1
|
Gong XS, Liu X, Zhou J. Unique hierarchical NiFe-LDH/Ni/NiCo 2S 4 heterostructure arrays on nickel foam for the improvement of overall water splitting activity. NANOSCALE 2025; 17:5301-5315. [PMID: 39883034 DOI: 10.1039/d4nr05248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCo2S4/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCo2S4 nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCo2S4 nanoneedles during water electrolysis. The integration of effective HER Ni nanoparticles into OER NiFe-LDH and NiCo2S4 electrocatalysts can not only overcome the disadvantage of their poor electrical conductivity, but also greatly improve their HER and OER activities, owing to the unique hierarchical heterostructure and multicomponent synergies among Ni, NiFe-LDH, and NiCo2S4. Consequently, this electrode shows better OER performance with ultra-low overpotential of 192 mV at 10 mA cm-2, a small Tafel slope of only 37 mV dec-1 and high stability in comparison with commercial RuO2, and also exhibits excellent HER activity with a low overpotential of 83 mV at 10 mA cm-2. More importantly, the NiFe-LDH/Ni/NiCo2S4/NF composite serves as anode and cathode for overall water splitting, and it requires a low cell potential of only 1.53 V to reach a current density of 10 mA cm-2, which evidently exceeds that of the standard Pt-C/NF//RuO2/NF cell of 1.61 V. This work provides a feasible strategy to prepare high-efficiency, low-cost and non-precious metal-based electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Xi-Song Gong
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
2
|
Silva JO, Cartagena S, Calderón JA. NOVEL ELECTRODEPOSITED NiFeP/Zn BIFUNCTIONAL CATALYTIC COATING FOR ALKALINE WATER SPLITTING. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Zhang X, Yi H, Jin M, Lian Q, Huang Y, Ai Z, Huang R, Zuo Z, Tang C, Amini A, Jia F, Song S, Cheng C. In Situ Reconstructed Zn doped Fe x Ni (1- x ) OOH Catalyst for Efficient and Ultrastable Oxygen Evolution Reaction at High Current Densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203710. [PMID: 35961949 DOI: 10.1002/smll.202203710] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Developing FeOOH as a robust electrocatalyst for high output oxygen evolution reaction (OER) remains challenging due to its low conductivity and dissolvability in alkaline conditions. Herein, it is demonstrated that the robust and high output Zn doped NiOOH-FeOOH (Zn-Fex Ni(1-x) )OOH catalyst can be derived by electro-oxidation-induced reconstruction from the pre-electrocatalyst of Zn modified Ni metal/FeOOH film supported by nickel foam (NF). In situ Raman and ex situ characterizations elucidate that the pre-electrocatalyst undergoes dynamic reconstruction occurring on both the catalyst surface and underneath metal support during the OER process. That involves the Fe dissolution-redeposition and the merge of Zn doped FeOOH with in situ generated NiOOH from NF support and NiZn alloy nanoparticles. Benefiting from the Zn doping and the covalence interaction of FeOOH-NiOOH, the reconstructed electrode shows superior corrosion resistance, and enhanced catalytic activity as well as bonding force at the catalyst-support interface. Together with the feature of superaerophobic surface, the reconstructed electrode only requires an overpotential of 330 mV at a high-current-density of 1000 mA cm-2 and maintains 97% of its initial activity after 1000 h. This work provides an in-depth understanding of electrocatalyst reconstruction during the OER process, which facilitates the design of high-performance OER catalysts.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Hao Yi
- School of Artificial Intelligence, Wuchang University of Technology, Wuhan, Hubei, 430223, China
| | - Mengtian Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qing Lian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Huang
- College of Science, Hohai Univeisity, Nanjing, 210098, China
| | - Zhong Ai
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Runqing Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ziteng Zuo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmei Tang
- College of Science, Hohai Univeisity, Nanjing, 210098, China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, NSW, 2751, Australia
| | - Feifei Jia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Ma L, Liu Q, Zhu H, Liu L, Kang C, Ji Z. Flower-like Ni 3Sn 2@Ni 3S 2 with core-shell nanostructure as electrode material for supercapacitors with high rate and capacitance. J Colloid Interface Sci 2022; 626:951-962. [PMID: 35835045 DOI: 10.1016/j.jcis.2022.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 01/17/2023]
Abstract
To enhance the specific capacitance as well as maintain satisfactory rate performance of nickel hydroxide and nickel sulfide, in this work, the ultra-fine nickel-tin nanoparticles with high conductivity are selected to synthesize Ni3Sn2@Ni(OH)2 and Ni3Sn2@Ni3S2 nanoflowers. Alloy as the core material improves the electrical conductivity of the composite, and the nanosheets prepared by electrochemical corrosion effectively avoid aggregation as well as increase the active sites of the electrode material. By adjusting the corrosion time, the Ni3Sn2@Ni(OH)2 with better morphology displays a high specific capacitance (1277.37C g-1 at 1 A g-1) and good rate performance (1028C g-1 at 20 A g-1). After sulfurization, the optimal Ni3Sn2@Ni3S2 perfectly retains the morphological characterizations of the precursor and exhibits ultra-high specific capacitance (1619.02C g-1 at 1 A g-1) as well as outstanding rate performance (1312C g-1 at 20 A g-1). The samples before and after vulcanization both have the excellent electrochemical properties, which is attributed to the rational design and construction of the alloy-based core-shell nanostructures. Besides, the all-solid-state hybrid supercapacitor (HSC) is assembled by Ni3Sn2@Ni3S2 as the positive electrode and activated carbon as the negative electrode, displaying outstanding energy density of 70.54 Wh kg-1 at 808.67 W kg-1 and excellent cycling stability (93.21 % after 10,000 cycles). This work provides a novel ingenuity for synthesizing high-performance supercapacitor electrodes.
