration. Here, we collected all available evidence on cortical measures in BD-RELs to further our knowledge on the potential cortical alterations associated with the vulnerability and the resilience to BD. METHODS A search on PubMed, Web of Science and Scopus was performed to identify neuroimaging studies exploring cortical alterations in BD-RELs, including cortical thickness (CT), surface area (SA), gyrification (GI) and cortical complexity. Eleven studies were included. Of these, five assessed CT, five examined CT and SA and one explored CT, SA and GI. RESULTS Overall, a heterogeneous pattern of cortical alterations emerged. The areas more consistently linked with genetic liability for BD were the prefrontal and sensorimotor regions. Mixed evidence was reported in the temporal and cingulate areas. LIMITATIONS The small sample size and the heterogeneity in terms of methodologies and the characteristics of the participants limit the generalizability of our results. CONCLUSIONS Our findings suggest that the genetic liability for BD is related to reduced CT in the prefrontal cortex, which might be a marker of risk for BD, and increased CT within the sensorimotor cortex, which could represent a marker of resilience.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Parnia Pouya
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahta Zare Dini
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Wu Y, Zhong Y, Zhang G, Wang C, Zhang N, Chen Q. Distinct functional patterns in child and adolescent bipolar and unipolar depression during emotional processing. Cereb Cortex 2024; 34:bhad461. [PMID: 38044479 DOI: 10.1093/cercor/bhad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023] Open
Abstract
Accumulating evidence from functional magnetic resonance imaging studies supported brain dysfunction during emotional processing in bipolar disorder (BD) and major depressive disorder (MDD). However, child and adolescent BD and MDD could display different activation patterns, which have not been fully understood. This study aimed to investigate common and distinct activation patterns of pediatric BD (PBD) and MDD (p-MDD) during emotion processing using meta-analytic approaches. Literature search identified 25 studies, contrasting 252 PBD patients, and 253 healthy controls (HCs) as well as 311 p-MDD patients and 263 HCs. A total of nine meta-analyses were conducted pulling PBD and p-MDD experiments together and separately. The results revealed that PBD and p-MDD showed distinct patterns during negative processing. PBD patients exhibited activity changes in bilateral precuneus, left inferior parietal gyrus, left angular gyrus, and right posterior cingulate cortex while p-MDD patients showed functional disruptions in the left rectus, left triangular part of the inferior frontal gyrus, left orbital frontal cortex, left insula, and left putamen. In conclusion, the activity changes in PBD patients were mainly in regions correlated with emotion perception while the dysfunction among p-MDD patients was in the fronto-limbic circuit and reward-related regions in charge of emotion appraisal and regulation.
Collapse
Affiliation(s)
- Yun Wu
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Gui Zhang
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
| | - Chun Wang
- Psychiatry Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Ning Zhang
- Psychiatry Department, Nanjing Brain Hospital Affiliated to Nanjing Medical University, 264 Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Qingrong Chen
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, Jiangsu 210097, China
- Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing 210097, China
- Jiangsu International Collaborative Laboratory of Child and Adolescent Psychological Development and Crisis Intervention, Nanjing Normal University, 122 Ninghai Rd., Gulou District, Nanjing 210097, China
- Jiangsu Collaborative Innovation Center for Language Ability, School of Linguistic Sciences And Arts, Jiangsu Normal University, 57 Heping Road, Yunlong District, Xuzhou, Jiangsu 221009, China
| |
Collapse
|
8
|
Oliva V, De Prisco M, Fico G, Possidente C, Fortea L, Montejo L, Anmella G, Hidalgo-Mazzei D, Grande I, Murru A, Fornaro M, de Bartolomeis A, Dodd A, Fanelli G, Fabbri C, Serretti A, Vieta E, Radua J. Correlation between emotion dysregulation and mood symptoms of bipolar disorder: A systematic review and meta-analysis. Acta Psychiatr Scand 2023; 148:472-490. [PMID: 37740499 DOI: 10.1111/acps.13618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Emotion dysregulation (ED) is a transdiagnostic construct characterized by difficulties regulating intense emotions. People with bipolar disorder (BD) are more likely to show ED and use maladaptive emotion regulation strategies than adaptive ones. However, little is known about whether ED in BD is a trait or it is rather an epiphenomenon of mood symptoms. METHODS We conducted a systematic review and meta-analysis of the evidence across major literature databases reporting correlations between measures of emotion regulation (overall ED and different emotion regulation strategies) and measures of depressive and (hypo)manic symptoms in BD from inception until April 12th, 2022. RESULTS Fourteen studies involving 1371 individuals with BD were included in the qualitative synthesis, of which 11 reported quantitative information and were included in the meta-analysis. ED and maladaptive strategies were significantly higher during periods with more severe mood symptoms, especially depressive ones, while adaptive strategies were lower. CONCLUSION ED significantly correlates with BD symptomatology, and it mainly occurs during mood alterations. ED may be a target for specific psychotherapeutic and pharmacological treatments, according to precision psychiatry. However, further studies are needed, including patients with mood episodes and longitudinal design, to provide more robust evidence and explore the causal direction of the associations.
