1
|
Bernardelli de Mattos I, Tuca AC, Kukla F, Lemarchand T, Markovic D, Kamolz LP, Funk M. A Highly Standardized Pre-Clinical Porcine Wound Healing Model Powered by Semi-Automated Histological Analysis. Biomedicines 2024; 12:1697. [PMID: 39200162 PMCID: PMC11351733 DOI: 10.3390/biomedicines12081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
The wound-healing process is a physiological response that begins after a disruption to the integrity of tissues present in the skin. To understand the intricacies involved in this process, many groups have tried to develop different in vitro models; however, the lack of a systemic response has, until this day, been the major barrier to the establishment of these models as the main study platform. Therefore, in vivo models are still the most common system for studying healing responses following different treatments, especially porcine models, which share several morphological similarities to the human skin. In this work, we developed a porcine excisional wound model and used semi-automated software as a strategy to generate quantitative morphometric results of healing responses by specific tissues and compartments. Our aim was to extract the most information from the model while producing reliable, reproducible, and standardized results. In order to achieve this, we established a 7-day treatment using a bacterial cellulose dressing as our standard for all the analyzed wounds. The thickness of the residual dermis under the wound (DUtW) bed was shown to influence the healing outcome, especially for the regeneration of epidermal tissue, including the wound closure rate. The analysis of the DUtW throughout the entire dorsal region of the animals opened up the possibility of establishing a map that will facilitate the experimental design of future works, increasing their standardization and reproducibility and ultimately reducing the number of animals needed. Thus, the developed model, together with the automated morphometric analysis approach used, offers the possibility to generate robust quantitative results with a rapid turnaround time while allowing the study of multiple extra morphometric parameters, creating a more holistic analysis.
Collapse
Affiliation(s)
- Ives Bernardelli de Mattos
- Department of Tissue Engineering & Regenerative Medicine (TERM), University Hospital Würzburg, 97080 Würzburg, Germany;
- EVOMEDIS GmbH, 8036 Graz, Austria;
| | - Alexandru C. Tuca
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Fabian Kukla
- TPL Path Labs GmbH, A Stagebio Company, 79111 Freiburg, Germany; (F.K.); (T.L.)
| | - Thomas Lemarchand
- TPL Path Labs GmbH, A Stagebio Company, 79111 Freiburg, Germany; (F.K.); (T.L.)
| | - Danijel Markovic
- Department of Biomedical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Lars P. Kamolz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, 8036 Graz, Austria;
- Joanneum Research Forschungsgesellschaft mbH, COREMED, 8036 Graz, Austria
| | | |
Collapse
|
2
|
Carney BC, Travis TE, Keyloun JW, Moffatt LT, Johnson LS, McLawhorn MM, Shupp JW. Rete ridges are decreased in dyschromic burn hypertrophic scar: A histological study. Burns 2024; 50:66-74. [PMID: 37777456 DOI: 10.1016/j.burns.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/28/2023] [Accepted: 09/10/2023] [Indexed: 10/02/2023]
Abstract
Dyschromic hypertrophic scar (HTS) is a common sequelae of burn injury, however, its mechanism has not been elucidated. This work is a histological study of these scars with a focus on rete ridges. Rete ridges are important for normal skin physiology, and their absence or presence may hold mechanistic significance in post-burn HTS dyschromia. It was posited that hyper-, and hypo-pigmented areas of scars have different numbers of rete ridges. Subjects with dyschromic burn hypertrophic scar were prospectively enrolled (n = 44). Punch biopsies of hyper-, hypo-, and normally pigmented scar and skin were collected. Biopsies were paraffin embedded, sectioned, stained with H&E, and imaged. The number of rete ridges were investigated. Burn hypertrophic scars that healed without autografts were first investigated. The number of rete ridges was higher in normal skin compared to HTS that was either hypo- (p < 0.01) or hyper-pigmented (p < 0.001). This difference was similar despite scar pigmentation phenotype (p = 0.8687). Autografted hyper-pigmented scars had higher rete ridge ratio compared to non-autografted hyper-pigmented HTS (p < 0.0001). Burn hypertrophihc scars have fewer rete ridges than normal skin. This finding may explain the decreased epidermal adherence to underlying dermis associated with hypertrophic scars. Though, contrary to our hypothesis, no direct link between the extent of dyschromia and rete ridge quantity was observed, the differences in normal skin and hypertrophic scar may lead to further understanding of dyschromic scars.
