1
|
Naseri M, Sadeghi S, Malekipirbazari M, Nurzhan S, Gabdrashova R, Bekezhankyzy Z, Khanbabaie R, Crape B, Shah D, Amouei Torkmahalleh M. Interaction of Cooking-Generated Aerosols on the Human Nervous System and the Impact of Caloric Restriction Post-Exposure. Nutrients 2024; 16:3525. [PMID: 39458519 PMCID: PMC11510529 DOI: 10.3390/nu16203525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The inhalation of cooking-generated aerosols could lead to translocation to the brain and impact its function; therefore, the effects of cooking-generated aerosols on healthy adults were investigated using an electroencephalograph (EEG) during the 2 h period post-exposure. Methods: To explore any changes from the impact of exposure to cooking-generated aerosols on the human brain due to the absence of food intake during exposure, we divided the study participants into three groups: (A) no food intake for 2 h (2 h-zero calorie intake), (B) non-zero calorie intake, and (C) control group (simulated cooking). Results: The ultrafine particle concentrations increased from 9.0 × 103 particles/cm3 at the background level to approximately 8.74 × 104 particles/cm3 during cooking. EEGs were recorded before cooking (step 1), 60 min after cooking (step 2), 90 min after cooking (step 3), and 120 min after cooking (step 4). Comparing the non-zero calorie group with the control group, it was concluded that exposure to cooking-generated aerosols resulted in a 12.82% increase in the alpha band two hours post-exposure, compared to pre-exposure. The results revealed that zero calorie intake after exposure mitigated the impacts of cooking-generated aerosols for the alpha, beta3, theta, and delta bands, while it exacerbated effects on the whole brain for the beta1 and beta2 bands. Conclusions: While these are short-term studies, long-term exposure to cooking-generated ultrafine particles can be established through successive short-term exposures. These results underscore the need for further research into the health impacts of cooking-generated aerosols and the importance of implementing strategies to mitigate exposure.
Collapse
Affiliation(s)
- Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Sahar Sadeghi
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Milad Malekipirbazari
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Sholpan Nurzhan
- Department of Biological Sciences, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Raikhangul Gabdrashova
- Department of Biological Sciences, School of Science and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhibek Bekezhankyzy
- Department of Chemistry, School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Khanbabaie
- Department of Physics, IKK Barber School of Arts and Sciences, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Byron Crape
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Dhawal Shah
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan; (M.N.)
| | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Abdillah SFI, You SJ, Wang YF. Characterizing sector-oriented roadside exposure to ultrafine particles (PM 0.1) via machine learning models: Implications of covariates influences on sectors variability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124595. [PMID: 39053804 DOI: 10.1016/j.envpol.2024.124595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Ultrafine particles (UFPs; PM0.1) possess intensified health risk due to their smaller size and unique spatial variability. One of major emission sources for UFPs is vehicle exhaust, which varies based on the traffic composition in each type of roadside sector. The current challenge of epidemiological UFPs study is limited characterization ability due to expensive instruments. This study assessed the UFPs particle number concentrations (UFPs PNC) exposure dose for typical healthy adults and children at three different roadside sectors, including industrial roadside (IN), residential roadside (RS), and urban background (UB). Furthermore, this study also developed and utilized machine learning (ML) algorithms that could accurately characterize the UFPs exposure dose and explain the covariates effects on the model outputs, representing the intra-urban variability of UFPs between sectors. It was found that the average inhaled UFPs dose for healthy adults and children during off-peak season (warm period) were 1.71 ± 0.19 × 1010; 1.28 ± 0.22 × 1010; 1.09 ± 0.18 × 1010 #/hour and 1.33 ± 0.15 × 1010; 0.99 ± 0.17 × 1010; 0.86 ± 0.14 × 1010 #/hour at IN, RS, UB. Inhaled UFPs were mainly deposited in tracheobronchial (TB) respiratory fraction for adults (67.7%) and in alveoli (ALV) fraction for children (67.5%). Among three ML algorithms implemented in this study, XGBoost possessed the highest UFPs PNC exposure dose estimation performances with R2 = 0.965; 0.959; 0.929 & RMSE = 0.79 × 108; 0.54 × 108; 0.15 × 105 #/hour at IN, RS, and UB which then followed by multiple linear regression (MLR), and random forest (RF). Furthermore, SHAP analysis from the XGBoost model has successfully pointed out the spatial variability of each roadside sector by quantifying the approximated contributions of covariates to the model's output. Findings in this study highlighted the potential use of ML models as an alternative for preliminary particle exposure source apportionment.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Civil Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Zhongli, Taoyuan, 32023, Taiwan.
