1
|
Cazzola M, Rogliani P, Matera MG. Might It Be Appropriate to Anticipate the Use of Long-Acting Muscarinic Antagonists in Asthma? Drugs 2023:10.1007/s40265-023-01897-2. [PMID: 37303017 PMCID: PMC10322754 DOI: 10.1007/s40265-023-01897-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
A growing number of clinical trials are documenting that adding a long-acting muscarinic antagonist (LAMA) to established asthma treatment with an inhaled corticosteroid (ICS) and a long-acting β2-agonist (LABA) is a treatment option that improves the health of patients with uncontrolled severe asthma even when therapy is optimized. These favorable results are the reason why the leading guidelines recommend triple therapy with ICS + LABA + LAMA in patients with asthma uncontrolled by medium- to high-dose ICS-LABA. However, we suggest adding LAMAs to ICS-LABAs at an earlier clinical stage. Such action could positively influence airflow limitation, exacerbations, and eosinophilic inflammation, conditions that are associated with acetylcholine (ACh) activity. It could also interrupt the vicious cycle related to a continuous release of ACh leading to the progressive expansion of neuronal plasticity resulting in small airway dysfunction. The utility of an earlier use of triple therapy in asthma should, in any case, be confirmed by statistically powered trials.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Cazzola M, Braido F, Calzetta L, Matera MG, Piraino A, Rogliani P, Scichilone N. The 5T approach in asthma: Triple Therapy Targeting Treatable Traits. Respir Med 2022; 200:106915. [PMID: 35753188 DOI: 10.1016/j.rmed.2022.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Using a therapeutic strategy that is free from traditional diagnostic labels and based on the identification of "treatable traits" (TTs), which are influential in clinical presentations in each patient, might overcome the difficulties in identifying and validating asthma phenotypes and endotypes. Growing evidence is documenting the importance of using the triple therapy with ICS, LABA, and LAMAs in a single inhaler (SITT) in cases of asthma not controlled by ICS/LABA and in the prevention of exacerbations. The identification of TTs may overcome the possibility of using SITT without considering the specific needs of the patient. In effect, it allows a treatment strategy that is closer to the precision strategy now widely advocated for the management of patients with asthma. There are different TTs in asthma that may benefit from treatment with SITT, regardless of guideline recommendations. The airflow limitation and small airway dysfunction are key TTs that are present in different phenotypes/endotypes, do not depend on the degree of T2 inflammation, and respond better than other treatments to SITT. We suggest that the 5T (Triple Therapy Targeting Treatable Traits) approach should be applied to the full spectrum of asthma, not just severe asthma, and, consequently, SITT should begin earlier than currently recommended.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Fulvio Braido
- Department of Allergy and Respiratory Diseases, University of Genoa, Genoa, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessio Piraino
- Respiratory Area, Medical Affairs, Chiesi Italia, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Abstract
ABSTRACT This article discusses recent updates on the clinical management of asthma and outlines ways for nurses to engage patients in the management of their disease.
Collapse
Affiliation(s)
- Christine M Galante
- Christine M. Galante has practiced in acute, primary, and long-term care, and has worked in nursing education
| |
Collapse
|
4
|
Sánchez J, Morales E, Santamaria LC, Acevedo AM, Calle A, Olivares M, Gomez C, Amaya D, Cardona R. IgE, blood eosinophils and FeNO are not enough for choosing a monoclonal therapy among the approved options in patients with type 2 severe asthma. World Allergy Organ J 2021; 14:100520. [PMID: 33747341 PMCID: PMC7941083 DOI: 10.1016/j.waojou.2021.100520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 02/03/2021] [Indexed: 01/28/2023] Open
Abstract
Type-2 inflammation is the most frequent endophenotype of asthma. Different biomarkers have been proposed to identify this inflammation because highly effective therapies have improved type-2 severe asthma control. We investigated the frequency of some biomarkers of type-2 inflammation (total IgE, sIgE, blood eosinophil, and FeNO) in the framework of severe asthma and assessed its ability to help us to choose the best biological therapy for each patient. Different scenarios (sensitivity analysis) were evaluated according to the biomarkers proposed for each biological therapy in 72 patients with type-2 severe asthma. Between 54.1% and 68% of patients could receive at least 2 different biological therapies and 34.7%-40.2% could receive any of the 3 types of therapies (anti-IgE, anti-eosinophil, anti-IL4). Biomarkers help to identify type-2 severe asthma but total IgE, sIgE, blood eosinophil, and FeNO are not enough to select 1 specific therapy. With the increasing arrival of new biological therapies, it is necessary to identify new biomarkers that allow us to improve our selection criteria for the best therapy for each patient or to construct a prediction rule.
