1
|
Bouteloup V, Villain N, Vidal JS, Gonzalez-Ortiz F, Yuksekel I, Santos C, Schraen-Maschken S, Pellegrin I, Lehmann S, Blennow K, Chêne G, Hanon O, Dufouil C, Planche V. Cognitive Phenotyping and Interpretation of Alzheimer Blood Biomarkers. JAMA Neurol 2025:2831276. [PMID: 40181683 PMCID: PMC11971688 DOI: 10.1001/jamaneurol.2025.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/16/2025] [Indexed: 04/05/2025]
Abstract
Importance Blood phosphorylated tau 217 (p-tau217) showed good performance in predicting brain amyloidosis. However, the importance of detailed cognitive phenotyping in patients without dementia when interpreting p-tau217 results remains unclear. Objective To assess whether accuracy, negative predictive value (NPV), and positive predictive value (PPV) in predicting brain amyloidosis using p-tau217 varies across clinical presentations in patients without dementia. Design, Setting, and Participants The study design included 2 observational, prospective cohort studies: The Cohort of Outpatients From French Research Memory Centers in Order to Improve Knowledge on Alzheimer's Disease and Related Disorders (MEMENTO), with enrollment from 2011 to 2014 and 5 years of follow-up, and the Biomarker of Amyloid Peptide and Alzheimer's Disease Risk (BALTAZAR) cohort study, with enrollment from 2010 to 2015 and 3 years of follow-up. Both are multicenter cohorts conducted in French memory clinics. Participants without dementia were included for analysis if they had baseline blood p-tau217 measurement and a known amyloid status through cerebrospinal fluid amyloid β (Aβ)-42/Aβ-40 ratio or positron emission tomography. They presented with either subjective cognitive impairment (SCI), mild cognitive impairment (MCI) with a common Alzheimer disease (AD) phenotype (cAD-MCI: amnestic syndrome of hippocampal type, posterior cortical atrophy, or logopenic primary progressive aphasia), or MCI with uncommon AD or other phenotypes (uAD-MCI). Data were analyzed from May to September 2024. Exposures Blood p-tau217 concentrations. Main Outcomes and Measures Brain amyloidosis probabilities were derived from p-tau217 logistic regressions including age, gender, and APOE genotype. Published and internally developed cut points with 90% sensitivity and specificity were used. Results A total of 776 participants from the MEMENTO cohort (N = 2323 participants) and 193 participants from the BALTAZAR cohort (N = 1040) were included in this analysis. In the MEMENTO cohort (median [IQR] age, 71 [65-76] years; 444 female [57%]), brain amyloidosis prevalence was 16.5% (20 of 121) in SCI, 45.9% (78 of 170) in cAD-MCI, and 24.5% (119 of 485) in uAD-MCI. Area under the receiver operating characteristic curve for predicting brain amyloidosis with p-tau217 models was 0.78 (95% CI, 0.66-0.89), 0.91 (95% CI, 0.86-0.95), and 0.87 (95% CI, 0.84-0.91) in the SCI, cAD-MCI, and uAD-MCI subgroups, respectively. External cut points resulted in a PPV of 60.0%, 90.0%, and 74.5% in the SCI, cAD-MCI, and uAD-MCI subgroups, respectively. NPV ranged from 84.2% to 90.2%. With internally developed cut points, PPVs were 52.6%, 84.0%, and 72.3% in the SCI, cAD-MCI, and uAD-MCI subgroups, respectively. NPVs were high (91.7%-94.6%) in all subgroups. Rates of incident dementia strongly increased with the probability of brain amyloidosis in the cAD-MCI subgroup. Replicated analyses in the BALTAZAR cohort provided similar results. Conclusions and Relevance Results from 2 clinical cohorts suggest that amyloid prevalence varied across cognitive phenotypes and was associated with the diagnostic performance of blood p-tau217 models to determine brain amyloidosis. Comprehensive cognitive phenotyping beyond the basic characterization of SCI, MCI, or dementia should accompany the use of blood biomarkers in clinical practice to avoid misdiagnosis due to false positives.
Collapse
Affiliation(s)
- Vincent Bouteloup
- Bordeaux Population Health, University of Bordeaux, Inserm, UMR1219, Bordeaux, France
- CIC 1401 EC, Pôle Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Nicolas Villain
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau–ICM, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Paris, France
| | - Jean Sebastien Vidal
- Memory Resource and Research Centre of Paris-Broca-Ile de France, APHP, Hôpitaux Universitaires Paris Centre, Hospital Broca, Paris, France
- Université Paris Cité, EA 4468, Paris, France
| | - Fernando Gonzalez-Ortiz
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Idil Yuksekel
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau–ICM, Paris, France
| | - Cristiano Santos
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Isabelle Pellegrin
- Laboratory of Immunology and Immunogenetics, Resources Biological Center, CHU Bordeaux, Bordeaux, France
- Univ. Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, INM INSERM, CHU Montpellier, Montpellier, France
| | - Kaj Blennow
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau–ICM, Paris, France
- Inst. of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Geneviève Chêne
- Bordeaux Population Health, University of Bordeaux, Inserm, UMR1219, Bordeaux, France
- CIC 1401 EC, Pôle Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Olivier Hanon
- Memory Resource and Research Centre of Paris-Broca-Ile de France, APHP, Hôpitaux Universitaires Paris Centre, Hospital Broca, Paris, France
- Université Paris Cité, EA 4468, Paris, France
| | - Carole Dufouil
- Bordeaux Population Health, University of Bordeaux, Inserm, UMR1219, Bordeaux, France
- CIC 1401 EC, Pôle Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Vincent Planche
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, UMR 5293, Bordeaux, France
- Pôle de Neurosciences Cliniques, Centre Mémoire de Ressources et de Recherche, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Duan S, Cai T, Chen L, Wang X, Zhang S, Han B, Lim EG, Hoettges K, Hu Y, Song P. An integrated paper-based microfluidic platform for screening of early-stage Alzheimer's disease by detecting Aβ42. LAB ON A CHIP 2025; 25:512-523. [PMID: 39803675 DOI: 10.1039/d4lc00748d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve. Once the test sample is added, the test reagents are sequentially transferred to the test area in the order set by the enzyme-linked immunosorbent assay (ELISA) protocol. In addition, the RAPID can remotely control the operation of the μPAD valve via a micro-servomotor, quantify the signals generated, display the results, and wirelessly transmit the data to a smartphone. To calibrate the RAPID, we performed a sandwich ELISA for Aβ42 in artificial plasma, and obtained a low limit of detection (LOD) of 9.6 pg mL-1, a coefficient of determination (COD) of 0.994, and an individual assay time of ∼30 minutes. In addition, we simulated 24 artificial samples to quantify Aβ42 protein concentrations in artificial plasma samples. The results show good consistency between the conventional ELISA and RAPID detection. The experimental results demonstrate that the RAPID is expected to promote further popularization of the screening of early-stage AD.
Collapse
Affiliation(s)
- Sixuan Duan
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Tianyu Cai
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Lizhe Chen
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Xiaoyan Wang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Shuailong Zhang
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bing Han
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Eng Gee Lim
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Kai Hoettges
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| | - Yong Hu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China
| | - Pengfei Song
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
- Department of Electrical and Electronic Engineering, University of Liverpool, Liverpool, L69 7ZX, UK
| |
Collapse
|
3
|
Sola A, Sandberg A, Pham C, Revier A, Hebinck M, Penney A, Caviedes P, Kumar S, Granholm AC, Linseman DA, Paredes DA. Polyamine biosynthesis dysregulation in Alzheimer's disease and Down syndrome cellular models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635912. [PMID: 39974945 PMCID: PMC11838436 DOI: 10.1101/2025.01.31.635912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Individuals with Down Syndrome (DS) frequently develop early onset Alzheimer's disease (AD) with pathological hallmarks closely resembling AD due to several triplicated genes on chromosome 21. Polyamines are small, organic molecules that play a pivotal role for growth and differentiation, and a dysregulation of polyamine pathways is implicated in AD pathology. However, their role in DS-associated AD is unclear. METHODS We analyzed polyamines and their metabolite levels in mouse hippocampal cells and human DS-AD and AD hippocampal tissue and assessed the effects of the ODC inhibitor difluoromethylornithine (DFMO) on Aβ42 aggregation and protein expression in DS fibroblasts. RESULTS Amyloid-β42 increased polyamine levels via ornithine decarboxylase (ODC) activation in a dose-dependent manner. DFMO reduced Aβ42 aggregation, decreased amyloid precursor protein (APP) levels, and normalized proteins linked to AD pathology in DS fibroblasts. Polyamine levels were elevated in DS-AD hippocampal tissue, with colocalization of ODC and Aβ42 aggregates. CONCLUSION These findings suggest that polyamine biosynthesis may exacerbate Aβ42 toxicity and APP expression, contributing to AD progression in DS. The ability of DFMO to reduce Aβ42 aggregation and restore protein homeostasis presents the polyamine pathway as a therapeutic target for DS-AD management.
Collapse
Affiliation(s)
- Andres Sola
- Department of Chemistry and Biochemistry, DU, Denver, CO 80208, USA
| | - Alex Sandberg
- Department of Biological Sciences, University of Denver (DU), Denver, CO 80208, USA
- Knoebel Institute for Healthy Aging, DU, Denver, CO 80208, USA
| | - Caitlin Pham
- Department of Biological Sciences, University of Denver (DU), Denver, CO 80208, USA
| | | | - Mia Hebinck
- Department of Chemistry and Biochemistry, DU, Denver, CO 80208, USA
- Knoebel Institute for Healthy Aging, DU, Denver, CO 80208, USA
| | | | - Pablo Caviedes
- Program of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile
- Center for Biotechnology & Bioengineering (CeBiB), Dept. of Chemical Engineering, Biotechnology & Materials, Faculty of Physical & Mathematical Sciences, University of Chile
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, DU, Denver, CO 80208, USA
- Knoebel Institute for Healthy Aging, DU, Denver, CO 80208, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, Anschutz Medical Campus. Colorado University, Aurora CO 80045, USA
| | - Daniel A Linseman
- Department of Biological Sciences, University of Denver (DU), Denver, CO 80208, USA
- Knoebel Institute for Healthy Aging, DU, Denver, CO 80208, USA
| | - Daniel A Paredes
- Knoebel Institute for Healthy Aging, DU, Denver, CO 80208, USA
- Department of Electrical and Computer Engineering, DU, Denver, CO 80208, USA
| |
Collapse
|
4
|
Wei M, Yu X, Hu S, Hu W, Shi R, Wang M, Zhong J, Zhang Q, Zhang Y, Li C, Song Z, Jiang J, Han Y. Differences of longitudinal plasma biomarkers between single memory domain and multidomain subject cognitive decline: Evidence from SILCODE. J Alzheimers Dis 2025; 103:1060-1074. [PMID: 39791252 DOI: 10.1177/13872877241309105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks. OBJECTIVE To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear. METHODS The 347 individuals were involved, including 93 normal controls (NC), 76 single memory domain SCD (sd-SCD), 79 multidomain SCD (md-SCD), 55 mild cognitive impairment and 44 dementia. We investigated plasma biomarkers (Aβ42/40, p-tau181, p-tau217, NfL, and GFAP) and neuropsychological scales in the baseline and follow-up. The Kaplan-Meier survival analysis and Cox proportional hazards model were performed to investigate the risk of cognitive decline conversion. The t-test, Mann-Whitney U and multiple linear regression analysis were employed to evaluate the rate of change and correlation between PET-SUVR and plasma biomarker change. RESULTS In cognitively normal subjects, md-SCD exhibited lower Aβ42/40 and higher p-tau181 and p-tau217 levels. Kaplan-Meier survival analysis revealed that md-SCD group exhibited a higher risk of cognitive decline conversion compared to NC and sd-SCD. Within SCD subgroups, those with positive GFAP status showed higher conversion risk than negative. In the Cox model, the risk of conversion in the md-SCD group was 2.77 times higher than sd-SCD. The md-SCD group demonstrated a faster rate of Aβ42/40 decline than sd-SCD. CONCLUSIONS The study utilized plasma biomarkers to highlight the significance of staging in SCD. In cognitively normal subjects, md-SCD presents a higher risk of cognitive decline than sd-SCD, providing a valuable reference and convenient tool for early identification of individuals at risk for AD.
Collapse
Affiliation(s)
- Min Wei
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shimin Hu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenjing Hu
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rong Shi
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiayi Zhong
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qi Zhang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Zhang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chenyang Li
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ziyan Song
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Hainan, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- The Central Hospital of Karamay, Xinjiang, China
| |
Collapse
|
5
|
Fang K, Pishva E, Piers T, Scholpp S. Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease. J Cell Sci 2025; 138:JCS263526. [PMID: 39907042 PMCID: PMC11832185 DOI: 10.1242/jcs.263526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.