Collapse
Affiliation(s)
- Bonnie C Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Taryn E Travis
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA; Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, USA
| | - Lauren T Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA; Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Laura S Johnson
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA; Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Melissa M McLawhorn
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Jeffrey W Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA; Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA.
| |
Collapse
|
3
|
Shen Z, Liu Z, Sun L, Li M, Han L, Wang J, Wu X, Sang S. Constructing epidermal rete ridges using a composite hydrogel to enhance multiple signaling pathways for the maintenance of epidermal stem cell niche. Acta Biomater 2023; 169:273-288. [PMID: 37516415 DOI: 10.1016/j.actbio.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The undulating microstructure rete ridge (RR) located at the junction between the dermis and epidermis plays a crucial role in improving skin mechanical properties and maintaining skin homeostasis. However, the investigation of RR microstructures is usually neglected in current tissue engineering for skin regeneration. Here, to create an epidermal model with RR microstructures, keratinocytes were cultured on a patterned GelMA-PEGDA hydrogel constructed using molding technology. Furthermore, grafting acryloylated Arg-Gly-Asp (RGD) peptides on the hydrogel surface significantly improved cell adhesion, fusion, and development. RT-PCR, Western blot, and immunofluorescence staining confirmed that cells on RR microstructures exhibited higher gene and protein expression associated with epidermal stem cells. RNA sequencing analysis of cells on RR microstructure showed higher gene expression profiles related to stem cell maintenance, basement membrane formation, and epidermal development. Furthermore, RT-PCR analysis of epidermal models of various dimensions demonstrated that smaller microstructures were more conducive to epidermal stem cell marker gene expression, which is analogous to human skin. Overall, we have successfully developed a method for integrating RR microstructures into an epidermal model that mimics natural skin to maintain epidermal stem cell niche, providing a valuable reference for researching skin regeneration within the fields of tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: This study presents a method for precisely fabricating microstructures of skin rete ridges using composite hydrogels, thereby creating a skin model that mimics natural human skin. The findings reveal that this microstructure provides a stem cell niche that regulates the pathways and promotes the expression of proteins related to epidermal stem cells. This work advances the functional properties of tissue engineered skin and holds promise for improving the therapeutic efficacy of artificial skin grafts for the skin wounds.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Jinan, Shandong, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Shen Z, Sun L, Liu Z, Li M, Cao Y, Han L, Wang J, Wu X, Sang S. Rete ridges: Morphogenesis, function, regulation, and reconstruction. Acta Biomater 2023; 155:19-34. [PMID: 36427683 DOI: 10.1016/j.actbio.2022.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Rete ridges (RRs) are distinct undulating microstructures at the junction of the dermis and epidermis in the skin of humans and certain animals. This structure is essential for enhancing the mechanical characteristics of skin and preserving homeostasis. With the development of tissue engineering and regenerative medicine, artificial skin grafts have made great progress in the field of skin healing. However, the restoration of RRs has been often disregarded or absent in artificial skin grafts, which potentially compromise the efficacy of tissue repair and regeneration. Therefore, this review collates recent research advances in understanding the structural features, function, morphogenesis, influencing factors, and reconstruction strategies pertaining to RRs. In addition, the preparation methods and limitations of tissue-engineered skin with RRs are discussed. STATEMENT OF SIGNIFICANCE: The technology for the development of tissue-engineered skin (TES) is widely studied and reported; however, the preparation of TES containing rete ridges (RRs) is often ignored, with no literature reviews on the structural reconstruction of RRs. This review focuses on the progress pertaining to RRs and focuses on the reconstruction methods for RRs. In addition, it discusses the limitations of existing reconstruction methods. Therefore, this review could be a valuable reference for transferring TES with RR structure from the laboratory to clinical applications in skin repair.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lei Sun
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan 030809, China
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China.