| |
Collapse
|
3
|
Nieckarz Z, Pawlak K, Zoladz JA. Health risks for children exercising in an air-polluted environment can be reduced by monitoring air quality with low-cost particle sensors. Sci Rep 2023; 13:18261. [PMID: 37880283 PMCID: PMC10600107 DOI: 10.1038/s41598-023-45426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
A child's body is highly sensitive to air quality, especially regarding the concentration of particulate matter (PM). Nevertheless, due to the high cost of precision instruments, measurements of PM concentrations are rarely carried out in school areas where children spend most of their daily time. This paper presents the results of PM measurements made by a validated, low-cost university air pollution measurement system operating in a rural area near schools. An assessment of children's exposure to PM during school hours (8 a.m.-6 p.m.) at different times of the year was carried out. We show that PM10 concentrations in the air, particularly in winter, often exceeded the alert values of 50 µg m-3, posing a health risk to children, especially when children exercise outside the school building. We also calculated the rate and total PM10 deposition in the respiratory tract during various physical activities performed in clean and polluted air. Monitoring actual PM10 concentrations as presented in this paper, using a low cost sensors, offer school authorities and teachers an opportunity to reduce health risks for children. This can be achieved by adjusting the duration and exercise intensity of children's outdoor physical activities according to the measured air quality.
Collapse
Affiliation(s)
- Zenon Nieckarz
- Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348, Kraków, Poland.
| | - Krzysztof Pawlak
- Department of Zoology and Animal Welfare, Faculty of Animal Science, Agricultural University of Cracow, Kraków, Poland
| | - Jerzy A Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, ul. Skawińska 8, 31-066, Kraków, Poland
| |
Collapse
|
4
|
Madueño L, Kecorius S, Löndahl J, Schnelle-Kreis J, Wiedensohler A, Pöhlker M. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity. Part Fibre Toxicol 2022; 19:61. [PMID: 36109745 PMCID: PMC9476571 DOI: 10.1186/s12989-022-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Background Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose–response function for assessing health-related effects due to exposure to air pollution. Objective This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD. Methods A novel in situ method was applied to experimentally determine the RTD of BC particles among subjects in the highly polluted megacity of Metro Manila, Philippines. Exposure measurements were made for 40 volunteers during public transport and walking. Results The observed BC exposure concentration was up to 17-times higher than in developed regions. The deposition dose rate (DDR) of BC was up to 3 times higher during commute inside a public transport compared to walking (11.6 versus 4.4 μg hr−1, respectively). This is twice higher than reported in similar studies. The average BC mass deposition fraction (DF) was found to be 43 ± 16%, which can in large be described by individual factors and does not depend on gender. Conclusions Commuting by open-sided public transport, commonly used in developing regions, poses a significant health risk due to acquiring extremely high doses of carcinogenic traffic-related pollutants. There is an urgent need to drastically update air pollution mitigation strategies for reduction of dangerously high emissions of BC in urban setting in developing regions. The presented mobile measurement set-up to determine respiratory tract deposition dose is a practical and cost-effective tool that can be used to investigate respiratory deposition in challenging environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00501-x.