Collapse
Affiliation(s)
- Kevin Fang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, University Maastricht, 6229 ER Maastricht, The Netherlands
| | - Thomas Piers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Exeter EX2 5DW, UK
| | - Steffen Scholpp
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
6
|
Liu Z, He Y, Cui S, Dang L, Zhang B, Wang J, Lu W, Huo K, Jiang Y, Chen C, Gao L, Wei S, Zhao Y, Hu N, Wang J, Lv H, Qu Q, Shang S. Hypertension moderates the relationship between plasma beta-amyloid and cognitive impairment: a cross-sectional study in Xi'an, China. Front Aging Neurosci 2025; 17:1532676. [PMID: 39935870 PMCID: PMC11810958 DOI: 10.3389/fnagi.2025.1532676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Background Plasma beta-amyloid (Aβ) are important biomarkers for Alzheimer's disease and cognitive impairment (CI), but results are controversial. It remains unclear whether hypertension modulates their relationship. This cross-sectional study investigates whether hypertension moderates the relationship between plasma Aβ and cognitive impairment (CI). Methods This cross-sectional study included 1488 subjects ≥ 40 years from rural areas of northwestern China. CI was defined as a Mini-Mental State Examination score lower than the cutoff. Firstly, plasma Aβ40, Aβ42, Aβ42/Aβ40 were analyzed as restricted cubic spline. Then, categories of combined plasma Aβ were created by making bisection of plasma Aβ according to average and combining them as L-Aβ40 and L-Aβ42, H-Aβ40 and L-Aβ42, L-Aβ40 and H-Aβ42, H-Aβ40 and H-Aβ42. Decreased plasma Aβ40 was defined as < 25th percentile. Multivariate logistic regression examined the relationship between plasma Aβ and CI in total population, the hypertension subgroup and the non-hypertension subgroup. Results 737 participants (49.5%) had hypertension and 189 participants (12.7%) had CI. Simultaneously elevated plasma Aβ40 and Aβ42 was associated with CI in hypertension (H-Aβ40 and H-Aβ42 vs. L-Aβ40 and L-Aβ42, 21.1% vs.10.7%, P = 0.033; OR = 1.984 [95% CI, 1.067-3.691], P = 0.030) but not in the non-hypertension. Decreased plasma Aβ40 was associated with CI in the non-hypertension (14.9% vs. 9.2%, P = 0.026; OR = 1.728 [95% CI, 1.018-2.931], P = 0.043) but not in the hypertension. Conclusion Hypertension is an important modulator in the relationship between plasma Aβ and CI. Simultaneously elevated plasma Aβ40 and Aβ42 in the hypertension, and decreased plasma Aβ40 in the non-hypertension, may be risk factors for CI. These findings emphasize the need to consider hypertension in CI detection.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaoli He
- Department of Neurology, Baoji Central Hospital, Baoji, China
| | - Simeng Cui
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Binyan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhui Lu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingyi Wang
- Department of Neurology, Huyi Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Hong Lv
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Alvarez-Sanchez L, Pereto M, Garcia-Valles L, Balaguer A, Pena-Bautista C, Ferre-Gonzalez L, Baquero M, Pericas CC. Fast Declining Prediction in Alzheimer's Disease from Early Clinical Assessment. Curr Neuropharmacol 2025; 23:602-611. [PMID: 39473253 DOI: 10.2174/011570159x332930240925095423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 04/11/2025] Open
Abstract
INTRODUCTION The heterogenicity in Alzheimer's Disease (AD) progression hinders individual prognosis. The present work is an observational 2-year longitudinal study in patients with mild cognitive impairment due to AD (n = 52, with positive CSF biomarkers). The aim of this study is to predict which patients are at risk of fast progression. For this, 3 neuropsychological tests based on different domains (clinical dementia, cognition, delayed memory) and the sum of them were used. METHODS The tests were performed at diagnosis time (T1) and two years after the diagnosis time (T2). Then, the corresponding progression models were developed using each individual test and their sum as a variable response. RESULTS As a result, the model based on cognition status to predict fast decline (differences in the Z score (T2-T1) <1.5 were considered fast declining) provided satisfactory performance (AUC 0.74, 83.3% of sensibility and 70.2% of specificity); the models based on clinical dementia and delayed memory to predict fast declining showed low AUC and sensitivity. Nevertheless, the model based on the sum of the 3 tests showed the highest AUC (0.79), low sensitivity (63.6%), and high specificity. CONCLUSION The developed progression models could provide useful information to clinicians and AD patients regarding their fast/normal decline in general or specific domains.
Collapse
Affiliation(s)
- Lourdes Alvarez-Sanchez
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Mar Pereto
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Lorena Garcia-Valles
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Angel Balaguer
- Faculty of Mathematical Sciences, University of Valencia, Burjassot (Valencia), Spain
| | - Carmen Pena-Bautista
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Laura Ferre-Gonzalez
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Miguel Baquero
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Consuelo Chafer Pericas
- Alzheimer Disease Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
8
|
Ikanga J, Jean K, Medina P, Patel SS, Schwinne M, Epenge E, Gikelekele G, Tshengele N, Kavugho I, Mampunza S, Mananga L, Teunissen CE, Stringer A, Rojas JC, Chan B, Lario Lago A, Kramer JH, Boxer AL, Jeromin A, Gross AL, Alonso A. Preliminary reference values for Alzheimer's disease plasma biomarkers in Congolese individuals with and without dementia. Front Aging Neurosci 2024; 16:1477047. [PMID: 39640424 PMCID: PMC11618107 DOI: 10.3389/fnagi.2024.1477047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Background Western countries have provided reference values (RV) for Alzheimer's disease (AD) plasma biomarkers, but there are not available in Sub-Saharan African populations. Objective We provide preliminary RV for AD and other plasma biomarkers including amyloid-β (Aβ42/40), phosphorylated tau-181 and 217 (p-tau181, p-tau217), neurofilament light (Nfl), glial fibrillary acidic protein (GFAP), interleukin 1b and 10 (IL-1b and IL-10) and tumor necrosis factor α (TNFα) in Congolese adults with and without dementia. Methods 85 adults (40 healthy and 45 dementia) over 50 years old were included. Blood samples were provided for plasma AD biomarkers Aβ42/40 and p-tau181, p-tau217; Nfl and GFAP; IL-1b and IL-10 and TNFα analyzed using SIMOA. Linear and logistic regressions were conducted to evaluate differences in biomarkers by age and gender and neurological status, and for the prediction of dementia status by each individual biomarker. RV were those that optimized sensitivity and specificity based on Youden's index. Results In this sample of 85 adults, 45 (53%) had dementia, 38 (45%) were male, overall mean age was 73.2 (SD 7.6) years with 8.3 (5.4) years of education. There were no significant differences in age, gender, and education based on neurological status. Biomarker concentrations did not significantly differ by age except for p-tau181 and GFAP and did not differ by sex. Preliminary normal value cutoffs of various plasma in pg./mL were 0.061 for Aβ42/40, 4.50 for p-tau 181, 0.008 for p-tau 217, 36.5 for Nfl, 176 for GFAP, 1.16 for TNFa, 0.011 for IL-1b, and 0.38 for IL-10. All AUCs ranged between 0.64-0.74. P-tau 217 [0.72 (95% CI: 0.59, 0.84)] followed by GFAP [0.72 (95% CI: 0.61, 0.83)], and Nfl [0.73 (95% CI: 0.62, 0.84)] had the highest AUC compared to other plasma biomarkers. Conclusion This study provides RV which could be of preliminary utility to facilitate the screening, clinical diagnostic adjudication, and classification, of dementia in Congolese adults.
Collapse
Affiliation(s)
- Jean Ikanga
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Psychiatry, School of Medicine, University of Kinshasa and Catholic University of Congo, Kinshasa, Democratic Republic of Congo
| | - Kharine Jean
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Priscilla Medina
- Department of Psychology, Mercer University, Atlanta, GA, United States
| | - Saranya Sundaram Patel
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Megan Schwinne
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Emmanuel Epenge
- Department of Neurology, Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Guy Gikelekele
- Department of Psychiatry, School of Medicine, University of Kinshasa and Catholic University of Congo, Kinshasa, Democratic Republic of Congo
| | - Nathan Tshengele
- Department of Psychiatry, School of Medicine, University of Kinshasa and Catholic University of Congo, Kinshasa, Democratic Republic of Congo
| | | | - Samuel Mampunza
- Department of Psychiatry, School of Medicine, University of Kinshasa and Catholic University of Congo, Kinshasa, Democratic Republic of Congo
| | - Lelo Mananga
- Department of Neurology, Kinshasa, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam University Medical Centers, Vrije Universitiet, Amsterdam, Netherlands
| | - Anthony Stringer
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Julio C. Rojas
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Brandon Chan
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | | | - Alden L. Gross
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Mitolo M, Lombardi G, Manca R, Nacmias B, Venneri A. Association between blood-based protein biomarkers and brain MRI in the Alzheimer's disease continuum: a systematic review. J Neurol 2024; 271:7120-7140. [PMID: 39264441 PMCID: PMC11560990 DOI: 10.1007/s00415-024-12674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Blood-based biomarkers (BBM) are becoming easily detectable tools to reveal pathological changes in Alzheimer's disease (AD). A comprehensive and up-to-date overview of the association between BBM and brain MRI parameters is not available. This systematic review aimed to summarize the literature on the associations between the main BBM and MRI markers across the clinical AD continuum. A systematic literature search was carried out on PubMed and Web of Science and a total of 33 articles were included. Hippocampal volume was positively correlated with Aβ42 and Aβ42/Aβ40 and negatively with Aβ40 plasma levels. P-tau181 and p-tau217 concentrations were negatively correlated with temporal grey matter volume and cortical thickness. NfL levels were negatively correlated with white matter microstructural integrity, whereas GFAP levels were positively correlated with myo-inositol values in the posterior cingulate cortex/precuneus. These findings highlight consistent associations between various BBM and brain MRI markers even in the pre-clinical and prodromal stages of AD. This suggests a possible advantage in combining multiple AD-related markers to improve accuracy of early diagnosis, prognosis, progression monitoring and treatment response.
Collapse
Affiliation(s)
- Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Riccardo Manca
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Florence, Italy
| | - Annalena Venneri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| |
Collapse
|
10
|
Lehmann S, Schraen-Maschke S, Vidal JS, Delaby C, Buee L, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Hanon O. Clinical value of plasma ALZpath pTau217 immunoassay for assessing mild cognitive impairment. J Neurol Neurosurg Psychiatry 2024; 95:1046-1053. [PMID: 38658136 PMCID: PMC11503049 DOI: 10.1136/jnnp-2024-333467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Among plasma biomarkers for Alzheimer's disease (AD), pTau181 and pTau217 are the most promising. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHOD pTau181 and pTau217 were quantified using, Quanterix and ALZpath, SIMOA assays in the well-characterised prospective multicentre BALTAZAR (Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk) cohort of participants with mild cognitive impairment (MCI). RESULTS Among participants with MCI, 55% were Aβ+ and 29% developed dementia due to AD. pTau181 and pTau217 were higher in the Aβ+ population with fold change of 1.5 and 2.7, respectively. MCI that converted to AD also had higher levels than non-converters, with HRs of 1.38 (1.26 to 1.51) for pTau181 compared with 8.22 (5.45 to 12.39) for pTau217. The area under the curve for predicting Aβ+ was 0.783 (95% CI 0.721 to 0.836; cut-point 2.75 pg/mL) for pTau181 and 0.914 (95% CI 0.868 to 0.948; cut-point 0.44 pg/mL) for pTau217. The high predictive power of pTau217 was not improved by adding age, sex and apolipoprotein E ε4 (APOEε4) status, in a logistic model. Age, APOEε4 and renal dysfunction were associated with pTau levels, but the clinical performance of pTau217 was only marginally altered by these factors. Using a two cut-point approach, a 95% positive predictive value for Aβ+ corresponded to pTau217 >0.8 pg/mL and a 95% negative predictive value at <0.23 pg/mL. At these two cut-points, the percentages of MCI conversion were 56.8% and 9.7%, respectively, while the annual rates of decline in Mini-Mental State Examination were -2.32 versus -0.65. CONCLUSIONS Plasma pTau217 and pTau181 both correlate with AD, but the fold change in pTau217 makes it better to diagnose cerebral amyloidosis, and predict cognitive decline and conversion to AD dementia.
Collapse
Affiliation(s)
- Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Susanna Schraen-Maschke
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
| | - Jean-Sébastien Vidal
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, F-75013, Paris, Île-de-France, France
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luc Buee
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
| | - Frédéric Blanc
- Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Memory Resource and Research Centre of Strasbourg/Colmar, French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, F-67000, Strasbourg, France
| | - Claire Paquet
- Université Paris Cité, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, F-75010, Paris, France
| | - Bernadette Allinquant
- UMR-S1266, Université Paris Cité, Institute of Psychiatry and Neuroscience, Inserm, Paris, France
| | - Stéphanie Bombois
- Université Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000, Lille, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - Audrey Gabelle
- Université de Montpellier, Memory Research and Resources center, department of Neurology, Inserm INM NeuroPEPs team, F-34000, Montpellier, France
| | - Olivier Hanon
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, F-75013, Paris, Île-de-France, France
| |
Collapse
|
11
|
Lehmann S, Schraen-Maschke S, Buée L, Vidal JS, Delaby C, Hirtz C, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Hanon O. Clarifying the association of CSF Aβ, tau, BACE1, and neurogranin with AT(N) stages in Alzheimer disease. Mol Neurodegener 2024; 19:66. [PMID: 39380095 PMCID: PMC11460012 DOI: 10.1186/s13024-024-00755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Current AT(N) stratification for Alzheimer's disease (AD) accounts for complex combinations of amyloid (A), tau proteinopathy (T) and neurodegeneration (N) signatures. Understanding the transition between these different stages is a major challenge, especially in view of the recent development of disease modifying therapy. METHODS This is an observational study, CSF levels of Tau, pTau181, pTau217, Aβ38/40/42, sAPPα/β, BACE1 and neurogranin were measured in the BALTAZAR cohort of cognitively impaired patients and in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Biomarkers levels were related to the AT(N) framework. (A) and (T) were defined in BALTAZAR with CSF Aβ42/40 ratio and pTau217 respectively, and in ADNI with amyloid and tau PET. (N) was defined using total CSF tau in both cohorts. RESULTS As expected, CSF Aβ42 decreased progressively with the AD continuum going from the A-T-N- to the A + T + N + profile. On the other hand, Tau and pTau181 increased progressively with the disease. The final transition from A + T + N- to A + T + N + led to a sharp increase in Aβ38, Aβ42 and sAPP levels. Synaptic CSF biomarkers BACE1 and neurogranin, were lowest in the initial A + T-N- stage and increased with T + and N + . CSF pTau181 and total tau were closely related in both cohorts. CONCLUSIONS The early transition to an A + phenotype (A + T-N-) primarily impacts synaptic function. The appearance of T + and then N + is associated with a significant and progressive increase in pathological Alzheimer's disease biomarkers. Our main finding is that CSF pTau181 is an indicator of N + rather than T + , and that N + is associated with elevated levels of BACE1 protein and beta-amyloid peptides. This increase may potentially fuel the amyloid cascade in a positive feedback loop. Overall, our data provide further insights into understanding the interconnected pathological processes of amyloid, tau, and neurodegeneration underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, Montpellier, 34295, France.