Collapse
Affiliation(s)
- Lin Ma
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Huijuan Zhu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chenxia Kang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhongling Ji
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Chat-Wilk K, Rudnik E, Włoch G, Osuch P. Codeposition of zinc with nickel from gluconate solutions. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05205-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Shaban M, Almohammedi A, Saad R, El Sayed AM. Design of SnO 2:Ni,Ir Nanoparticulate Photoelectrodes for Efficient Photoelectrochemical Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:453. [PMID: 35159796 PMCID: PMC8839913 DOI: 10.3390/nano12030453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 12/25/2022]
Abstract
Currently, hydrogen generation via photocatalytic water splitting using semiconductors is regarded as a simple environmental solution to energy challenges. This paper discusses the effects of the doping of noble metals, Ir (3.0 at.%) and Ni (1.5-4.5 at.%), on the structure, morphology, optical properties, and photoelectrochemical performance of sol-gel-produced SnO2 thin films. The incorporation of Ir and Ni influences the position of the peaks and the lattice characteristics of the tetragonal polycrystalline SnO2 films. The films have a homogeneous, compact, and crack-free nanoparticulate morphology. As the doping level is increased, the grain size shrinks, and the films have a high proclivity for forming Sn-OH bonds. The optical bandgap of the un-doped film is 3.5 eV, which fluctuates depending on the doping elements and their ratios to 2.7 eV for the 3.0% Ni-doped SnO2:Ir Photoelectrochemical (PEC) electrode. This electrode produces the highest photocurrent density (Jph = 46.38 mA/cm2) and PEC hydrogen production rate (52.22 mmol h-1cm-2 at -1V), with an Incident-Photon-to-Current Efficiency (IPCE% )of 17.43% at 307 nm. The applied bias photon-to-current efficiency (ABPE) of this electrode is 1.038% at -0.839 V, with an offset of 0.391% at 0 V and 307 nm. These are the highest reported values for SnO2-based PEC catalysts. The electrolyte type influences the Jph values of photoelectrodes in the order Jph(HCl) > Jph(NaOH) > Jph(Na2SO4). After 12 runs of reusability at -1 V, the optimized photoelectrode shows high stability and retains about 94.95% of its initial PEC performance, with a corrosion rate of 5.46 nm/year. This research provides a novel doping technique for the development of a highly active SnO2-based photoelectrocatalyst for solar light-driven hydrogen fuel generation.
Collapse
Affiliation(s)
- Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Abdullah Almohammedi
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Rana Saad
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Adel M. El Sayed
- Department of Physics, Faculty of Science, Fayoum University, El-Fayoum 63514, Egypt;
| |
Collapse
|
7
|
|
8
|
Zhang H, Feng Z, Wang L, Li D, Xing P. Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production. NANOTECHNOLOGY 2020; 31:365701. [PMID: 32413873 DOI: 10.1088/1361-6528/ab9396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, an effective approach is proposed to replace the oxygen evolution reaction with the substituted anodic hydrazine oxidation reaction (HzOR) to assist in hydrogen generation based on a bifunctional porous Ni-Zn electrocatalyst with nanosheet arrays. The Ni-Zn catalyst exhibits an extraordinary HzOR performance with a high current density of 970 mA cm-2 at 0.7 V, and 93.8% of its initial activity after 5000 s, simultaneously delivering an overpotential of 68 mV at 10 mA cm-2 for the hydrogen evolution reaction. Moreover, the electrolytic cell is constructed employing Ni-Zn catalysts as both the anode and cathode, achieving 100 mA cm-2 at an ultralow cell voltage of 0.497 V with an outstanding stability over 10 h. The superior electrocatalytic performance can be ascribed to its porous structure with large active surface area, high electrical conductivity, and most importantly the super-aerophobic nature of the Ni-Zn surface. This work also provides a novel approach to designing and constructing porous structured non-noble metal bifunctional electrocatalysts with super-aerophobic surface to be used for energy-saving hydrogen production.