Collapse
|
5
|
Pan W, Chen X, Duan X, Xue Y, Jia L. Particulate matter exposure at urban traffic intersection during haze episodes: A case study in Changsha. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156006. [PMID: 35595146 DOI: 10.1016/j.scitotenv.2022.156006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Urban intersection has been identified as a major contributor to the total personal exposure and short-term high exposure of particulate matter (PM) in modern cities. The main aim of this study was to get a better understanding of the determinants of traffic-related PM temporal variations and personal exposure to PMs at a viaduct-covered intersection controlled by traffic signals during the winter haze episodes. A two-day field sampling campaign was conducted with a portable device during evening rush hour and measured the PMs in the 0.3-10 μm size range both on the surface crosswalk and underground passage. PM variations and related cumulative respiratory deposition dose (RDD) along two routes with six road crossing scenarios were estimated on a severe pollution day and a typical day for both adults and children, respectively. The PM concentration on the severe pollution day ranged 59.2-67.9 μg/m3 for PM1, 163.8-257.0 μg/m3 for PM2, and 258.2-469.1 μg/m3 for PM10, respectively, as compared to 47.9-57.9 μg/m3for PM1, 112.7-199.8 μg/m3 for PM2, and 151.0-301.0 μg/m3 for PM10 on the typical day, respectively. The variability could be explained largely by the built-up environment, traffic component, signal setting, and ventilation condition. Our data suggest that an appropriate setting of the traffic signal would help reduce the personal exposure dose on the surface crosswalk at urban intersections and the ventilation condition had a significant influence on local PM distributions inside the underground passage. Results here provide possible suggestions for the future design of a walkable city.
Collapse
Affiliation(s)
- Wei Pan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, PR China; School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, PR China; School of Information and Management, Guangxi Medical University, Nanning 530021, PR China.
| | - Xiaolu Chen
- School of Information and Management, Guangxi Medical University, Nanning 530021, PR China
| | - Xiaojun Duan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Yu Xue
- School of Physical Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Lisi Jia
- Department of Information and Electromechanical Engineering, Guangxi Agricultural Vocational University, Nanning 530007, PR China
| |
Collapse
|
6
|
Morawska L, Buonanno G, Mikszewski A, Stabile L. The physics of respiratory particle generation, fate in the air, and inhalation. NATURE REVIEWS. PHYSICS 2022; 4:723-734. [PMID: 36065441 PMCID: PMC9430019 DOI: 10.1038/s42254-022-00506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Given that breathing is one of the most fundamental physiological functions, there is an urgent need to broaden our understanding of the fluid dynamics that governs it. There would be many benefits from doing so, including a better assessment of respiratory health, a basis for more precise delivery of pharmaceutical drugs for treatment, and the understanding and potential minimization of respiratory infection transmission. We review the physics of particle generation in the respiratory tract, the fate of these particles in the air on exhalation and the physics of particle inhalation. The main focus is on evidence from experimental studies. We conclude that although there is qualitative understanding of the generation of particles in the respiratory tract, a basic quantitative knowledge of the characteristics of the particles emitted during respiratory activities and their fate after emission, and a theoretical understanding of particle deposition during inhalation, nevertheless the general understanding of the entire process is rudimentary, and many open questions remain.
Collapse
Affiliation(s)
- Lidia Morawska
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Giorgio Buonanno
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Alex Mikszewski
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| |
Collapse
|
7
|
Wei W, Qi J, Yin Y, Gong J, Yao X. Characteristics of inhalable bioaerosols on foggy and hazy days and their deposition in the human respiratory tract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119593. [PMID: 35680068 DOI: 10.1016/j.envpol.2022.119593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric bioaerosols contain live and dead biological components that can enter the human respiratory tract (HRT) and affect human health. Here, the total microorganisms in a coastal megacity, Qingdao, were characterized on the basis of long-term observations from October 2013 to January 2021. Particular attention was given to the size dependence of inhalable bioaerosols in concentration and respiratory deposition in different populations on foggy and hazy days. Bioaerosol samples stained with 4,6-diamidino-2-phenylindole (DAPI) were selected to measure the total airborne microbe (TAM) concentrations with an epifluorescence microscope, while a multiple-path particle dosimetry model was employed to calculate respiratory deposition. The mean TAM concentrations in the particle size range of 0.65-1.1 μm (TAM0.65-1.1) were 1.23, 2.02, 1.60 and 2.33 times those on sunny reference days relative to the corresponding values on days with slight, mild, moderate and severe levels of haze, respectively. The mean concentration of TAMs in the particle size range of 0.65-2.1 μm (TAM0.65-2.1) on severely hazy days was (2.02 ± 3.28) × 105 cells/m3, with a reduction of 4.16% relative to that on the reference days. The mean TAM0.65-2.1 concentration changed from (1.50 ± 1.37) × 105 cells/m3 to (1.76 ± 1.36) × 105 cells/m3, with TAM0.65-1.1 increasing from (7.91 ± 7.97) × 104 cells/m3 to (1.76 ± 1.33) × 105 cells/m3 on days with light fog days and medium fog, respectively. The modeling results showed that the majority of TAM0.65-2.1 deposition occurred in the extrathoracic (ET) region, followed by the alveolar (AL) region. When different populations were examined separately, the deposition doses (DDs) in adult females and in children ranked at the minimum value (6.19 × 103 cells/h) and maximum value (1.08 × 104 cells/h), respectively. However, the inhalation risks on polluted days, such as hazy, foggy and mixed hazy-foggy (HF) days, were still below the threshold for adverse impacts on human health.