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, F-59000, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, F-59000, France
| | - Jean-Sébastien Vidal
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, F-75013, France
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, Montpellier, 34295, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, Montpellier, 34295, France
| | - Frédéric Blanc
- Université de Strasbourg, CHRU de Strasbourg, Memory Resource and Research Centre of Strasbourg/Colmar, French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, Strasbourg, F-67000, France
| | - Claire Paquet
- Université Paris Cité, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, Paris, F-75010, France
| | - Bernadette Allinquant
- UMR-S1266, Université Paris Cité, Institute of Psychiatry and Neuroscience, Inserm, Paris, France
| | - Stéphanie Bombois
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, F-59000, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - Audrey Gabelle
- Université de Montpellier, Memory Research and Resources Center, Department of Neurology, Inserm INM NeuroPEPs team, Montpellier, F-34000, France
| | - Olivier Hanon
- Université Paris Cité, EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, F-75013, France
| |
Collapse
|
12
|
Blum D, Cailliau E, Béhal H, Vidal J, Delaby C, Buée L, Allinquant B, Gabelle A, Bombois S, Lehmann S, Schraen‐Maschke S, Hanon O. Association of caffeine consumption with cerebrospinal fluid biomarkers in mild cognitive impairment and Alzheimer's disease: A BALTAZAR cohort study. Alzheimers Dement 2024; 20:6948-6959. [PMID: 39099181 PMCID: PMC11485411 DOI: 10.1002/alz.14169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. METHODS MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ1-42], Aβ1-40) were analyzed using logistic and analysis of covariance models. RESULTS Adjusted on Apolipoprotein E (APOE ε4), age, sex, education level, and tobacco, lower caffeine consumption was associated with higher risk to be amnestic (OR: 2.49 [95% CI: 1.13 to 5.46]; p = 0.023) and lower CSF Aβ1-42 (p = 0.047), Aβ1-42/Aβ1-40 (p = 0.040), and Aβ1-42/p-tau181 (p = 0.020) in the whole cohort. DISCUSSION Data support the beneficial effect of caffeine consumption to memory impairments and CSF amyloid markers in MCI and AD patients. HIGHLIGHTS We studied the impact of caffeine consumption in the BALTAZAR cohort. Low caffeine intake is associated with higher risk of being amnestic in MCI/AD patients. Caffeine intake is associated with CSF biomarkers in AD patients.
Collapse
Affiliation(s)
- David Blum
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | | | | | - Jean‐Sébastien Vidal
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
- Sant Pau Memory UnitHospital de la Santa Creu i Sant Pau ‐ Biomedical Research Institute Sant Pau ‐ Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Luc Buée
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Bernadette Allinquant
- Université Paris CitéInstitute of Psychiatry and Neuroscience, Inserm, UMR‐S 1266ParisFrance
| | - Audrey Gabelle
- Université de MontpellierCHU MontpellierMemory Research and Resources CenterDepartment of Neurology, Inserm INM NeuroPEPs TeamExcellence Center of Neurodegenerative DisordersMontpellierFrance
| | - Stéphanie Bombois
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
- Assistance Publique‐Hôpitaux de Paris (AP‐HP)Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié‐SalpêtrièreParisFrance
| | - Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique CliniqueUniversité de MontpellierINM INSERM, IRMB CHU de Montpellier, 80 av FlicheMontpellierFrance
| | - Susanna Schraen‐Maschke
- University of Lille, Inserm, CHU LilleUMR‐S1172 Lille Neuroscience & Cognition (LilNCog)LilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Olivier Hanon
- Université Paris CitéINSERM U1144, GHU APHP CentreHopital Broca, Memory Resource and Research Centre de Paris‐Broca‐Ile de FranceParisFrance
| |
Collapse
|
13
|
Li W, Sun L, Yue L, Xiao S. Diagnostic and predictive power of plasma proteins in Alzheimer's disease: a cross-sectional and longitudinal study in China. Sci Rep 2024; 14:17557. [PMID: 39080359 PMCID: PMC11289122 DOI: 10.1038/s41598-024-66195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Convenient and effective biomarkers are essential for the early diagnosis and treatment of Alzheimer's disease (AD). In the cross-sectional study, 103 patients with AD, 82 patients with aMCI and 508 normal controls (NC) were enrolled. The single-molecule array (Simoa) technique was used to assess the levels of plasma proteins, including NfL, T-tau, P-tau-181, Aβ40, Aβ42. Montreal Cognitive Assessment (MoCA) was used to assess the overall cognitive function of all subjects. Moreover, Amyloid PET and structural head MRI were also performed in a subset of the population. In the follow-up, the previous 508 normal older adults were followed up for two years, then COX regression analysis was used to investigate the association between baseline plasma proteins and future cognitive outcomes. NfL, T-tau, P-tau-181, Aβ40, Aβ42 and Aβ42/40 were altered in AD dementia, and NfL, Aβ42 and Aβ42/40 significantly outperformed all plasma proteins in differentiating AD dementia from NC, while NfL and Aβ42/40 could effectively distinguish between aMCI and NC. However, only plasma NfL was associated with future cognitive decline, and it was negatively correlated with MoCA (r = - 0.298, p < 0.001) and the volume of the left globus pallidus (r = - 0.278, p = 0.033). Plasma NfL can help distinguish between cognitively normal and cognitively impaired individuals (MCI/dementia) at the syndrome level. However, since we have not introduced other biomarkers for AD, such as PET CT or cerebrospinal fluid, and have not verified in other neurodegenerative diseases, whether plasma NFL can be used as a biomarker for AD needs to be further studied and explored.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Zhang M, Wang X, Zhao W, Li Y, Ying C, Jiang J, Cai Y, Lu J, Han Y. Subjective cognitive decline domain improves accuracy of plasma Aβ 42 /Aβ 40 for preclinical Alzheimer's disease diagnosis: The SILCODE study. Chin Med J (Engl) 2024; 137:1127-1129. [PMID: 37946327 PMCID: PMC11062658 DOI: 10.1097/cm9.0000000000002851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Indexed: 11/12/2023] Open
Affiliation(s)
- Mingkai Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiaoni Wang
- Department of Neurology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Weina Zhao
- Department of Neurology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, China
- Heilongjiang Key Laboratory of Ischemic Stroke Prevention and Treatment, Mudanjiang, Heilongjiang 157011, China
| | - Yuxia Li
- Department of Neurology, Tangshan Central Hospital, Tangshan, Hebei 063000, China
| | - Chao Ying
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing 100053, China
| | - Jiehui Jiang
- Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- School of Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
- National Clinical Research Center for Geriatric Disorders, Beijing 100053, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| |
Collapse
|
15
|
Schraen-Maschke S, Duhamel A, Vidal JS, Ramdane N, Vaudran L, Dussart C, Buée L, Sablonnière B, Delaby C, Allinquant B, Gabelle A, Bombois S, Lehmann S, Hanon O. The free plasma amyloid Aβ 1-42/Aβ 1-40 ratio predicts conversion to dementia for subjects with mild cognitive impairment with performance equivalent to that of the total plasma Aβ 1-42/Aβ 1-40 ratio. The BALTAZAR study. Neurobiol Dis 2024; 193:106459. [PMID: 38423192 DOI: 10.1016/j.nbd.2024.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND AND PURPOSE Blood-based biomarkers are a non-invasive solution to predict the risk of conversion of mild cognitive impairment (MCI) to dementia. The utility of free plasma amyloid peptides (not bound to plasma proteins and/or cells) as an early indicator of conversion to dementia is still debated, as the results of studies have been contradictory. In this context, we investigated whether plasma levels of the free amyloid peptides Aβ1-42 and Aβ1-40 and the free plasma Aβ1-42/Aβ1-40 ratio are associated with the conversion of MCI to dementia, in particular AD, over three years of follow-up in a subgroup of the BALTAZAR cohort. We also compared their predictive value to that of total plasma Aβ1-42 and Aβ1-40 levels and the total plasma Aβ1-42/Aβ1-40 ratio. METHODS The plasma Aβ1-42 and Aβ1-40 peptide assay was performed using the INNO-BIA kit (Fujirebio Europe). Free amyloid levels (defined by the amyloid fraction directly accessible to antibodies of the assay) were obtained with the undiluted plasma, whereas total amyloid levels were obtained after the dilution of plasma (1/3) with a denaturing buffer. Free and total Aβ1-42 and Aβ1-40 levels were measured at inclusion for a subgroup of participants (N = 106) with mild cognitive impairment (MCI) from the BALTAZAR study (a large-scale longitudinal multicenter cohort with a three-year follow-up). Associations between conversion and the free/total plasma Aβ1-42 and Aβ1-40 levels and Aβ1-42/Aβ1-40 ratio were analyzed using logistic and Cox Proportional Hazards models. Demographic, clinical, cognitive (MMSE, ADL and IADL), APOE, and MRI characteristics (relative hippocampal volume) were compared using non-parametric (Mann-Whitney) or parametric (Student) tests for quantitative variables and Chi-square or Fisher exact tests for qualitative variables. RESULTS The risk of conversion to dementia was lower for patients in the highest quartile of free plasma Aβ1-42/Aβ1-40 (≥ 25.8%) than those in the three lower quartiles: hazard ratio = 0.36 (95% confidence interval [0.15-0.87]), after adjustment for age, sex, education, and APOE ε4 (p-value = 0.022). This was comparable to the risk of conversion in the highest quartile of total plasma Aβ1-42/Aβ1-40: hazard ratio = 0.37 (95% confidence interval [0.16-0.89], p-value = 0.027). However, while patients in the highest quartile of total plasma Aβ1-42/Aβ1-40 showed higher MMSE scores and a higher hippocampal volume than patients in the three lowest quartiles of total plasma Aβ1-42/Aβ1-40, as well as normal CSF biomarker levels, the patients in the highest quartile of free plasma Aβ1-42/Aβ1-40 did not show any significant differences in MMSE scores, hippocampal volume, or CSF biomarker levels relative to the three lowest quartiles of free plasma Aβ1-42/Aβ1-40. CONCLUSION The free plasma Aβ1-42/Aβ1-40 ratio is associated with a risk of conversion from MCI to dementia within three years, with performance comparable to that of the total plasma Aβ1-42/Aβ1-40 ratio. Threshold levels of the free and total plasma Aβ1-42/Aβ1-40 ratio could be determined, with a 60% lower risk of conversion for patients above the threshold than those below.
Collapse
Affiliation(s)
- S Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France.
| | - A Duhamel
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - J S Vidal
- Université de Paris, EA 4468 and APHP, Hôpital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, France
| | - N Ramdane
- Univ. Lille, CHU Lille, ULR 2694-METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - L Vaudran
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - C Dussart
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - L Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - B Sablonnière
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - C Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - B Allinquant
- UMR-S1266, Université Paris Cité, Institute of Psychiatry and Neurosciences, Inserm, Paris, France
| | - A Gabelle
- CMRR, Université de Montpellier, INM INSERM, CHU de Montpellier, Montpellier, France
| | - S Bombois
- Univ. Lille, Inserm, CHU Lille, UMR-S1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - S Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - O Hanon
- Université de Paris, EA 4468 and APHP, Hôpital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Paris, France.
| |
Collapse
|
16
|
Cai X, Luo Y, Song Y. Palladium nanoballs coupled with smartphone-thermal reader for photothermal lateral flow immunoassay of Aβ 1-40. J Mater Chem B 2024; 12:2610-2617. [PMID: 38372378 DOI: 10.1039/d3tb02641h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Amyloid beta 1-40 (Aβ 1-40) is one of the most abundant substances in the body with the capacity to form insoluble aggregates and is a universal biomarker for the prediction of Alzheimer's disease. Here, a palladium nanoball (PNB)-strip was developed and coupled with a smartphone-thermal reader as an ultrasensitive and cost-effective platform for Aβ 1-40 detection. In this study, PNB was synthesized and introduced into lateral flow strips as an alternative signal source to gold nanoparticles to improve sensitivity because the PNB has a better heat generation ability. Quantitative analysis was performed using a self-developed smartphone-thermal reader, which is portable and cost-effective. The detection limit of the system was determined to be 20 pg mL-1, which fulfils the need for clinical diagnosis at the point-of-care. This work highlights a PNB-strip coupled smartphone-thermal reader for ultrasensitive and cost-effective Aβ 1-40 detection.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yangxing Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Song
- NANOGENE LLC, Gainesville, Florida 32611, USA.
| |
Collapse
|
17
|
Yang Y, Kim WS, Michaelian JC, Lewis SJG, Phillips CL, D'Rozario AL, Chatterjee P, Martins RN, Grunstein R, Halliday GM, Naismith SL. Predicting neurodegeneration from sleep related biofluid changes. Neurobiol Dis 2024; 190:106369. [PMID: 38049012 DOI: 10.1016/j.nbd.2023.106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Sleep-wake disturbances are common in neurodegenerative diseases and may occur years before the clinical diagnosis, potentially either representing an early stage of the disease itself or acting as a pathophysiological driver. Therefore, discovering biomarkers that identify individuals with sleep-wake disturbances who are at risk of developing neurodegenerative diseases will allow early diagnosis and intervention. Given the association between sleep and neurodegeneration, the most frequently analyzed fluid biomarkers in people with sleep-wake disturbances to date include those directly associated with neurodegeneration itself, such as neurofilament light chain, phosphorylated tau, amyloid-beta and alpha-synuclein. Abnormalities in these biomarkers in patients with sleep-wake disturbances are considered as evidence of an underlying neurodegenerative process. Levels of hormonal sleep-related biomarkers such as melatonin, cortisol and orexin are often abnormal in patients with clinical neurodegenerative diseases, but their relationships with the more standard neurodegenerative biomarkers remain unclear. Similarly, it is unclear whether other chronobiological/circadian biomarkers, such as disrupted clock gene expression, are causal factors or a consequence of neurodegeneration. Current data would suggest that a combination of fluid biomarkers may identify sleep-wake disturbances that are most predictive for the risk of developing neurodegenerative disease with more optimal sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Yang
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Woojin Scott Kim
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Simon J G Lewis
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Parkinson's Disease Research Clinic, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia.
| | - Craig L Phillips
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Angela L D'Rozario
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia.
| | - Pratishtha Chatterjee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia.
| | - Ralph N Martins
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia; School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA 6009, Australia.