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
5
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Miotti G, Zingaretti N, Guarneri GF, Manfrè V, Errichetti E, Stinco G, Parodi PC. Autologous micrografts and methotrexate in plantar erosive lichen planus: healing and pain control. A case report. CASE REPORTS IN PLASTIC SURGERY AND HAND SURGERY 2020; 7:134-138. [PMID: 33457454 PMCID: PMC7782279 DOI: 10.1080/23320885.2020.1848434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Erosive lichen planus is an uncommon variant of lichen planus. We report a case of longstanding and refractory plantar ELPs causing disabling and opiate-resistant pain treated with ‘classic’ meshed skin graft combined with Rigenera® micrografts. After approximately 9 months follow-up, no clinical recurrence or pain were observed. Erosive lichen planus (ELP) is an uncommon variant of lichen planus, involving oral cavity and genitalia and, less often plantar areas, where it usually presents with chronic erosions of the soles, along with intense, disabling pain and progressive loss of toenails. An abnormal immune cellular response (CD8+ lymphocytes and macrophages) and the consequent altered production of multiple mediators (interleukin-12, interferon-γ, tumor necrosis factor-α, RANTES and MMP-9), seem to play a crucial role in the pathogenesis, although the etiology remains uncertain. From a histological point of view, ELP shows keratinocyte apoptosis, intense inflammatory response and basal epithelial keratinocytes TNF-α overexpression. Several therapies have been proposed, with variable and controversial results. While topical corticosteroids and topical calcineurin inhibitors are the treatments of choice for localized forms, short pulses of systemic glucocorticoids, phototherapy, and systemic immunosuppressants are recommended for generalized cases. Surgery has been reported as a possible therapeutic option in refractory and stable cases with localized lesions, either alone or with cyclosporine. Herein, we report a case of longstanding and refractory plantar ELPS causing disabling and opiate-resistant pain treated with ‘classic’ meshed skin graft combined with Rigenera® micrografts.
Collapse
Affiliation(s)
- G Miotti
- Department of Plastic and Recostructive Surgery, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - N Zingaretti
- Department of Plastic and Recostructive Surgery, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - G F Guarneri
- Department of Plastic and Recostructive Surgery, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - V Manfrè
- Department of Plastic and Recostructive Surgery, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - E Errichetti
- Institute of Dermatology, Department of Medicine, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - G Stinco
- Institute of Dermatology, Department of Medicine, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| | - P C Parodi
- Department of Plastic and Recostructive Surgery, "Santa Maria della Misericordia" University Hospital, Udine, Italy
| |
Collapse
|
7
|
Application of stable continuous external electric field promotes wound healing in pig wound model. Bioelectrochemistry 2020; 135:107578. [DOI: 10.1016/j.bioelechem.2020.107578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
|
8
|
|
9
|
Kruse CR, Sakthivel D, Sinha I, Helm D, Sørensen JA, Eriksson E, Nuutila K. Evaluation of the efficacy of cell and micrograft transplantation for full-thickness wound healing. J Surg Res 2018; 227:35-43. [PMID: 29804860 DOI: 10.1016/j.jss.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/09/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skin grafting is the current standard of care in the treatment of full-thickness burns and other wounds. It is sometimes associated with substantial problems, such as poor quality of the healed skin, scarring, and lack of donor-site skin in large burns. To overcome these problems, alternative techniques that could provide larger expansion of a skin graft have been introduced over the years. Particularly, different cell therapies and methods to further expand skin grafts to minimize the need for donor skin have been attempted. The purpose of this study was to objectively evaluate the efficacy of cell and micrograft transplantation in the healing of full-thickness wounds. MATERIALS AND METHODS Allogeneic cultured keratinocytes and fibroblasts, separately