Collapse
Affiliation(s)
- Wenshu Wei
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| | - Yidan Yin
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Jing Gong
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| | - Xiaohong Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China
| |
Collapse
|
8
|
Characteristics of PM10 Levels Monitored in Bangkok and Its Vicinity Areas, Thailand. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The ambient air concentrations of PM10 were observed in Bangkok and its vicinity areas including Nonthaburi and Nakhon Pathom, Thailand. The selected study areas are located near heavy-traffic roads with a high concentration of traffic-related air pollution. The ambient air samples were collected in the winter season (October 2019 to February 2020). The highest average level of PM10 was found in Nonthaburi (66.63 µg/m3), followed by Bangkok (56.79 µg/m3) and Nakhon Pathom (40.18 µg/m3), respectively. The morphology of these particles is typically spherical and irregular shape particles. At the sampling site in Bangkok, these particles are primarily composed of C, O, and Si, and a certain amount of metals such as Fe, Cu, and Cr. Some trace amount of other elements such as Ca, Na, and S are present in minor concentration. The particles collected from Nakhon Pathom and Nonthaburi sampling sites contain the main abundant elements C, O, and Si, followed by Cu, Cr, S, Fe, Ca, and Na, respectively. These particles are an agglomeration of carbon particles resulting from the incomplete combustion of organic matter. Their origin may be associated with road dust, vehicle emission, and the erosion of building products. It can be noted that the levels and characteristics of PM10 are key factors in understanding the behavior of the particles in not only atmospheric visibility but also human health risks.
Collapse
|
9
|
Lommel M, Froese V, Sieber M, Jentzsch M, Bierewirtz T, Hasirci Ü, Rese T, Seefeldt J, Schimek S, Kertzscher U, Paschereit CO. Novel measurement system for respiratory aerosols and droplets in indoor environments. INDOOR AIR 2021; 31:1860-1873. [PMID: 34096643 PMCID: PMC8242391 DOI: 10.1111/ina.12860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.
Collapse
Affiliation(s)
- Michael Lommel
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Vera Froese
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Moritz Sieber
- Institute of Fluid Dynamics and Technical AcousticsHermann‐Föttinger‐InstituteChair of Fluid DynamicsTU BerlinStraße des 17. Juni, 135BerlinBerlin10623Germany
| | - Marvin Jentzsch
- Institute of Fluid Dynamics and Technical AcousticsHermann‐Föttinger‐InstituteChair of Fluid DynamicsTU BerlinStraße des 17. Juni, 135BerlinBerlin10623Germany
| | - Tim Bierewirtz
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Ümit Hasirci
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Tim Rese
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Josef Seefeldt
- Institute of Fluid Dynamics and Technical AcousticsHermann‐Föttinger‐InstituteChair of Fluid DynamicsTU BerlinStraße des 17. Juni, 135BerlinBerlin10623Germany
| | - Sebastian Schimek
- Institute of Fluid Dynamics and Technical AcousticsHermann‐Föttinger‐InstituteChair of Fluid DynamicsTU BerlinStraße des 17. Juni, 135BerlinBerlin10623Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics LaboratoryInstitute for Imaging Science and Computational Modelling in Cardiovascular MedicineCharité – Universitätsmedizin BerlinAugustenburger Platz 1BerlinBerlin13353Germany
| | - Christian Oliver Paschereit
- Institute of Fluid Dynamics and Technical AcousticsHermann‐Föttinger‐InstituteChair of Fluid DynamicsTU BerlinStraße des 17. Juni, 135BerlinBerlin10623Germany
| |
Collapse
|
10
|