| | - Ron Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2109, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Glenda M Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, Brain and Mind Centre & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
18
|
Lehmann S, Schraen-Maschke S, Vidal JS, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Delaby C, Hanon O. Blood Neurofilament Levels Predict Cognitive Decline across the Alzheimer's Disease Continuum. Int J Mol Sci 2023; 24:17361. [PMID: 38139190 PMCID: PMC10743700 DOI: 10.3390/ijms242417361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Neurofilament light chain (NfL) is a potential diagnostic and prognostic plasma biomarker for numerous neurological diseases including Alzheimer's disease (AD). In this study, we investigated the relationship between baseline plasma concentration of Nfl and Mild Cognitive Impairment in participants who did and did not have a clinically determined diagnosis of dementia by the end of the three-year study. Additionally, we explored the connection between baseline plasma concentration of NfL and AD dementia patients, considering their demographics, clinical features, and cognitive profiles. A total of 350 participants from the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) multicenter prospective study were investigated: 161 AD dementia participants and 189 MCI participants (of which 141 had amnestic MCI and 48 non-amnestic MCI). Plasma biomarkers were measured at baseline and the progression of clinical and cognitive profiles was followed over the three years of follow-up. Baseline plasma NfL concentration increased across the Alzheimer's disease continuum with a mean NfL value of 17.1 ng/mL [SD = 6.1] in non-amnestic MCI, 20.7 ng/mL [SD = 12.0] in amnestic MCI, and 23.1 ng/mL [SD = 22.7] in AD dementia patients. Plasma NfL concentration correlated with age, body mass index (BMI), and global cognitive performance and decline, as measured by the Mini-Mental State Examination (MMSE). MMSE scores decreased in parallel with increasing plasma NfL concentration, independently of age and BMI. However, NfL concentration did not predict MCI participants' conversion to dementia within three years. Discussion: Baseline plasma NfL concentration is associated with cognitive status along the AD continuum, suggesting its usefulness as a potential informative biomarker for cognitive decline follow-up in patients.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Laboratoire et Plateforme de Protéomique Clinique, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, F-34295 Montpellier, France;
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France; (S.S.-M.); (S.B.)
| | - Jean-Sébastien Vidal
- Université Paris Cité, INSERM U1144, GHU APHP Centre, Hopital Broca, Memory Resource and Research Centre de Paris-Broca-Ile de France, F-75013 Paris, France; (J.-S.V.); (O.H.)
| | - Frédéric Blanc
- Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Memory Resource and Research, French National Centre for Scientific Research (CNRS), ICube Laboratory UMR7357 and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS), F-67000 Strasbourg, France;
| | - Claire Paquet
- Université Paris Cité, INSERM U1144, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, F-75010 Paris, France;
| | - Bernadette Allinquant
- Université Paris Cité, Institute of Psychiatry and Neurosciences, Inserm, UMR-S 1266, F-75014 Paris, France;
| | - Stéphanie Bombois
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, F-59000 Lille, France; (S.S.-M.); (S.B.)
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Audrey Gabelle
- Université de Montpellier, CHU Montpellier, Memory Research and Resources Center, Department of Neurology, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, F-34000 Montpellier, France;
| | - Constance Delaby
- Laboratoire et Plateforme de Protéomique Clinique, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, 80 av Fliche, F-34295 Montpellier, France;
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, F-08041 Barcelona, Spain
| | - Olivier Hanon
- Université Paris Cité, INSERM U1144, GHU APHP Centre, Hopital Broca, Memory Resource and Research Centre de Paris-Broca-Ile de France, F-75013 Paris, France; (J.-S.V.); (O.H.)
| |
Collapse
|
19
|
Kang JH, Korecka M, Lee EB, Cousins KAQ, Tropea TF, Chen-Plotkin AA, Irwin DJ, Wolk D, Brylska M, Wan Y, Shaw LM. Alzheimer Disease Biomarkers: Moving from CSF to Plasma for Reliable Detection of Amyloid and tau Pathology. Clin Chem 2023; 69:1247-1259. [PMID: 37725909 PMCID: PMC10895336 DOI: 10.1093/clinchem/hvad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Development of validated biomarkers to detect early Alzheimer disease (AD) neuropathology is needed for therapeutic AD trials. Abnormal concentrations of "core" AD biomarkers, cerebrospinal fluid (CSF) amyloid beta1-42, total tau, and phosphorylated tau correlate well with neuroimaging biomarkers and autopsy findings. Nevertheless, given the limitations of established CSF and neuroimaging biomarkers, accelerated development of blood-based AD biomarkers is underway. CONTENT Here we describe the clinical significance of CSF and plasma AD biomarkers to detect disease pathology throughout the Alzheimer continuum and correlate with imaging biomarkers. Use of the AT(N) classification by CSF and imaging biomarkers provides a more objective biologically based diagnosis of AD than clinical diagnosis alone. Significant progress in measuring CSF AD biomarkers using extensively validated highly automated assay systems has facilitated their transition from research use only to approved in vitro diagnostics tests for clinical use. We summarize development of plasma AD biomarkers as screening tools for enrollment and monitoring participants in therapeutic trials and ultimately in clinical care. Finally, we discuss the challenges for AD biomarkers use in clinical trials and precision medicine, emphasizing the possible ethnocultural differences in the levels of AD biomarkers. SUMMARY CSF AD biomarker measurements using fully automated analytical platforms is possible. Building on this experience, validated blood-based biomarker tests are being implemented on highly automated immunoassay and mass spectrometry platforms. The progress made developing analytically and clinically validated plasma AD biomarkers within the AT(N) classification scheme can accelerate use of AD biomarkers in therapeutic trials and routine clinical practice.
Collapse
Affiliation(s)
- Ju Hee Kang
- Department of Pharmacology and Clinical Pharmacology, Research Center for Controlling Intercellular Communication, Inha University, Incheon, South Korea
| | - Magdalena Korecka
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katheryn A Q Cousins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alice A Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Magdalena Brylska
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yang Wan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Hermesdorf M, Esselmann H, Morgado B, Jahn-Brodmann A, Herrera-Rivero M, Wiltfang J, Berger K. The association of body mass index and body composition with plasma amyloid beta levels. Brain Commun 2023; 5:fcad263. [PMID: 37901043 PMCID: PMC10608109 DOI: 10.1093/braincomms/fcad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 10/31/2023] Open
Abstract
Blood-based analysis of amyloid-β is increasingly applied to incrementally establish diagnostic tests for Alzheimer's disease. To this aim, it is necessary to determine factors that can alter blood-based concentrations of amyloid-β. We cross-sectionally analysed amyloid-β-40 and amyloid-β-42 concentrations and the 40/42 ratio in 440 community-dwelling adults and associations with body mass index, waist-to-height ratio and body composition assessed using bioelectrical impedance analysis. Body mass index and waist-to-height ratio were inversely associated with plasma amyloid-β-42 concentrations. Body fat mass, but not body cell mass and extracellular mass, was inversely associated with amyloid-β-42 levels. The results indicate that plasma concentrations of amyloid-β-42 are lower in those with increased body mass index and body fat, and associations with amyloid-β-40 did not reach significance after controlling for multiple testing. The findings support the use of body mass index as an easy-to-measure factor that should be accounted for in diagnostic models for plasma amyloid-β.
Collapse
Affiliation(s)
- Marco Hermesdorf
- Institute of Epidemiology and Social Medicine, University of Münster, Münster 48149, Germany
| | - Hermann Esselmann
- Department of Psychiatry, University Medical Center Göttingen, Goettingen 37075, Germany
| | - Barbara Morgado
- Department of Psychiatry, University Medical Center Göttingen, Goettingen 37075, Germany
| | - Anke Jahn-Brodmann
- Department of Psychiatry, University Medical Center Göttingen, Goettingen 37075, Germany
| | - Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster 48149, Germany
- Department of Psychiatry, University of Münster, Münster 48149, Germany
| | - Jens Wiltfang
- Department of Psychiatry, University Medical Center Göttingen, Goettingen 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-29992, Portugal
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster 48149, Germany
| |
Collapse
|
21
|
Álvarez-Sánchez L, Peña-Bautista C, Ferré-González L, Cubas L, Balaguer A, Casanova-Estruch B, Baquero M, Cháfer-Pericás C. Early Alzheimer's Disease Screening Approach Using Plasma Biomarkers. Int J Mol Sci 2023; 24:14151. [PMID: 37762457 PMCID: PMC10532221 DOI: 10.3390/ijms241814151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, but it shows similar initial symptoms to other neurocognitive diseases (Lewy body disease (LBD) and frontotemporal dementia (FTD)). Thus, the identification of reliable AD plasma biomarkers is required. The aim of this work is to evaluate the use of a few plasma biomarkers to develop an early and specific AD screening method. Plasma p-Tau181, neurofilament light (NfL), and glial fibrillary acid protein (GFAP) were determined by Single Molecule Assay (SIMOA® Quanterix, Billerica, MA, USA) in patients with mild cognitive impairment due to AD (MCI-AD, n = 50), AD dementia (n = 10), FTD (n = 20), LBD (n = 5), and subjective cognitive impairment (SCI (n = 21)). Plasma p-Tau181 and GFAP showed the highest levels in AD dementia, and significant correlations with clinical AD characteristics; meanwhile, NfL showed the highest levels in FTD, but no significant correlations with AD. The partial least squares (PLS) diagnosis model developed between the AD and SCI groups showed good accuracy with a receiver operating characteristic (ROC) area under curve (AUC) of 0.935 (CI 95% 0.87-0.98), sensitivity of 86%, and specificity of 88%. In a first screen, NfL plasma levels could identify FTD patients among subjects with cognitive impairment. Then, the developed PLS model including p-Tau181 and GFAP levels could identify AD patients, constituting a simple, early, and specific diagnosis approach.
Collapse
Affiliation(s)
- Lourdes Álvarez-Sánchez
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Carmen Peña-Bautista
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Laura Ferré-González
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Laura Cubas
- Division of Neuroinmunology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.C.); (B.C.-E.)
| | - Angel Balaguer
- Math Faculty, Universitat de València, 46026 Valencia, Spain;
| | - Bonaventura Casanova-Estruch
- Division of Neuroinmunology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.C.); (B.C.-E.)
| | - Miguel Baquero
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| | - Consuelo Cháfer-Pericás
- Alzheimer Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (L.Á.-S.); (C.P.-B.); (L.F.-G.); (M.B.)
| |
Collapse
|
22
|
Lehmann S, Schraen-Maschke S, Vidal JS, Delaby C, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Hanon O. Head-to-Head Comparison of Two Plasma Phospho-tau Assays in Predicting Conversion of Mild Cognitive Impairment to Dementia. Clin Chem 2023; 69:1072-1083. [PMID: 37654065 DOI: 10.1093/clinchem/hvad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/06/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Among blood biomarkers, phospho-tau181 (pTau181) is one of the most efficient in detecting Alzheimer disease across its continuum. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors. METHODS Here we tested the Lumipulse assay for plasma pTau181 in mild cognitive impairment (MCI) participants from the Baltazar prospective cohort. We compared the performance of this assay to the corresponding Simoa assay for the prediction of conversion to dementia. We also evaluated the association with various routine blood parameters indicative of comorbidities. RESULTS Lumipulse and Simoa gave similar results overall, with hazard ratios for conversion to dementia of 3.48 (95% CI, 2.23-5.45) and 3.70 (95%CI, 2.39-5.87), respectively. However, the 2 tests differ somewhat in terms of the patients identified, suggesting that their use may be complementary. When combined with age, sex, and apolipoprotein E (APOE)ε4 status, areas under the curves for conversion detection were 0.736 (95% CI, 0.682-0.791) for Lumipulse and 0.733 (95% CI, 0.679-0.788) for Simoa. Plasma pTau181 was independently associated with renal dysfunction (assessed by creatinine and glomerular filtration) for both assays. Cardiovascular factors (adiponectin and cholesterol), nutritional, and inflammatory markers (total protein content, C-reactive protein) also impacted plasma pTau181 concentration, although more so with the Simoa than with the Lumipulse assay. CONCLUSIONS Plasma pTau181 measured using the fully automated Lumipulse assay performs as well as the Simoa assay for detecting conversion to dementia of MCI patients within 3 years and Lumipulse is less affected by comorbidities. This study suggests a pathway to routine noninvasive in vitro diagnosis-approved testing to contribute to the management of Alzheimer disease. CLINICALTRIALS.GOV REGISTRATION NUMBER NCT01315639.
Collapse
Affiliation(s)
- Sylvain Lehmann
- Univ Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Susanna Schraen-Maschke
- Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, University of Lille, Lille, France
| | - Jean-Sébastien Vidal
- EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université Paris Cité, Paris, France
| | - Constance Delaby
- Univ Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau-Biomedical Research Institute Sant Pau-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frédéric Blanc
- CHRU de Strasbourg, Memory Resource and Research Centre of Strasbourg/Colmar, French National Centre for Scientific Research, ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg, Team Imagerie Multimodale Intégrative en Santé /Neurocrypto, Université de Strasbourg, Strasbourg, France
| | - Claire Paquet
- GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, Université Paris Cité, Paris, France
| | - Bernadette Allinquant
- UMR-S1266, Institute of Psychiatry and Neurosciences, Inserm, Université Paris Cité, Paris, France
| | - Stéphanie Bombois
- Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, University of Lille, Lille, France
- Assistance Publique-Hôpitaux de Paris, Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - Audrey Gabelle
- Memory Research and Resources Center, Department of Neurology, Inserm INM NeuroPEPs Team, Université de Montpellier, Montpellier, France
| | - Olivier Hanon
- EA 4468, APHP, Hospital Broca, Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université Paris Cité, Paris, France
| |
Collapse
|
23
|
Saunders TS, Pozzolo FE, Heslegrave A, King D, McGeachan RI, Spires-Jones MP, Harris SE, Ritchie C, Muniz-Terrera G, Deary IJ, Cox SR, Zetterberg H, Spires-Jones TL. Predictive blood biomarkers and brain changes associated with age-related cognitive decline. Brain Commun 2023; 5:fcad113. [PMID: 37180996 PMCID: PMC10167767 DOI: 10.1093/braincomms/fcad113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Growing evidence supports the use of plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and glial fibrillary acidic protein as promising biomarkers for Alzheimer's disease. While these blood biomarkers are promising for distinguishing people with Alzheimer's disease from healthy controls, their predictive validity for age-related cognitive decline without dementia remains unclear. Further, while tau phosphorylated at threonine 181 is a promising biomarker, the distribution of this phospho-epitope of tau in the brain is unknown. Here, we tested whether plasma levels of tau phosphorylated at threonine 181, amyloid-β, neurofilament light and fibrillary acidic protein predict cognitive decline between ages 72 and 82 in 195 participants in the Lothian birth cohorts 1936 study of cognitive ageing. We further examined post-mortem brain samples from temporal cortex to determine the distribution of tau phosphorylated at threonine 181 in the brain. Several forms of tau phosphorylated at threonine 181 have been shown to contribute to synapse degeneration in Alzheimer's disease, which correlates closely with cognitive decline in this form of dementia, but to date, there have not been investigations of whether tau phosphorylated at threonine 181 is found in synapses in Alzheimer's disease or healthy ageing brain. It was also previously unclear whether tau phosphorylated at threonine 181 accumulated in dystrophic neurites around plaques, which could contribute to tau leakage to the periphery due to impaired membrane integrity in dystrophies. Brain homogenate and biochemically enriched synaptic fractions were examined with western blot to examine tau phosphorylated at threonine 181 levels between groups (n = 10-12 per group), and synaptic and astrocytic localization of tau phosphorylated at threonine 181 were examined using array tomography (n = 6-15 per group), and localization of tau phosphorylated at threonine 181 in plaque-associated dystrophic neurites with associated gliosis were examined with standard immunofluorescence (n = 8-9 per group). Elevated baseline plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein predicted steeper general cognitive decline during ageing. Further, increasing tau phosphorylated at threonine 181 over time predicted general cognitive decline in females only. Change in plasma tau phosphorylated at threonine 181 remained a significant predictor of g factor decline when taking into account Alzheimer's disease polygenic risk score, indicating that the increase of blood tau phosphorylated at threonine 181 in this cohort was not only due to incipient Alzheimer's disease. Tau phosphorylated at threonine 181 was observed in synapses and astrocytes in both healthy ageing and Alzheimer's disease brain. We observed that a significantly higher proportion of synapses contain tau phosphorylated at threonine 181 in Alzheimer's disease relative to aged controls. Aged controls with pre-morbid lifetime cognitive resilience had significantly more tau phosphorylated at threonine 181 in fibrillary acidic protein-positive astrocytes than those with pre-morbid lifetime cognitive decline. Further, tau phosphorylated at threonine 181 was found in dystrophic neurites around plaques and in some neurofibrillary tangles. The presence of tau phosphorylated at threonine 181 in plaque-associated dystrophies may be a source of leakage of tau out of neurons that eventually enters the blood. Together, these data indicate that plasma tau phosphorylated at threonine 181, neurofilament light and fibrillary acidic protein may be useful biomarkers of age-related cognitive decline, and that efficient clearance of tau phosphorylated at threonine 181 by astrocytes may promote cognitive resilience.