Collapse
Affiliation(s)
- Han Zhang
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Asseli R, Benaicha M, Derbal S, Allam M, Dilmi O. Electrochemical nucleation and growth of Zn-Ni alloys from chloride citrate-based electrolyte. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Li X, Tang Y, Li S, Gui Y. Spectroscopic properties and activated mechanism of NO on isolated cationic tantalum clusters: A first-principles study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:335-341. [PMID: 30909090 DOI: 10.1016/j.saa.2019.03.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/18/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
The adsorption and dissociation of NO on the cationic Ta15+ cluster were investigated using the density-functional theory (DFT) calculations, and the Ta-centered bicapped hexagonal antiprism (BHA) structure of cationic Ta15+ cluster can be identified as the global minimum, which reproduces well the infrared multiple photo dissociation (IR-MPD) spectrum. Our results show that the cationic BHATa15+ cluster provides the hollow region for NO to interact effectively, and possess larger adsorption strength on the region than other sites. The density of states, charge density differences and frontier molecular orbitals were analyzed to understand the electronic properties of the stable NO-adsorbed isomers. The characteristic IR peaks of the firstly two low-lying isomers are properly assigned, in which the strongest IR peak originates from the N - O stretching vibration. For the dissociation of NO on the BHATa15+ cluster, it is found that the reaction path II easily occurs rather than path I due to small reaction barrier, and the cluster may possess the great catalytic behavior to dissociate NO molecule. The present results will inevitably stimulate future theoretical and experimental studies for the design of novel Ta-based catalytic materials for the NO dissociation.
Collapse
Affiliation(s)
- Xiaojun Li
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, China.
| | - Yongqiang Tang
- School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Shuna Li
- School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Yangyang Gui
- School of Chemical Engineering, Xi'an University, Xi'an, China
| |
Collapse
|
11
|
Shaban M, Kholidy I, Ahmed GM, Negem M, Abd El-Salam HM. Cyclic voltammetry growth and characterization of Sn–Ag alloys of different nanomorphologies and compositions for efficient hydrogen evolution in alkaline solutions. RSC Adv 2019; 9:22389-22400. [PMID: 35519441 PMCID: PMC9066623 DOI: 10.1039/c9ra03503f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
Electrodeposition of silver, tin and their alloys from different aqueous electrolytes suffer from various environmental issues and deposits are affected by H2 evolution and metal oxide formation.
Collapse
Affiliation(s)
- Mohamed Shaban
- Nanophotonics and Applications Lab
- Physics Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef 62514
| | - Islam Kholidy
- Nanophotonics and Applications Lab
- Physics Department
- Faculty of Science
- Beni-Suef University
- Beni-Suef 62514
| | - Ghada M. Ahmed
- Chemistry Department
- Faculty of Science Fayoum University
- Fayoum 63514
- Egypt
| | - Mosaad Negem
- Chemistry Department
- Faculty of Science Fayoum University
- Fayoum 63514
- Egypt
| | | |
Collapse
|
12
|
Xu F, Wang H, He XD, Deng N, Li F, Li B, Xie JH, Han SK, He JB. One-step deposition of Ni Cu1− alloys with both composition gradient and morphology evolution by bipolar electrochemistry. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Chu M, Wang L, Li X, Hou M, Li N, Dong Y, Li X, Xie Z, Lin Y, Cai W, Zhang C. Carbon coated nickel - Nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.140] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Cho MK, Lim A, Lee SY, Kim HJ, Yoo SJ, Sung YE, Park HS, Jang JH. A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells. J ELECTROCHEM SCI TE 2017. [DOI: 10.33961/jecst.2017.8.3.183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Composition-performance relationship of Ni x Cu y nanoalloys as hydrogen evolution electrocatalyst. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|