Zoladz JA, Nieckarz Z. Marathon race performance increases the amount of particulate matter deposited in the respiratory system of runners: an incentive for " clean air marathon runs". PeerJ 2021; 9:e11562. [PMID: 34178455 PMCID: PMC8214849 DOI: 10.7717/peerj.11562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background In the last decades, marathon running has become a popular form of physical activity among people around the world. It should be noticed that the main marathon races are performed in large cities, where air quality varies considerably. It is well established that breathing polluted air results in a number of harmful effects to the human body. However, there have been no studies to show the impact of marathon run performance on the amount of the deposition of varied fractions of airborne particulate matter (PM) in the respiratory tract of runners. This is why the present study sought to determine the impact of marathon run performance in the air of varying quality on the deposition of the PM1, PM2.5, PM10 in the respiratory tract in humans. Methods The PM1, PM2.5 and PM10 deposition was determined in an “average runner” (with marathon performance time 4 h: 30 min) and in an “elite marathon runner” (with marathon performance time 2 h: 00 min) at rest, and during a marathon race, based on own measurements of the PM content in the air and the size-resolved DF(d) profile concept. Results We have shown that breathing air containing 50 µg m−3 PM10 (a borderline value according to the 2006 WHO standard - still valid) at minute ventilation (VE) equal to 8 L min−1 when at rest, resulted in PM10deposition rate of approximately 9 µg h−1, but a marathon run of an average marathon runner with the VE = 62 L min−1 increased the deposition rate up to 45 µg h−1. In the elite runner, marathon run with the VE= 115 L min−1 increased PM10 deposition rate to 83 µg h−1. Interestingly, breathing the air containing 50 µg m−3of PM10 at the VE = 115 L min−1by the elite marathon runner during the race resulted in the same PM10deposition rate as the breathing highly polluted air containing as much as 466 µg m−3 of PM10 when at rest. Furthermore, the total PM10 deposition in the respiratory tract during a marathon race in average runners is about 22% greater (203 / 166 = 1.22) than in elite runners. According to our calculations, the concentration of PM10in the air during a marathon race that would allow one not to exceed the PM10 deposition rate of 9 µg h−1should be lower than 10 µg m−3 in the case of an average runner, and it should be lower than 5.5 µg m−3 in the case of an elite runner. Conclusions We conclude that a marathon run drastically increases the rate of deposition of the airborne PM in the respiratory tract of the runners, as a consequence of the huge VE generated during the race. A decrease of the PM content in the air attenuates this rate. Based on our calculations, we postulate that the PM10 content in the air during a “clean air marathon run”, involving elite marathon runners, should be below 5.5 µg m−3.
Collapse
Affiliation(s)
- Jerzy A Zoladz
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education, Kraków, Poland
| | - Zenon Nieckarz
- Experimental Computer Physics Department, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
He HD, Gao HO. Particulate matter exposure at a densely populated urban traffic intersection and crosswalk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115931. [PMID: 33187848 DOI: 10.1016/j.envpol.2020.115931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 05/24/2023]
Abstract
Exposure to elevated particulate matter (PM) pollution is of great concern to both the general public and air quality management agencies. At urban traffic intersections, for example, pedestrians are often at a higher risk of exposure to near-source PM pollution from traffic while waiting on the roadside or while walking in the crosswalk. This study offers an in-depth investigation of pedestrian exposure to PM pollution at an urban traffic intersection. Fixed-site measurements near an urban intersection were conducted to examine the variations in particles of various sizes through traffic signal cycles. This process aids in the identification of major PM dispersion patterns on the roadside. In addition, mobile measurements of pedestrian exposure to PM were conducted across six time intervals that correspond to different segments of a pedestrian's journey when passing through the intersection. Measurement results are used to estimate and compare the cumulative deposited doses of PM by size categories and journey segments for pedestrians at an intersection. Furthermore, comparisons of pedestrian exposure to PM on a sunny day and a cloudy day were analyzed. The results indicate the importance of reducing PM pollution at intersections and provide policymakers with a foundation for possible measures to reduce pedestrian PM exposure at urban traffic intersections.