Collapse
Affiliation(s)
- Tyler S Saunders
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Francesca E Pozzolo
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Amanda Heslegrave
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Declan King
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Robert I McGeachan
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maxwell P Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Craig Ritchie
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention & Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Social Medicine, Ohio University, Athens, Ohio 45701, USA
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago 3485, Chile
| | - Ian J Deary
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Simon R Cox
- Lothian Birth Cohort studies, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Henrik Zetterberg
- United Kingdom UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Molndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences at the University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
24
|
Lehmann S, Schraen-Maschke S, Vidal JS, Delaby C, Blanc F, Paquet C, Allinquant B, Bombois S, Gabelle A, Hanon O. Plasma phosphorylated tau 181 predicts amyloid status and conversion to dementia stage dependent on renal function. J Neurol Neurosurg Psychiatry 2023; 94:411-419. [PMID: 37012068 DOI: 10.1136/jnnp-2022-330540] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/15/2022] [Indexed: 04/05/2023]
Abstract
OBJECTIVES Plasma P-tau181 is an increasingly established diagnostic marker for Alzheimer's disease (AD). Further validation in prospective cohorts is still needed, as well as the study of confounding factors that could influence its blood level. METHODS This study is ancillary to the prospective multicentre Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk cohort that enrolled participants with mild cognitive impairment (MCI) who were examined for conversion to dementia for up to 3 years. Plasma Ptau-181 was measured using the ultrasensitive Quanterix HD-X assay. RESULTS Among 476 MCI participants, 67% were amyloid positive (Aβ+) at baseline and 30% developed dementia. Plasma P-tau181 was higher in the Aβ+ population (3.9 (SD 1.4) vs 2.6 (SD 1.4) pg/mL) and in MCI that converted to dementia (3.8 (SD 1.5) vs 2.9 (SD 1.4) pg/mL). The addition of plasma P-tau181 to a logistic regression model combining age, sex, APOEε4 status and Mini Mental State Examination improved predictive performance (areas under the curve 0.691-0.744 for conversion and 0.786-0.849 for Aβ+). The Kaplan-Meier curve of conversion to dementia, according to the tertiles of plasma P-tau181, revealed a significant predictive value (Log rank p<0.0001) with an HR of 3.8 (95% CI 2.5 to 5.8). In addition, patients with plasma P-Tau(181) ≤2.32 pg/mL had a conversion rate of less than 20% over a 3-year period. Using a linear regression approach, chronic kidney disease, creatinine and estimated glomerular filtration rate were independently associated with plasma P-tau181 concentrations. CONCLUSIONS Plasma P-tau181 effectively detects Aβ+ status and conversion to dementia, confirming the value of this blood biomarker for the management of AD. However, renal function significantly modifies its levels and may thus induce diagnostic errors if not taken into account.
Collapse
Affiliation(s)
- Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | | | - Jean-Sébastien Vidal
- Université Paris Cité, EA 4468, Hopital Broca, Geriatric department, Memory Resource and Research Centre of Paris-Broca-Ile de France, APHP, Paris, France
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
- Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frédéric Blanc
- Neuropsychology Unit and Geriatric Day Hospital, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Paquet
- Université Paris Cité, GHU APHP Nord Lariboisière Fernand Widal, Centre de Neurologie Cognitive, Paris, France
| | - Bernadette Allinquant
- UMR-S 1266, Université Paris Cité, Institute of Psychiatry and Neurosciences, Inserm, Paris, France
| | - Stéphanie Bombois
- Université de Lille, Inserm UMRS1172, CHU Lille, Lille, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Neurologie, Centre des Maladies Cognitives et Comportementales, GH Pitié-Salpêtrière, Paris, France
| | - Audrey Gabelle
- Université de Montpellier, CHRU Montpellier, Memory Research and Resources center, department of Neurology, Inserm INM, Montpellier, France
| | - Olivier Hanon
- Université Paris Cité, EA 4468, Hopital Broca, Geriatric department, Memory Resource and Research Centre of Paris-Broca-Ile de France, APHP, Paris, France
| |
Collapse
|
25
|
Kim HJ, Kim H, Park D, Yoon DS, San Lee J, Hwang KS. Plasma-based diagnostic and screening platform using a combination of biosensing signals in Alzheimer's disease. Biosens Bioelectron 2023; 230:115246. [PMID: 37003061 DOI: 10.1016/j.bios.2023.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Using biosensor to screen for Alzheimer's disease (AD) facilitates early detection of AD with high sensitivity and accuracy. This approach overcomes the limitations of conventional AD diagnostic methods, such as neuropsychological assessment and neuroimaging analysis. Here, we propose a simultaneous analysis of signal combinations generated by four crucial AD biomarkers (Amyloid beta 1-40 (Aβ40), Aβ42, total tau 441 (tTau441), and phosphorylated tau 181 (pTau181)) by inducing a dielectrophoretic (DEP) force on fabricated interdigitated microelectrode (IME) sensor. By applying an optimal DEP force, our biosensor selectively concentrates and filters the plasma-based AD biomarkers, exhibiting high sensitivity (limit of detection <100 fM) and selectivity in the plasma-based AD biomarkers detection (p < 0.0001). Consequently, it is demonstrated that a complex combined signal comprising four AD-specific biomarker signals (Aβ40- Aβ42+ tTau441- pTau181) can differentiate between patients with AD and healthy subjects with high accuracy (78.85%) and precision (80.95%) (p < 0.0001).
Collapse
|
26
|
Ni M, Zhu ZH, Gao F, Dai LB, Lv XY, Wang Q, Zhu XX, Xie JK, Shen Y, Wang SC, Xie Q. Plasma Core Alzheimer's Disease Biomarkers Predict Amyloid Deposition Burden by Positron Emission Tomography in Chinese Individuals with Cognitive Decline. ACS Chem Neurosci 2023; 14:170-179. [PMID: 36547971 DOI: 10.1021/acschemneuro.2c00636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Blood-based biomarkers have been considered as a promising method for the diagnosis of Alzheimer's disease (AD). The reliability and accuracy of plasma core AD biomarkers, including phosphorylated tau (P-tau181), total tau (T-tau), Aβ42, and Aβ40, have also been confirmed in diagnosing AD and predicting cerebral β-amyloid (Aβ) deposition in Western populations, while fewer research studies have ever been conducted in China's Han population. In this study, we investigated the capability of plasma core AD biomarkers in predicting cerebral Aβ deposition burden among the China Aging and Neurodegenerative Disorder Initiative (CANDI) cohort consisting of cognitively normal (CN), mild cognitive impairment (MCI), AD dementia, and non-Alzheimer's dementia disease (Non-ADD). Body fluid (plasma and CSF) AD core biomarkers were measured via single-molecule array (Simoa) immunoassay. The global standard uptake value ratio (SUVR) was then calculated by 18F-florbetapir PET, which was divided into positive (+) and negative (-). The most significant correlation between plasma and CSF was plasma P-tau181 (r = 0.526, P < 0.0001). Plasma P-tau181 and P-tau181/T-tau ratio were positively correlated with global SUVR (r = 0.257, P < 0.0001; r = 0.263, P < 0.0001, respectively), while Aβ42 and Aβ42/Aβ40 ratio were negatively correlated with global SUVR (r = -0.346, P < 0.0001; r = -0.407, P < 0.0001, respectively). Interestingly, voxel-wise analysis showed that plasma P-tau181 and P-tau181/T-tau ratio were negatively related to 18F-florbetapir PET in the hippocampus and parahippocampal cortex. The optimal predictive capability in distinguishing all Aβ+ participants from Aβ- participants and MCI+ from MCI- subgroups was the plasma P-tau181/T-tau ratio (AUC = 0.825 and 0.834, respectively). Our study suggested that plasma P-tau181 and P-tau181/T-tau ratio possessed better diagnostic and predictive values than plasma Aβ42 and Aβ42/Aβ40 in this cohort, a finding that may be useful in clinical practices and trials in China.
Collapse
Affiliation(s)
- Ming Ni
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ze-Hua Zhu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Feng Gao
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lin-Bin Dai
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xin-Yi Lv
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiong Wang
- Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xing-Xing Zhu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ji-Kui Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yong Shen
- Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China.,Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, Anhui 230001, China
| | - Shi-Cun Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui 230001, China
| | | |
Collapse
|
27
|
Wang J, Zhang YR, Shen XN, Han J, Cui M, Tan L, Dong Q, Zubarev RA, Yu JT. Deamidation-related blood biomarkers show promise for early diagnostics of neurodegeneration. Biomark Res 2022; 10:91. [PMID: 36575499 PMCID: PMC9795668 DOI: 10.1186/s40364-022-00435-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The strongest risk factor of neurodegenerative diseases (NDDs) is aging. Spontaneous asparaginyl deamidation leading to formation of isoaspartate (isoAsp) has been correlated with protein aggregation in NDDs. METHODS Two cohorts consisting of 140 subjects were studied. Cohort 1 contained patients with AD and healthy controls, while Cohort 2 recruited subjects with mild cognitive impairment (MCI), vascular dementia (VaD), frontotemporal dementia (FTD), Parkinson's disease (PD) and healthy controls. The levels of isoAsp in plasma human albumin (HSA), the most abundant protein in plasma, as well as the levels of immunoglobulin G (IgG) specific against deamidated HSA were measured. Apart from the memory tests, plasma biomarkers for NDDs reported in literature were also quantified, including amyloid beta (Aβ) peptides Aβ40 and Aβ42, neurofilament light protein (NfL), glial fibrillary acidic protein (GFAP) and phosphorylated tau 181 (p-tau181) protein. RESULTS Deamidation products of blood albumin were significantly elevated in vascular dementia and frontotemporal dementia (P < 0.05), but less so in PD. Intriguingly, the deamidation levels were significantly (P < 0.01) associated with the memory test scores for all tested subjects. Deamidation biomarkers performed superiorly (accuracy up to 92%) compared with blood biomarkers Aß42/Aß40, NfL, GFAP and p-tau181 in separating mild cognitive impairment from healthy controls. CONCLUSION We demonstrated the diagnostic capacity of deamidation-related biomarkers in predicting NDDs at the early stage of disease, and the biomarker levels significantly correlated with cognitive decline, strongly supporting the role of deamidation in triggering neurodegeneration and early stages of disease development. Prospective longitudinal studies with a longer observation period and larger cohorts should provide a more detailed picture of the deamidation role in NDD progression.
Collapse
Affiliation(s)
- Jijing Wang
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ya-Ru Zhang
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Xue-Ning Shen
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Jinming Han
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mei Cui
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Lan Tan
- grid.410645.20000 0001 0455 0905Department of Neurology, Qingdao Municipal Hospital Group, Qingdao University, Qingdao, China
| | - Qiang Dong
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| | - Roman A. Zubarev
- grid.4714.60000 0004 1937 0626Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Tai Yu
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China ,National Center for Neurological Disorders, Shanghai, China
| |
Collapse
|
28
|
Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Baret-Rose C, Tréluyer JM, Abdoul H, Gelé P, Delmaire C, Blanc F, Mangin JF, Buée L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert P, Godefroy O, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A. Plasma amyloid beta predicts conversion to dementia in subjects with mild cognitive impairment: The BALTAZAR study. Alzheimers Dement 2022; 18:2537-2550. [PMID: 35187794 DOI: 10.1002/alz.12613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Blood-based biomarkers are the next challenge for Alzheimer's disease (AD) diagnosis and prognosis. METHODS Mild cognitive impairment (MCI) participants (N = 485) of the BALTAZAR study, a large-scale longitudinal multicenter cohort, were followed-up for 3 years. A total of 165 of them converted to dementia (95% AD). Associations of conversion and plasma amyloid beta (Aβ)1-42 , Aβ1-40 , Aβ1-42 /Aβ1-40 ratio were analyzed with logistic and Cox models. RESULTS Converters to dementia had lower level of plasma Aβ1-42 (37.1 pg/mL [12.5] vs. 39.2 [11.1] , P value = .03) and lower Aβ1-42 /Aβ1-40 ratio than non-converters (0.148 [0.125] vs. 0.154 [0.076], P value = .02). MCI participants in the highest quartile of Aβ1-42 /Aβ1-40 ratio (>0.169) had a significant lower risk of conversion (hazard ratio adjusted for age, sex, education, apolipoprotein E ε4, hippocampus atrophy = 0.52 (95% confidence interval [0.31-0.86], P value = .01). DISCUSSION In this large cohort of MCI subjects we identified a threshold for plasma Aβ1-42 /Aβ1-40 ratio that may detect patients with a low risk of conversion to dementia within 3 years.