Collapse
Affiliation(s)
- Vincenzo Oliva
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele De Prisco
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Giovanna Fico
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Possidente
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lydia Fortea
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Montejo
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Gerard Anmella
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Hidalgo-Mazzei
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Iria Grande
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Murru
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michele Fornaro
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Alyson Dodd
- Department of Psychology, Faculty of Health & Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Radua
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
9
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
10
|
Zhu W, Chen X, Wu J, Li Z, Im H, Chen S, Deng K, Zhang B, Wei C, Feng J, Zhang M, Yang S, Wang H, Wang Q. Neuroanatomical and functional substrates of the hypomanic personality trait and its prediction on aggression. Int J Clin Health Psychol 2023; 23:100397. [PMID: 37560478 PMCID: PMC10407439 DOI: 10.1016/j.ijchp.2023.100397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
Hypomanic personality manifests a close link with several psychiatric disorders and its abnormality is a risk indicator for developing bipolar disorders. We systematically investigated the potential neuroanatomical and functional substrates underlying hypomanic personality trait (HPT) and its sub-dimensions (i.e., Social Vitality, Mood Volatility, and Excitement) combined with structural and functional imaging data as well as their corresponding brain networks in a large non-clinical sample across two studies (n = 464). Behaviorally, HPT, specifically Mood Volatility and Excitement, was positively associated with aggressive behaviors in both studies. Structurally, sex-specific morphological characteristics were further observed in the motor and top-down control networks especially for Mood Volatility, although HPT was generally positively associated with grey matter volumes (GMVs) in the prefrontal, temporal, visual, and limbic systems. Functionally, brain activations related to immediate or delayed losses were found to predict individual variability in HPT, specifically Social Vitality and Excitement, on the motor and prefrontal-parietal cortices. Topologically, connectome-based prediction model analysis further revealed the predictive role of individual-level morphological and resting-state functional connectivity on HPT and its sub-dimensions, although it did not reveal any links with general brain topological properties. GMVs in the temporal, limbic (e.g., amygdala), and visual cortices mediated the effects of HPT on behavioral aggression. These findings suggest that the imbalance between motor and control circuits may be critical for HPT and provide novel insights into the neuroanatomical, functional, and topological mechanisms underlying the specific temperament and its impacts on aggression.
Collapse
Affiliation(s)
- Wenwei Zhu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jie Wu
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Zixi Li
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Hohjin Im
- Department of Psychological Science, University of California, Irvine, CA 92697-7085, USA
| | - Shuning Chen
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Kun Deng
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Bin Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Chuqiao Wei
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Junjiao Feng
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Manman Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - Shaofeng Yang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Qiang Wang
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
- Tianjin Social Science Laboratory of Students’ Mental Development and Learning, Tianjin 300387, China
| |
Collapse
|
11
|
Cattarinussi G, Gugliotta AA, Sambataro F. The Risk for Schizophrenia-Bipolar Spectrum: Does the Apple Fall Close to the Tree? A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6540. [PMID: 37569080 PMCID: PMC10418911 DOI: 10.3390/ijerph20156540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric disorders that share clinical features and several risk genes. Important information about their genetic underpinnings arises from intermediate phenotypes (IPs), quantifiable biological traits that are more prevalent in unaffected relatives (RELs) of patients compared to the general population and co-segregate with the disorders. Within IPs, neuropsychological functions and neuroimaging measures have the potential to provide useful insight into the pathophysiology of SCZ and BD. In this context, the present narrative review provides a comprehensive overview of the available evidence on deficits in neuropsychological functions and neuroimaging alterations in unaffected relatives of SCZ (SCZ-RELs) and BD (BD-RELs). Overall, deficits in cognitive functions including intelligence, memory, attention, executive functions, and social cognition could be considered IPs for SCZ. Although the picture for cognitive alterations in BD-RELs is less defined, BD-RELs seem to present worse performances compared to controls in executive functioning, including adaptable thinking, planning, self-monitoring, self-control, and working memory. Among neuroimaging markers, SCZ-RELs appear to be characterized by structural and functional alterations in the cortico-striatal-thalamic network, while BD risk seems to be associated with abnormalities in the prefrontal, temporal, thalamic, and limbic regions. In conclusion, SCZ-RELs and BD-RELs present a pattern of cognitive and neuroimaging alterations that lie between patients and healthy individuals. Similar abnormalities in SCZ-RELs and BD-RELs may be the phenotypic expression of the shared genetic mechanisms underlying both disorders, while the specificities in neuropsychological and neuroimaging profiles may be associated with the differential symptom expression in the two disorders.
Collapse
Affiliation(s)
- Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alessio A. Gugliotta
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, 35131 Padova, Italy; (G.C.); (A.A.G.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| |
Collapse
|