Collapse
Affiliation(s)
- Hong-di He
- Center for Intelligent Transportation Systems and Unmanned Aerial Systems Applications Research, State-Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - H Oliver Gao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA; Center for Transportation, Environment, and Community Health, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Guo L, Salimi F, Wang H, Hofmann W, Johnson GR, Toelle BG, Marks GB, Morawska L. Experimentally determined deposition of ambient urban ultrafine particles in the respiratory tract of children. ENVIRONMENT INTERNATIONAL 2020; 145:106094. [PMID: 32932065 DOI: 10.1016/j.envint.2020.106094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 05/06/2023]
Abstract
A critical element of the risk assessment of exposure to airborne ambient ultrafine particles (UFP) is the quantification of respiratory tract deposition (RTD) of the particles, which is intrinsically challenging, particularly at the population scale. In this study, we used a recently proposed method to experimentally determine the RTD of urban UFP in a large group of children exposed to these particles in a school setting in Brisbane, Australia. Children are one of the most susceptible population groups; However, little is known about the deposition of UFP from urban traffic in their airways. In order to advance the knowledge in this field, the objectives of this study were: to determine the deposition of ambient urbane UFP in large number children, to catergorize the source of inhaled UFPs and hence to assess the contribution of air pollution sources to the deposition. RTD was measured in children aged 8-11 at primary schools using a flow-through chamber bag system. First, the inhaled and exhaled air was separated; then the particle number size distribution and particle number concentration were measured. The sources of inhaled UFP were categorized according to their particle number size distribution by a K means cluster technique. A total of 128 children from five schools performed the RTD measurement. The mean total deposition fraction of urban UFP in all children was 0.59 ± 0.10. Inhaled UFP were categorized into two groups: traffic and urban background, with the GMD of corresponding particle number size distribution of 20 nm and 40 nm, respectively. The total deposition fraction (mean ± SD) of UFP from these two groups was 0.68 ± 0.09 for traffic and 0.55 ± 0.08 for urban background respectively. This is the first study in which RTD was measured in a large group of children inhaling real urban UFP. First, we proved that this novel method can indeed be applied easily and quickly to a large group of people. Second, we quantified the RTD of children, thus providing an important input to the risk assessment for exposure to UFP.
Collapse
Affiliation(s)
- Lingli Guo
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Fahard Salimi
- University Centre for Rural Health-North Coast, The University of Sydney, Australia
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China
| | - Werner Hofmann
- Department of Chemistry and Physics of Materials, University of Salzburg, A-5020 Salzburg, Austria
| | - Graham R Johnson
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Brett G Toelle
- Respiratory & Environmental Epidemiology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia; Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - Guy B Marks
- Respiratory & Environmental Epidemiology, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia; South Western Sydney Clinical School, University of New South Wale, Randwick, NSW 2052s, Australia; Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia; JNU-QUT Joint Laboratory for Air Quality Science and Management, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
13
|
Mao N, An CK, Guo LY, Wang M, Guo L, Guo SR, Long ES. Transmission risk of infectious droplets in physical spreading process at different times: A review. BUILDING AND ENVIRONMENT 2020; 185:107307. [PMID: 33519041 PMCID: PMC7832643 DOI: 10.1016/j.buildenv.2020.107307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 05/10/2023]
Abstract
Droplets provide a well-known transmission media in the COVID-19 epidemic, and the particle size is closely related to the classification of the transmission route. However, the term "aerosol" covers most particle sizes of suspended particulates because of information asymmetry in different disciplines, which may lead to misunderstandings in the selection of epidemic prevention and control strategies for the public. In this review, the time when these droplets are exhaled by a patient was taken as the initial time. Then, all available viral loads and numerical distribution of the exhaled droplets was analyzed, and the evaporation model of droplets in the air was combined with the deposition model of droplet nuclei in the respiratory tract. Lastly, the perspective that physical spread affects the transmission risk of different size droplets at different times was summarized for the first time. The results showed that although the distribution of exhaled droplets was dominated by small droplets, droplet volume was proportional to the third power of particle diameter, meaning that the viral load of a 100 μm droplet was approximately 106 times that of a 1 μm droplet at the initial time. Furthermore, the exhaled