Collapse
Affiliation(s)
- Olivier Hanon
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Jean-Sébastien Vidal
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | - Sylvain Lehmann
- CHU Montpellier, LBPC, Inserm, Université de Montpellier, Montpellier, France
| | - Stéphanie Bombois
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Bernadette Allinquant
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Christiane Baret-Rose
- UMR-S 1266, Université de Paris, Institute of Psychiatric and Neurosciences, Inserm, Paris, France
| | - Jean-Marc Tréluyer
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Hendy Abdoul
- Clinical Research Unit, Université de Paris, APHP, Hôpital Necker, Paris, France
| | - Patrick Gelé
- CHU Lille, CRB/CIC1403, Université de Lille, Inserm, Lille, France
| | - Christine Delmaire
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Fredéric Blanc
- CM2R, pôle de Gériatrie, Laboratoire ICube, FMTS, CNRS, équipe IMIS, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-François Mangin
- Neurospin, CEA, CNRS, cati-neuroimaging.com, CATI Multicenter Neuroimaging Platform, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Luc Buée
- CHU Lille, U1172-LilNCog, LiCEND, LabEx DISTALZ, Université de Lille, Inserm, Lille, France
| | - Jacques Touchon
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | - Jacques Hugon
- APHP, Groupe Hospitalier Saint Louis-Lariboisière Fernand Widal, Center of Cognitive Neurology, Université de Paris, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Midi-Pyrénées, Université de Toulouse III, CHU La Grave-Casselardit, Toulouse, France
| | - Evelyne Galbrun
- Department of Gérontology 2, Sorbonne Université, APHP, Centre Hospitalier Dupuytren, Draveil, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Lorraine, Université de Lorraine, CHRU de Nancy, Vandoeuvre-lès-Nancy, France
| | - Gilles Berrut
- Department of Clinical Gerontology, Memory Research Resource Center of Nantes, Université de Nantes, EA 4334 Movement-Interactions-Performance, CHU Nantes, Nantes, France
| | - Elena Paillaud
- Service de Gériatrie, Université de Paris, APHP, Hôpital Europeen Georges Pompidou, Paris, France
| | - David Wallon
- CHU de Rouen, Department of Neurology and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, CIC-CRB1404, Normandie Univ, UNIROUEN, Inserm U1245, Rouen, France
| | | | - Lisette Volpe-Gillot
- Service de Neuro-Psycho-Gériatrie, Memory Clinic, Hôpital Léopold Bellan, Paris, France
| | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Poitiers, France
| | - Philippe Robert
- Memory Research Resource Center of Nice, CoBTek lab, Université Côte d'Azur, CHU de Nice, Nice, France
| | - Olivier Godefroy
- Memory Resource and Research Centre of Amiens Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - Vincent Camus
- CHRU de Tours, UMR Inserm U1253, Université François-Rabelais de Tours, Tours, France
| | - Joël Belmin
- Service de Gériatrie Ambulatoire, Sorbonne Université, APHP, Hôpitaux Universitaires Pitie-Salpêtrière-Charles Foix, Paris, France
| | - Pierre Vandel
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, CHU de Besançon, Memory Resource and Research Centre of Besançon Franche-Comté, Université Bourgogne Franche-Comté, Besançon, France
| | - Jean-Luc Novella
- Memory Resource and Research Centre of Champagne-Ardenne, Université de Reims Champagne-Ardenne, EA 3797, CHU de Reims, Reims, France
| | - Emmanuelle Duron
- Département de gériatrie, Équipe MOODS, Inserm 1178, Université Paris-Saclay, APHP, Hôpital Paul Brousse, Villejuif, France
| | - Anne-Sophie Rigaud
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Université de Paris, EA 4468, APHP, Hopital Broca, Paris, France
| | | | - Audrey Gabelle
- Department of Neurology, Memory Research and Resources Center of Montpellier, Inserm INM NeuroPEPs Team, Excellence Center of Neurodegenerative Disorders, Université de Montpellier, CHU Montpellier, Montpellier, France
| | | |
Collapse
|
29
|
Gaubert S, Hourregue C, Mouton-Liger F, Millot P, Franco M, Amar-Bouaziz E, Aarsland D, Hugon J, Paquet C. Exploring the link between GBA1 mutations and Dementia with Lewy bodies, A mini-review. Neurosci Biobehav Rev 2022; 141:104856. [PMID: 36084847 DOI: 10.1016/j.neubiorev.2022.104856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
Abstract
IMPORTANCE Dementia with Lewy bodies (DLB) is a neurodegenerative disease linked to abnormal accumulation of phosphorylated α-synuclein. GBA1 is the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), whose mutations are a risk factor of DLB. OBJECTIVE To report all available data exploring the association between GBA1 mutations and DLB. EVIDENCE REVIEW All publications focused on GCase and DLB in humans between 2003 and 2022 were identified on PubMed, Cochrane and ClinicalTrials.gov. FINDINGS 29 studies were included and confirmed the strong association between GBA1 mutations and DLB (Odds Ratio [OR]: 8.28). GBA1 mutation carriers presented a more malignant phenotype, with earlier symptom onset, more severe motor and cognitive dysfunctions, more visual hallucinations and rapid eye movement sleep disorder. GBA1 mutations were associated with "purer" neuropathological DLB. No therapeutic recommendations exist and clinical trials targeting GCase are just starting in DLB patients. CONCLUSIONS AND RELEVANCE This review reports a link between GBA1 mutations and the DLB phenotype with limited evidence due to the small number of studies.
Collapse
Affiliation(s)
- Sinead Gaubert
- Université de Paris Cité; Centre de Neurologie Cognitive, GHU AP-HP Nord, Hôpital Lariboisière Fernand-Widal, Paris, France; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France
| | - Claire Hourregue
- Centre de Neurologie Cognitive, GHU AP-HP Nord, Hôpital Lariboisière Fernand-Widal, Paris, France
| | - François Mouton-Liger
- Université de Paris Cité; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France
| | - Périne Millot
- Université de Paris Cité; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France
| | - Mélanie Franco
- Université de Paris Cité; UMR-S1134, BIGR, Inserm, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Elodie Amar-Bouaziz
- Université de Paris Cité; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France; Département de Biochimie, GHU AP-HP Nord, Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Jacques Hugon
- Université de Paris Cité; Centre de Neurologie Cognitive, GHU AP-HP Nord, Hôpital Lariboisière Fernand-Widal, Paris, France; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France
| | - Claire Paquet
- Université de Paris Cité; Centre de Neurologie Cognitive, GHU AP-HP Nord, Hôpital Lariboisière Fernand-Widal, Paris, France; INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris Cité, France.
| |
Collapse
|
30
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
31
|
Behl T, Kaur I, Sehgal A, Singh S, Albarrati A, Albratty M, Najmi A, Meraya AM, Bungau S. The road to precision medicine: Eliminating the "One Size Fits All" approach in Alzheimer's disease. Biomed Pharmacother 2022; 153:113337. [PMID: 35780617 DOI: 10.1016/j.biopha.2022.113337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
The expeditious advancement of Alzheimer's Disease (AD) is a threat to the global healthcare system, that is further supplemented by therapeutic failure. The prevalence of this disorder has been expected to quadrupole by 2050, thereby exerting a tremendous economic pressure on medical sector, worldwide. Thus, there is a dire need of a change in conventional approaches and adopt a novel methodology of disease prevention, treatment and diagnosis. Precision medicine offers a personalized approach to disease management, It is dependent upon genetic, environmental and lifestyle factors associated with the individual, aiding to develop tailored therapeutics. Precision Medicine Initiatives are launched, worldwide, to facilitate the integration of personalized models and clinical medicine. The review aims to provide a comprehensive understanding of the neuroinflammatory processes causing AD, giving a brief overview of the disease interventions. This is further followed by the role of precision medicine in AD, constituting the genetic perspectives, operation of personalized form of medicine and optimization of clinical trials with the 3 R's, showcasing an in-depth understanding of this novel approach in varying aspects of the healthcare industry, to provide an opportunity to the global AD researchers to elucidate suitable therapeutic regimens in clinically and pathologically complex diseases, like AD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ali Albarrati
- Rehabilitation Health Sciences College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania.
| |
Collapse
|
32
|
Sheng C, Yang K, He B, Li T, Wang X, Du W, Hu X, Jiang J, Jiang X, Jessen F, Han Y. Cross-Cultural Longitudinal Study on Cognitive Decline (CLoCODE) for Subjective Cognitive Decline in China and Germany: A Protocol for Study Design. J Alzheimers Dis 2022; 87:1319-1333. [PMID: 35431240 DOI: 10.3233/jad-215452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Subjective cognitive decline (SCD) is considered as the first symptomatic manifestation of Alzheimer’s disease (AD), which is also affected by different cultural backgrounds. Establishing cross-cultural prediction models of SCD is challenging. Objective: To establish prediction models of SCD available for both the Chinese and European populations. Methods: In this project, 330 SCD from China and 380 SCD from Germany are intended to be recruited. For all participants, standardized assessments, including clinical, neuropsychological, apolipoprotein E (APOE) genotype, blood, and multi-parameter magnetic resonance imaging (MRI) at baseline will be conducted. Participants will voluntarily undergo amyloid positron emission tomography (PET) and are classified into amyloid-β (Aβ) positive SCD (SCD+) and Aβ negative SCD (SCD-). First, baseline data of all SCD individuals between the two cohorts will be compared. Then, key features associated with brain amyloidosis will be extracted in SCD+ individuals, and the diagnosis model will be established using the radiomics method. Finally, the follow-up visits will be conducted every 12 months and the primary outcome is the conversion to mild cognitive impairment or dementia. After a 4-year follow-up, we will extract factors associated with the conversion risk of SCD using Cox regression analysis. Results: At present, 141 SCD from China and 338 SCD from Germany have been recruited. Initial analysis showed significant differences in demographic information, neuropsychological tests, and regional brain atrophy in SCD compared with controls in both cohorts. Conclusion: This project may be of great value for future implications of SCD studies in different cultural backgrounds. Trial registration: ClinicalTrials.gov, NCT04696315. Registered 3 January 2021.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Kun Yang
- Evidence-Based Medicine Center, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China
| | - Beiqi He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Taoran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaoqi Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiaochen Hu
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Xueyan Jiang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- German Center for Neurodegenerative Disease, Clinical Research Group, Bonn, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
33
|
Lee D, Kim HV, Kim HY, Kim Y. Chemical-Driven Outflow of Dissociated Amyloid Burden from Brain to Blood. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104542. [PMID: 35106958 PMCID: PMC9036038 DOI: 10.1002/advs.202104542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Amyloid-β (Aβ) deposition in the brain is a primary biomarker of Alzheimer's disease (AD) and Aβ measurement for AD diagnosis mostly depends on brain imaging and cerebrospinal fluid analyses. Blood Aβ can become a reliable surrogate biomarker if issues of low concentration for conventional laboratory instruments and uncertain correlation with brain Aβ are solved. Here, brain-to-blood efflux of Aβ is stimulated in AD transgenic mice by orally administrating a chemical that dissociates amyloid plaques and observing the subsequent increase of blood Aβ concentration. 5XFAD transgenic and wild-type mice of varying ages and genders are prepared, and blood samples of each mouse are collected six times for 12 weeks; three weeks of no treatment and additional nine weeks of daily oral administration, ad libitum, of Aβ plaque-dissociating chemical agent. By the dissociation of Aβ aggregates, the altered levels of plasma Aβ distinguish between transgenic and wild-type mice, displaying potential as an amyloid burden marker of AD brains.
Collapse
Affiliation(s)
- Donghee Lee
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| | - Hyunjin Vincent Kim
- Korea Institute of Science and Technology (KIST)University of Science and Technology (UST)5 Hwarang‐ro 14‐gilSeongbuk‐guSeoul02792South Korea
| | - Hye Yun Kim
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| | - YoungSoo Kim
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Department of Integrative Biotechnology and Translational MedicineYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| |
Collapse
|
34
|
Pan FF, Huang Q, Wang Y, Wang YF, Guan YH, Xie F, Guo QH. Non-linear Character of Plasma Amyloid Beta Over the Course of Cognitive Decline in Alzheimer’s Continuum. Front Aging Neurosci 2022; 14:832700. [PMID: 35401142 PMCID: PMC8984285 DOI: 10.3389/fnagi.2022.832700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Plasma amyloid-β (Aβ) was associated with brain Aβ deposition and Alzheimer’s disease (AD) development. However, changes of plasma Aβ over the course of cognitive decline in the Alzheimer’s continuum remained uncertain. We recruited 449 participants to this study, including normal controls (NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), AD, and non-AD dementia. All the participants underwent plasma Aβ42, Aβ40, and t-tau measurements with single-molecule array (Simoa) immunoassay and PET scan with 18F-florbetapir amyloid tracer. In the subgroup of Aβ-PET positive, plasma Aβ42 and Aβ42/Aβ40 ratio was significantly lower in AD than NC, SCD and MCI, yet SCD had significantly higher levels of plasma Aβ42 than both NC and MCI. In the diagnostic groups of MCI and dementia, participants with Aβ-PET positive had lower plasma Aβ42 and Aβ42/40 ratio than participants with Aβ-PET negative, and the increasing levels of plasma Aβ42 and Aβ42/40 ratio indicated lower risks of Aβ-PET positive. However, in the participants with SCD, plasma Aβ42 and Aβ40 were higher in the subgroup of Aβ-PET positive than Aβ-PET negative, and the increasing levels of plasma Aβ42 and Aβ40 indicated higher risks of Aβ-PET positive. No significant association was observed between plasma Aβ and Aβ-PET status in normal controls. These findings showed that, in the continuum of AD, plasma Aβ42 had a significantly increasing trend from NC to SCD before decreasing in MCI and AD. Furthermore, the predictive values of plasma Aβ for brain amyloid deposition were inconsistent over the course of cognitive decline.