Collapse
Affiliation(s)
- Jorge Sánchez
- Clinical and Experimental Allergology Group, Clinic “IPS Universitaria”, University of Antioquia, Medellín, Colombia
- Clínic “Unidad Alergológica”, Medellín, Colombia
| | | | - Luis-Carlos Santamaria
- Clinical and Experimental Allergology Group, Clinic “IPS Universitaria”, University of Antioquia, Medellín, Colombia
| | | | - Ana Calle
- Clinical and Experimental Allergology Group, Clinic “IPS Universitaria”, University of Antioquia, Medellín, Colombia
| | | | | | - Daniel Amaya
- Clínic “Unidad Alergológica”, Medellín, Colombia
| | - Ricardo Cardona
- Clinical and Experimental Allergology Group, Clinic “IPS Universitaria”, University of Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. Treatable Mechanisms in Asthma. Mol Diagn Ther 2021; 25:111-121. [PMID: 33570719 PMCID: PMC7956930 DOI: 10.1007/s40291-021-00514-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Asthma is a heterogeneous condition, but firm identification of heterogeneity-focused treatments is still lacking. Dividing patients into subgroups of asthma pheno-/endotypes based on combined clinical and cellular biological characteristics and linking them to targeted treatments could be a potentially useful approach to personalize therapy for better outcomes. Nonetheless, there are still many problems related to the identification and validation of asthma phenotypes and endotypes. Alternatively, a precision-medicine strategy for the management of patients with airways disease that is free from the traditional diagnostic labels and based on identifying "treatable traits" in each patient might be preferable. However, it would represent a quite unsophisticated approach because the definition of a treatable trait is too imprecise. In fact, there is still no understanding of the mechanisms underlying treatable traits that allow directing any targeted therapies against any particular treatable trait. Fortunately, in-depth identification of underlying molecular pathways to guide targeted treatment in individual patients is in progress thanks to the improvement in big data management obtained from '-omic' sciences that is greatly increasing knowledge concerning asthma.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Josuel Ora
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Francesco Cavalli
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
6
|
Postigo M, Hall CS, Castro M. Predicting the Response to Bronchial Thermoplasty: The Needier, the Better. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:1261-1262. [PMID: 32276691 DOI: 10.1016/j.jaip.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Maykol Postigo
- University of Kansas School of Medicine, Kansas City, Kan
| | - Chase S Hall
- University of Kansas School of Medicine, Kansas City, Kan
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Kan.
| |
Collapse
|
7
|
Wu Q, Jorde I, Kershaw O, Jeron A, Bruder D, Schreiber J, Stegemann-Koniszewski S. Resolved Influenza A Virus Infection Has Extended Effects on Lung Homeostasis and Attenuates Allergic Airway Inflammation in a Mouse Model. Microorganisms 2020; 8:microorganisms8121878. [PMID: 33260910 PMCID: PMC7761027 DOI: 10.3390/microorganisms8121878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic airway inflammation (AAI) involves T helper cell type 2 (Th2) and pro-inflammatory responses to aeroallergens and many predisposing factors remain elusive. Influenza A virus (IAV) is a major human pathogen that causes acute respiratory infections and induces specific immune responses essential for viral clearance and resolution of the infection. Beyond acute infection, IAV has been shown to persistently affect lung homeostasis and respiratory immunity. Here we asked how resolved IAV infection affects subsequently induced AAI. Mice infected with a sublethal dose of IAV were sensitized and challenged in an ovalbumin mediated mouse model for AAI after resolution of the acute viral infection. Histological changes, respiratory leukocytes, cytokines and airway hyperreactivity were analyzed in resolved IAV infection alone and in AAI with and without previous IAV infection. More than five weeks after infection, we detected persistent pneumonia with increased activated CD4+ and CD8+ lymphocytes as well as dendritic cells and MHCII expressing macrophages in the lung. Resolved IAV infection significantly affected subsequently induced AAI on different levels including morphological changes, respiratory leukocytes and lymphocytes as well as the pro-inflammatory cytokine responses, which was clearly diminished. We conclude that IAV has exceptional persisting effects on respiratory immunity with substantial consequences for subsequently induced AAI.
Collapse
Affiliation(s)
- Qingyu Wu
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Ilka Jorde
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Andreas Jeron
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (A.J.); (D.B.)
- Immune Regulation Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (Q.W.); (I.J.); (J.S.)
- Correspondence:
| |
Collapse
|
8
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|