droplets are affected by heat and mass transfer of evaporation, water fraction, salt concentration, and acid-base balance (the water fraction > 98%), which lead them to change rapidly, and the viral survival condition also deteriorates dramatically. The time required for the initial diameter (do) of a droplet to shrink to the equilibrium diameter (de, about 30% of do) is approximately proportional to the second power of the particle diameter, taking only a few milliseconds for a 1 μm droplet but hundreds of milliseconds for a 10 μm droplet; in other words, the viruses carried by the large droplets can be preserved as much as possible. Finally, the infectious droplet nuclei maybe inhaled by the susceptible population through different and random contact routes, and the droplet nuclei with larger de decompose more easily into tiny particles on account of the accelerated collision in a complex airway, which can be deposited in the higher risk alveolar region. During disease transmission, the infectious droplet particle size varies widely, and the transmission risk varies significantly at different time nodes; therefore, the fuzzy term "aerosol" is not conducive to analyzing disease exposure risk. Recommendations for epidemic prevention and control strategies are: 1) Large droplets are the main conflict in disease transmission; thus, even if they are blocked by a homemade mask initially, it significantly contains the epidemic. 2) The early phase of contact, such as close-contact and short-range transmission, has the highest infection risk; therefore, social distancing can effectively keep the susceptible population from inhaling active viruses. 3) The risk of the fomite route depends on the time in contact with infectious viruses; thus, it is important to promote good health habits (including frequent hand washing, no-eye rubbing, coughing etiquette, normalization of surface cleaning), although blind and excessive disinfection measures are not advisable. 4) Compared with the large droplets, the small droplets have larger numbers but carry fewer viruses and are more prone to die through evaporation.
Collapse
Affiliation(s)
- N Mao
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - C K An
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - L Y Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - M Wang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - L Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - S R Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - E S Long
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, Pereira MC, Teixeira JP, Costa C. Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM 10, PM 2.5 and ultrafine particles among newborn children and their mothers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137293. [PMID: 32092813 DOI: 10.1016/j.scitotenv.2020.137293] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Accurate assessment of particulate matter (PM) dose and respiratory deposition is essential to better understand the risks of exposure to PM and, consequently, to develop the respective risk-control strategies. In homes, this is especially relevant in regards to ultrafine particles (UFP; <0.1 μm) which origin in these environments is mostly due to indoor sources. Thus, this study aimed to estimate inhalation doses for different PM mass/number size fractions (i.e., PM10, PM2.5 and UFP) in indoor air of residential homes and to quantify the deposition (total, regional and lobar) in human respiratory tract for both newborn children and mothers. Indoor real-time measurements of PM10, PM2.5 and UFP were conducted in 65 residential homes situated in Oporto metropolitan area (Portugal). Inhalation doses were estimated based on the physical characteristics of individual subjects and their activity patterns. The multi-path particle dosimetry model was used to quantify age-specific depositions in human respiratory tract. The results showed that 3-month old infants exhibited 4-fold higher inhalation doses than their mothers. PM10 were primarily deposited in the head region (87%), while PM2.5 and UFP depositions mainly occurred in the pulmonary area (39% and 43%, respectively). Subject age affected the pulmonary region and the total lung deposition; higher deposition being observed among the newborns. Similarly, lower lobes (left lobe: 37% and right lobe: 30%) received higher PM deposition than upper and middle lobes; right lobes lung are prone to be more susceptible to respiratory problems, since asymmetric deposition was observed. Considering that PM-related diseases occur at specific sites of respiratory system, quantification of site-specific particle deposition should be predicted in order to better evidence the respective health outcomes resulting from inhaled PM.
Collapse
Affiliation(s)
- Joana Madureira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal.
| | - Klara Slezakova
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Ana Inês Silva
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal; ICBAS-Institute of Biomedical Sciences Abel Salazar, U. Porto-University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruna Lage
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Ana Mendes
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Lívia Aguiar
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal
| |
Collapse
|