Collapse
Affiliation(s)
- Feng-Feng Pan
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi-Fan Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yi-Hui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Fang Xie,
| | - Qi-Hao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Qi-Hao Guo,
| |
Collapse
|
35
|
Heshmatollah A, Fani L, Koudstaal PJ, Ghanbari M, Ikram MA, Ikram MK. Plasma Amyloid Beta, Total-Tau and Neurofilament Light Chain Levels and the Risk of Stroke: A Prospective Population-Based Study. Neurology 2022; 98:e1729-e1737. [PMID: 35232820 DOI: 10.1212/wnl.0000000000200004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To unravel whether Alzheimer's disease-related pathology or neurodegeneration play a role in stroke etiology, we determined the effect of plasma levels amyloid β (Aβ), total-tau and neurofilament light chain (NfL) on risk of stroke and its subtypes. METHODS Between 2002 and 2005, we measured plasma Aβ40, Aβ42, total-tau, and NfL in 4,661 stroke-free participants from the population-based Rotterdam Study. We used Cox proportional-hazards models to determine the association between these markers with incident stroke for the entire cohort, per stroke subtype, and by median age, sex, Apolipoprotein E (APOE) ε4 carriership, and education. RESULTS After a mean follow-up of 10.8 ± 3.3 years, 379 participants suffered a first-ever stroke. Log2 total-tau at baseline showed a non-linear association with risk of any stroke and ischemic stroke: compared to the first (lowest) quartile the adjusted hazard ratio for the highest quartile total-tau was 1.68, 95% CI: 1.18-2.40 for any stroke. Log2 NfL was associated with an increased risk of any stroke (HR per SD increase 1.27, 95% CI: 1.12-1.44), ischemic stroke, and hemorrhagic stroke (HR 1.56, 95% CI: 1.14-2.12). Log2 Aβ40, Aβ42, and Aβ42/40 ratio levels were not associated with stroke risk.Discussion Participants with higher total-tau and NfL at baseline had a higher risk of stroke and several stroke subtypes. These findings support the role of markers of neurodegeneration in the etiology of stroke. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that higher plasma levels of total-tau and NfL are associated with an increased risk of subsequent stroke.
Collapse
Affiliation(s)
- Alis Heshmatollah
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Lana Fani
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
36
|
Sheng C, Yang K, He B, Du W, Cai Y, Han Y. Combination of gut microbiota and plasma amyloid-β as a potential index for identifying preclinical Alzheimer's disease: a cross-sectional analysis from the SILCODE study. Alzheimers Res Ther 2022; 14:35. [PMID: 35164860 PMCID: PMC8843023 DOI: 10.1186/s13195-022-00977-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
Background Plasma amyloid-β (Aβ) may facilitate identification of individuals with brain amyloidosis. Gut microbial dysbiosis in Alzheimer’s disease (AD) is increasingly being recognized. However, knowledge about alterations of gut microbiota in preclinical AD, as well as whether the combination of plasma Aβ and gut microbiota could identify preclinical AD, remains largely unknown. Methods This study recruited 34 Aβ-negative cognitively normal (CN−) participants, 32 Aβ-positive cognitively normal (CN+) participants, and 22 patients with cognitive impairment (CI), including 11 patients with mild cognitive impairment (MCI) and 11 AD dementia patients. All participants underwent neuropsychological assessments and fecal microbiota analysis through 16S ribosomal RNA (rRNA) Illumina Miseq sequencing technique. Meso Scale Discovery (MSD) kits were used to quantify the plasma Aβ40, Aβ42, and Aβ42/Aβ40 in CN− and CN+ participants. Using Spearman’s correlation analysis, the associations of global standard uptake value rate (SUVR) with altered gut microbiota and plasma Aβ markers were separately evaluated. Furthermore, the discriminative power of the combination of gut microbiota and plasma Aβ markers for identifying CN+ individuals was investigated. Results Compared with the CN− group, the CN+ group showed significantly reduced plasma Aβ42 (p = 0.011) and Aβ42/Aβ40 (p = 0.003). The relative abundance of phylum Bacteroidetes was significantly enriched, whereas phylum Firmicutes and class Deltaproteobacteria were significantly decreased in CN+ individuals in comparison with that in CN− individuals. Particularly, the relative abundance of phylum Firmicutes and its corresponding SCFA-producing bacteria exhibited a progressive decline tendency from CN− to CN+ and CI. Besides, the global brain Aβ burden was negatively associated with the plasma Aβ42/Aβ40 (r = −0.298, p = 0.015), family Desulfovibrionaceae (r = −0.331, p = 0.007), genus Bilophila (r = −0.247, p = 0.046), and genus Faecalibacterium (r = −0.291, p = 0.018) for all CN participants. Finally, the combination of plasma Aβ markers, altered gut microbiota, and cognitive performance reached a relatively good discriminative power in identifying individuals with CN+ from CN− (AUC = 0.869, 95% CI 0.782 ~ 0.955). Conclusions This study provided the evidence that the gut microbial composition was altered in preclinical AD. The combination of plasma Aβ and gut microbiota may serve as a non-invasive, cost-effective diagnostic tool for early AD screening. Targeting the gut microbiota may be a novel therapeutic strategy for AD. Trial registration This study has been registered in ClinicalTrials.gov (NCT03370744, https://www.clinicaltrials.gov) in November 15, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00977-x.
Collapse
Affiliation(s)
- Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Kun Yang
- Evidence-Based Medicine Center, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Beiqi He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Wenying Du
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.,Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100053, China.,Department of Biobank, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China. .,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China. .,National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
37
|
Vorobev SV, Yanishevskij SN, Emelin AY, Lebedev AA, Lebedev SP, Makarov YN, Usikov AS, Klotchenko SA, Vasin AV. Prospects for the use of graphene-based biological sensors in the early diagnosis of Alzheimer's disease (review of literature). Klin Lab Diagn 2022; 67:5-12. [PMID: 35077063 DOI: 10.51620/0869-2084-2022-67-1-5-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the most significant challenges presented to modern medicine is the problem of cognitive disorders. The relevance of her research is determined by the wide spread of disorders of the higher cortical functions, their significant negative impact on the quality of life of patients, as well as high economic costs on the part of the state and the patient's relatives aimed at organizing medical, diagnostic and rehabilitation processes. The main cause of cognitive impairment in the elderly is Alzheimer's disease. Currently, the criteria for the diagnosis of this nosological form have been developed and are widely used in practice. However, it should be noted that their use is most effective if the patient has a detailed clinical picture, at the stage of dementia. In addition, they provide for the study of biomarkers in a number of cases in the cerebrospinal fluid or using positron emission tomography, which presents certain technical difficulties. Especially significant problems arise in the pre-dement stages. This situation dictates the need to search for new promising diagnostic methods that will have high sensitivity and specificity, as well as the possibility of application in the early stages of Alzheimer's disease, including in outpatient settings. The article provides information about modern methods of computer neuroimaging, discusses the research directions of individual biomarkers, and also shows the prospects for using diagnostic test panels developed on the basis of graphene biosensors, taking into account the latest achievements of nanotechnology and their integration into medical science.
Collapse
Affiliation(s)
- S V Vorobev
- Almazov National Medical Research Centre.,Saint-Petersburg State Pediatric Medical University
| | - S N Yanishevskij
- Almazov National Medical Research Centre.,Military Medical Academy named after S.M. Kirov
| | - A Yu Emelin
- Military Medical Academy named after S.M. Kirov
| | - A A Lebedev
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Ioffe Institute
| | | | - Yu N Makarov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | - A S Usikov
- Saint Petersburg National Research University of Information Technologies, Mechanics and Optics.,Nitride Crystals Group Ltd
| | | | - A V Vasin
- Smorodintsev Research Institute of Influenza.,Institute of Biomedical Systems and Biotechnology, Peter the Great Saint-Petersburg Polytechnic University
| |
Collapse
|
38
|
Ogonowski N, Salcidua S, Leon T, Chamorro-Veloso N, Valls C, Avalos C, Bisquertt A, Rentería ME, Orellana P, Duran-Aniotz C. Systematic Review: microRNAs as Potential Biomarkers in Mild Cognitive Impairment Diagnosis. Front Aging Neurosci 2022; 13:807764. [PMID: 35095478 PMCID: PMC8790149 DOI: 10.3389/fnagi.2021.807764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
The rate of progression from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD) is estimated at >10% per year, reaching up to 80-90% after 6 years. MCI is considered an indicator of early-stage AD. In this context, the diagnostic screening of MCI is crucial for detecting individuals at high risk of AD before they progress and manifest further severe symptoms. Typically, MCI has been determined using neuropsychological assessment tools such as the Montreal Cognitive Assessment (MoCA) or Mini-Mental Status Examination (MMSE). Unfortunately, other diagnostic methods are not available or are unable to identify MCI in its early stages. Therefore, identifying new biomarkers for MCI diagnosis and prognosis is a significant challenge. In this framework, miRNAs in serum, plasma, and other body fluids have emerged as a promising source of biomarkers for MCI and AD-related cognitive impairments. Interestingly, miRNAs can regulate several signaling pathways via multiple and diverse targets in response to pathophysiological stimuli. This systematic review aims to describe the current state of the art regarding AD-related target genes modulated by differentially expressed miRNAs in peripheral fluids samples in MCI subjects to identify potential miRNA biomarkers in the early stages of AD. We found 30 articles that described five miRNA expression profiles from peripheral fluid in MCI subjects, showing possible candidates for miRNA biomarkers that may be followed up as fluid biomarkers or therapeutic targets of early-stage AD. However, additional research is needed to validate these miRNAs and characterize the precise neuropathological mechanisms.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), National Scientific and Technical Research Council (CONICET), Universidad de San Andrés, Buenos Aires, Argentina
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Constanza Avalos
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | | | - Miguel E. Rentería
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| |
Collapse
|
39
|
Wu Y, Wang Z, Yin J, Yang B, Fan J, Cheng Z. Association Plasma Aβ42 Levels with Alzheimer's Disease and Its Influencing Factors in Chinese Elderly Population. Neuropsychiatr Dis Treat 2022; 18:1831-1841. [PMID: 36043117 PMCID: PMC9420413 DOI: 10.2147/ndt.s374722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Intracerebral Aβ protein deposition is an important pathological mechanism of Alzheimer's disease (AD) and is one of the indicators of early diagnosis of AD. However, invasive lumbar puncture and Aβ PET are difficult to perform in primary units, resulting delays in early diagnosis of AD. In recent years, it has been found that plasma Aβ can reflect the pathological state of AD in early stage, but the results are not consistent. The objective of this study was to explore the association between plasma Aβ42 levels and AD cognitive impairment and its influencing factors in Chinese elderly population, so as to provide guidance for the clinical application of plasma Aβ42 as a blood biomarker of AD. METHODS This is a cross-sectional study based on the community population. Plasma samples were collected from 604 healthy controls (HC), 508 mild cognitive impairment (MCI) and 202 dementia with Alzheimer's type (DAT) patients from three cities. We analyzed the correlation between plasma Aβ42 levels and cognitive function and the influence of confounding factors on the relationship between plasma Aβ42 levels and AD. The independent influencing factors of plasma Aβ42 levels were determined by covariance and linear regression analysis. RESULTS Our results suggest that there is a special linear relationship between plasma Aβ42 and cognitive impairment of AD in Chinese elderly population, with Aβ42 levels slightly decreased in early AD and significantly increased in moderate-to-severe AD (P<0.01). There are many factors influencing the association between plasma Aβ42 levels and AD cognitive impairment, and sample source, gender and BMI are independent influencing factors of plasma Aβ42. CONCLUSION This indentifies that plasma Aβ42 may be a peripheral biomarker for AD screening in Chinese elderly population, but it is necessary to establish standardized detection methods and establish different demarcation criteria for various influencing factors.
Collapse
Affiliation(s)
- Yue Wu
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| | - Zhiqiang Wang
- Department of Clinical Psychology, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| | - Bixiu Yang
- Department of Clinical Psychology, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| | - Jie Fan
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| | - Zaohuo Cheng
- Department of Geriatric Psychiatry, The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
40
|
Milanesi E, Dobre M, Cucos CA, Rojo AI, Jiménez-Villegas J, Capetillo-Zarate E, Matute C, Piñol-Ripoll G, Manda G, Cuadrado A. Whole Blood Expression Pattern of Inflammation and Redox Genes in Mild Alzheimer's Disease. J Inflamm Res 2021; 14:6085-6102. [PMID: 34848989 PMCID: PMC8612672 DOI: 10.2147/jir.s334337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although Alzheimer’s disease (AD) is associated with alterations of the central nervous system, this disease has an echo in blood that might represent a valuable source of biomarkers for improved diagnosis, prognosis and for monitoring drug response. Methods We performed a targeted transcriptomics study on 38 mild Alzheimer’s disease (AD) patients and 38 matched controls for evaluating the expression levels of 136 inflammation and 84 redox genes in whole blood. Patients were diagnosed as mild AD based on altered levels of total TAU, phospho-TAU and Abeta(1–42) in cerebrospinal fluid, and Abeta(1–40), Abeta(1–42) and total TAU levels in plasma. Whenever possible, blood and brain comparisons were made using public datasets. Results We found 48 inflammation and 34 redox genes differentially expressed in the blood of AD patients vs controls (FC >1.5, p < 0.01), out of which 22 pro-inflammatory and 12 redox genes exhibited FC >2 and p < 0.001. Receiver operating characteristic (ROC) analysis identified nine inflammation and seven redox genes that discriminated between AD patients and controls (area under the curve >0.9). Correlations of the dysregulated inflammation and redox transcripts indicated that RELA may regulate several redox genes including DUOX1 and GSR. Based on the gene expression profile, we have found that the master regulators of inflammation and redox homeostasis, NFκB and NRF2, were significantly disturbed in the blood of AD patients, as well as several zinc finger and helix-loop-helix transcription factors. Conclusion The selected inflammation and redox genes might be useful biomarkers for monitoring anti-inflammatory therapy in mild AD.
Collapse
Affiliation(s)
- Elena Milanesi
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Maria Dobre
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | | | - Ana I Rojo
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| | - José Jiménez-Villegas
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Estibaliz Capetillo-Zarate
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastons Cognitius, Hospital Universitari Santa Maria-IRB Leida, Lleida, 25198, Spain
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Antonio Cuadrado
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania.,Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| |
Collapse
|
41
|
Jiao B, Liu H, Guo L, Liao X, Zhou Y, Weng L, Xiao X, Zhou L, Wang X, Jiang Y, Yang Q, Zhu Y, Zhou L, Zhang W, Wang J, Yan X, Tang B, Shen L. Performance of Plasma Amyloid β, Total Tau, and Neurofilament Light Chain in the Identification of Probable Alzheimer's Disease in South China. Front Aging Neurosci 2021; 13:749649. [PMID: 34776933 PMCID: PMC8579066 DOI: 10.3389/fnagi.2021.749649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia and has no effective treatment to date. It is essential to develop a minimally invasive blood-based biomarker as a tool for screening the general population, but the efficacy remains controversial. This cross-sectional study aimed to evaluate the ability of plasma biomarkers, including amyloid β (Aβ), total tau (t-tau), and neurofilament light chain (NfL), to detect probable AD in the South Chinese population. Methods: A total of 277 patients with a clinical diagnosis of probable AD and 153 healthy controls with normal cognitive function (CN) were enrolled in this study. The levels of plasma Aβ42, Aβ40, t-tau, and NfL were detected using ultra-sensitive immune-based assays (SIMOA). Lumbar puncture was conducted in 89 patients with AD to detect Aβ42, Aβ40, t-tau, and phosphorylated (p)-tau levels in the cerebrospinal fluid (CSF) and to evaluate the consistency between plasma and CSF biomarkers through correlation analysis. Finally, the diagnostic value of plasma biomarkers was further assessed by constructing a receiver operating characteristic (ROC) curve. Results: After adjusting for age, sex, and the apolipoprotein E (APOE) alleles, compared to the CN group, the plasma t-tau, and NfL were significantly increased in the AD group (p < 0.01, Bonferroni correction). Correlation analysis showed that only the plasma t-tau level was positively correlated with the CSF t-tau levels (r = 0.319, p = 0.003). The diagnostic model combining plasma t-tau and NfL levels, and age, sex, and APOE alleles, showed the best performance for the identification of probable AD [area under the curve (AUC) = 0.89, sensitivity = 82.31%, specificity = 83.66%]. Conclusion: Blood biomarkers can effectively distinguish patients with probable AD from controls and may be a non-invasive and efficient method for AD pre-screening.
Collapse
Affiliation(s)
- Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Weng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| |
Collapse
|
42
|
Chen TB, Lin KJ, Lin SY, Lee YJ, Lin YC, Wang CY, Chen JP, Wang PN. Prediction of Cerebral Amyloid Pathology Based on Plasma Amyloid and Tau Related Markers. Front Neurol 2021; 12:619388. [PMID: 34671305 PMCID: PMC8520900 DOI: 10.3389/fneur.2021.619388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/07/2021] [Indexed: 11/26/2022] Open
Abstract
Background and Purpose: Pyroglutamate-modified β-amyloid peptide (AβpE) is crucial for AD pathophysiological process. The potential associations of plasma AβpE and total tau (t-tau) with brain Aβ burden and cognitive performance remain to be clarified. Methods: Forty-six subjects with unimpaired cognition, mild cognitive impairment, or very mild dementia were enrolled. Plasma levels of AβpE3−40, t-tau, and Aβ42 were quantified by immunomagnetic reduction (IMR) assays. We analyzed individual and combined biomarker correlations with neuropsychological scores and Aβ positivity determined by 18F-florbetapir positron emission tomography (PET). Results: Both plasma AβpE3−40 levels and AβpE3−40/t-tau ratios correlated negatively with short-term memory and global cognition scores, while correlating positively with PET standardized uptake value ratios (SUVRs). Among the biomarkers analyzed, the combination of AβpE3−40 in a ratio with t-tau had the best discriminatory ability for Aβ PET positivity. Likewise, logistic regression analysis showed that AβpE3−40/t-tau was a highly robust predictor of Aβ PET positivity after controlling for relevant demographic covariates. Conclusion: Plasma AβpE3−40/t-tau ratios correlate with cognitive function and cerebral Aβ burden. The suitability of AβpE3−40/t-tau as a candidate clinical biomarker of AD pathology in the brain should be examined further in larger studies.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Ying Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Yi-Jung Lee
- Division of Neurology, Department of Medicine, Taipei City Hospital Renai Branch, Taipei, Taiwan
| | - Yi-Cheng Lin
- Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.,School of Life Sciences, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Yu Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
43
|
Wu X, Xiao Z, Yi J, Ding S, Gu H, Wu W, Luo J, Liang X, Zheng L, Xu H, Zhao Q, Ding D. Development of a Plasma Biomarker Diagnostic Model Incorporating Ultrasensitive Digital Immunoassay as a Screening Strategy for Alzheimer Disease in a Chinese Population. Clin Chem 2021; 67:1628-1639. [PMID: 34662373 DOI: 10.1093/clinchem/hvab192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ultrasensitive detection of blood-based biomarkers such as amyloid β (Aβ), tau, and neurofilament light (NFL) has drawn much attention in Alzheimer disease (AD) diagnosis. However, few studies have been conducted in the Chinese population. This study aimed to evaluate the ability of plasma biomarker diagnostic models for AD in the Chinese population based on a novel digital immunoassay technology. METHODS 159 patients with AD, 148 patients with amnestic mild cognitive impairment (aMCI), and 121 cognitively normal control participants were recruited from 2 cohorts. The concentrations of plasma Aβ42, Aβ40, Aβ42/Aβ40, total tau (t-tau), phosphorylated tau 181 (p-tau 181), and NFL were quantified using an ultrasensitive single molecule array (Simoa) platform. Comprehensive and simplified diagnostic models were established based on the plasma biomarker profile and clinical characteristics. RESULTS Among all blood biomarkers, p-tau181 had the greatest potential for identifying patients with cognitive impairment. The simplified diagnostic model, which combined plasma p-tau181, Aβ42, and clinical features, achieved 93.3% area under the curve (AUC), 78.6% sensitivity, and 94.2% specificity for distinguishing AD from control participants, indicating a diagnostic ability approaching that of the comprehensive diagnostic model including 5 plasma biomarkers and clinical characteristics (95.1% AUC, 85.5% sensitivity, 94.2% specificity). Moreover, the simplified model reached 95.9% AUC and 94.0% AUC for early- and late-onset AD/control participants, respectively. CONCLUSIONS We established AD diagnostic models using plasma biomarkers for Chinese participants. These findings suggest the simplified diagnostic model provides an accessible and practical way for large-scale screening in the clinic and community, especially in developing countries.
Collapse
Affiliation(s)
- Xue Wu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenxu Xiao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwei Yi
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Saineng Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Gu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqing Wu
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Luo
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zheng
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianhua Zhao
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC. Aging with Down Syndrome-Where Are We Now and Where Are We Going? J Clin Med 2021; 10:4687. [PMID: 34682809 PMCID: PMC8539670 DOI: 10.3390/jcm10204687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is a form of accelerated aging, and people with DS are highly prone to aging-related conditions that include vascular and neurological disorders. Due to the overexpression of several genes on Chromosome 21, for example genes encoding amyloid precursor protein (APP), superoxide dismutase (SOD), and some of the interferon receptors, those with DS exhibit significant accumulation of amyloid, phospho-tau, oxidative stress, neuronal loss, and neuroinflammation in the brain as they age. In this review, we will summarize the major strides in this research field that have been made in the last few decades, as well as discuss where we are now, and which research areas are considered essential for the field in the future. We examine the scientific history of DS bridging these milestones in research to current efforts in the field. We extrapolate on comorbidities associated with this phenotype and highlight clinical networks in the USA and Europe pursuing clinical research, concluding with funding efforts and recent recommendations to the NIH regarding DS research.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Nathan Kline Institute, NYU Grossman Medical School, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA;
| | - Alessandra C. Martini
- Department of Pathology and Lab. Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA;
| | - James Hendrix
- LuMind IDSC Foundation, 20 Mall Road, Suite 200, Burlington, MA 01801, USA;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA;
- Department of Neurosurgery, CU Anschutz, 12631 East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
45
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
46
|
Brain Atrophy Mediates the Relationship between Misfolded Proteins Deposition and Cognitive Impairment in Parkinson's Disease. J Pers Med 2021; 11:jpm11080702. [PMID: 34442345 PMCID: PMC8401428 DOI: 10.3390/jpm11080702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease is associated with cognitive decline, misfolded protein deposition and brain atrophy. We herein hypothesized that structural abnormalities may be mediators between plasma misfolded proteins and cognitive functions. Neuropsychological assessments including five domains (attention, executive, speech and language, memory and visuospatial functions), ultra-sensitive immunomagnetic reduction-based immunoassay (IMR) measured misfolded protein levels (phosphorylated-Tau, Amyloidβ-42 and 40, α-synuclein and neurofilament light chain) and auto-segmented brain volumetry using FreeSurfur were performed for 54 Parkinson’s disease (PD) patients and 37 normal participants. Our results revealed that PD patients have higher plasma misfolded protein levels. Phosphorylated-Tau (p-Tau) and Amyloidβ-42 (Aβ-42) were correlated with atrophy of bilateral cerebellum, right caudate nucleus, and right accumbens area (RAA). In mediation analysis, RAA atrophy completely mediated the relationship between p-Tau and digit symbol coding (DSC). RAA and bilateral cerebellar cortex atrophy partially mediated the Aβ-42 and executive function (DSC and abstract thinking) relationship. Our study concluded that, in PD, p-Tau deposition adversely impacts DSC by causing RAA atrophy. Aβ-42 deposition adversely impacts executive functions by causing RAA and bilateral cerebellum atrophy.
Collapse
|
47
|
Yang YH, Situmeang RFV, Ong PA. Can blood amyloid levels be used as a biomarker for Alzheimer’s disease? BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Alzheimer’s disease (AD) increasingly affects society due to aging populations. Even at pre‐clinical stages, earlier and accurate diagnoses are essential for optimal AD management and improved clinical outcomes. Biomarkers such as beta‐amyloid (Aβ) or tau protein in cerebrospinal fluid (CSF) have been used as reliable markers to distinguish AD from non‐AD, and predicting clinical outcomes, to attain these goals. However, given CSF access methods’ invasiveness, these biomarkers are not used extensively in clinical settings. Blood Aβ has been proposed as an alternative biomarker since it is less invasive than CSF; however, sampling heterogeneity has limited its clinical applicability. In this review, we investigated blood Aβ as a biomarker in AD and explored how Aβ can be facilitated as a viable biomarker for successful AD management.
Collapse
Affiliation(s)
- Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, China
- Department of Neurology, Kaohsiung Municipal Ta‐Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, China
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Rocksy FV Situmeang
- Siloam Hospitals Lippo Village, Pelita Harapan University, Banten, Indonesia
| | - Paulus Anam Ong
- Department of Neurology, Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
48
|
Serum Amyloid Beta42 Is Not Eliminated by the Cirrhotic Liver: A Pilot Study. J Clin Med 2021; 10:jcm10122669. [PMID: 34204545 PMCID: PMC8235170 DOI: 10.3390/jcm10122669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloid-beta (Aβ) deposition in the brain is the main pathological hallmark of Alzheimer disease. Peripheral clearance of Aβ may possibly also lower brain levels. Recent evidence suggested that hepatic clearance of Aβ42 is impaired in liver cirrhosis. To further test this hypothesis, serum Aβ42 was measured by ELISA in portal venous serum (PVS), systemic venous serum (SVS), and hepatic venous serum (HVS) of 20 patients with liver cirrhosis. Mean Aβ42 level was 24.7 ± 20.4 pg/mL in PVS, 21.2 ± 16.7 pg/mL in HVS, and 19.2 ± 11.7 pg/mL in SVS. Similar levels in the three blood compartments suggested that the cirrhotic liver does not clear Aβ42. Aβ42 was neither associated with the model of end-stage liver disease score nor the Child–Pugh score. Patients with abnormal creatinine or bilirubin levels or prolonged prothrombin time did not display higher Aβ42 levels. Patients with massive ascites and patients with large varices had serum Aβ42 levels similar to patients without these complications. Serum Aβ42 was negatively associated with connective tissue growth factor levels (r = −0.580, p = 0.007) and a protective role of Aβ42 in fibrogenesis was already described. Diabetic patients with liver cirrhosis had higher Aβ42 levels (p = 0.069 for PVS, p = 0.047 for HVS and p = 0.181 for SVS), which is in accordance with previous reports. Present analysis showed that the cirrhotic liver does not eliminate Aβ42. Further studies are needed to explore the association of liver cirrhosis, Aβ42 levels, and cognitive dysfunction.
Collapse
|
49
|
Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci 2021; 17:2181-2192. [PMID: 34239348 PMCID: PMC8241728 DOI: 10.7150/ijbs.57078] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
50
|
Chen M, Xia W. Proteomic Profiling of Plasma and Brain Tissue from Alzheimer's Disease Patients Reveals Candidate Network of Plasma Biomarkers. J Alzheimers Dis 2021; 76:349-368. [PMID: 32474469 DOI: 10.3233/jad-200110] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent form of dementia with two pathological hallmarks of tau-containing neurofibrillary tangles and amyloid-β protein (Aβ)-containing neuritic plaques. Although Aβ and tau have been explored as potential biomarkers, levels of these pathological proteins in blood fail to distinguish AD from healthy control subjects. OBJECTIVE We aim to discover potential plasma proteins associated with AD pathology by performing tandem mass tag (TMT)-based quantitative proteomic analysis of proteins from peripheral and central nervous system compartments. METHODS We performed comparative proteomic analyses of plasma collected from AD patients and cognitively normal subjects. In addition, proteomic profiles from the inferior frontal cortex, superior frontal cortex, and cerebellum of postmortem brain tissue from five AD patients and five non-AD controls were compared with plasma proteomic profiles to search for common biomarkers. Liquid chromatography-mass spectrometry was used to analyze plasma and brain tissue labeled with isobaric TMT for relative protein quantification. RESULTS Our results showed that the proteins in complement coagulation cascade and interleukin-6 signaling were significantly altered in both plasma and brains of AD patients. CONCLUSION Our results demonstrate the relevance in immune responses between the peripheral and central nervous systems. Those differentially regulated plasma proteins are explored as candidate biomarker profiles that illustrate chronic neuroinflammation in brains of AD patients.
Collapse
Affiliation(s)
- Mei Chen
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA.,Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|