and together, as well as autologous and allogeneic skin micrografts were transplanted to full-thickness rat wounds, and healing was studied over time. In addition, wound fluid was collected, and the level of various cytokines and growth factors in the wound after transplantation was measured. RESULTS Our results showed that both autologous and allogeneic micrografts were efficient treatment modalities for full-thickness wound healing. Allogeneic skin cell transplantation did not result in wound closure, and no viable cells were found in the wound 10 d after transplantation. CONCLUSIONS Our study demonstrated that allogeneic micrografting is a possible treatment modality for full-thickness wound healing. The allografts stayed viable in the wound and contributed to both re-epithelialization and formation of dermis, whereas allogeneic skin cell transplantation did not result in wound closure.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | - Dharaniya Sakthivel
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Douglas Helm
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | | | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Rettinger CL, Fletcher JL, Carlsson AH, Chan RK. Accelerated epithelialization and improved wound healing metrics in porcine full‐thickness wounds transplanted with full‐thickness skin micrografts. Wound Repair Regen 2017; 25:816-827. [DOI: 10.1111/wrr.12585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/09/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Christina L. Rettinger
- Dental and Craniofacial Trauma Research Directorate, United States Army Institute of Surgical ResearchFort Sam Houston Texas
| | - John L. Fletcher
- Dental and Craniofacial Trauma Research Directorate, United States Army Institute of Surgical ResearchFort Sam Houston Texas
| | - Anders H. Carlsson
- Dental and Craniofacial Trauma Research Directorate, United States Army Institute of Surgical ResearchFort Sam Houston Texas
| | - Rodney K. Chan
- Dental and Craniofacial Trauma Research Directorate, United States Army Institute of Surgical ResearchFort Sam Houston Texas
| |
Collapse
|
11
|
Kiwanuka E, Junker JP, Eriksson E. Transforming growth factor β1 regulates the expression of CCN2 in human keratinocytes via Smad-ERK signalling. Int Wound J 2017; 14:1006-1018. [PMID: 28371159 DOI: 10.1111/iwj.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023] Open
Abstract
Connective tissue growth factor (CCN2/CTGF) and transforming growth factor β1 (TGF-β1) are important regulators of skin wound healing, but controversy remains regarding their expression in epithelial cell lineages. Here, we investigate the expression of CCN2 in keratinocytes during reepithelialisation and its regulation by TGF-β1. CCN2 was detected in the epidermis of healing full-thickness porcine wounds. Human keratinocytes were incubated with or without 10 ng/ml TGF-β1, and signalling pathways were blocked with 10-μM SIS3 or 20-μM PD98059. Semi-quantitative real-time PCR was used to study CCN2 mRNA expression, and western blot was used to measure CCN2, phosphorylated-ERK1/2, ERK1/2, phosphorylated-Smad3 and Smad2/3 proteins. CCN2 was transiently expressed in neoepidermis at the leading edge of the wound in vivo. In vitro, CCN2 expression was induced by TGF-β1 at 2 hours (7·5 ± 1·9-fold mRNA increase and 3·0 ± 0·6-fold protein increase) and 12 hours (5·4 ± 1·9-fold mRNA increase and 3·3 ± 0·6-fold protein increase). Compared with inhibiting the SMAD pathway, inhibiting the mitogen-activated protein kinase (MAPK) pathway was more effective in reducing TGF-β1-induced CCN2 mRNA and protein expression. Inhibition of the MAPK pathway had minimal impact on the activity of the SMAD pathway. CCN2 is expressed in keratinocytes in response to tissue injury or TGF-β1. In addition, TGF-β1 induces CCN2 expression in keratinocytes through the ras/MEK/ERK pathway. A complete understanding of CCN2 expression in keratinocytes is critical to developing novel therapies for wound healing and cutaneous malignancy.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Department of Plastic Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Johan Pe Junker
- Center for Disaster Medicine and Traumatology, Department of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Ambrozova N, Ulrichova J, Galandakova A. Models for the study of skin wound healing. The role of Nrf2 and NF-κB. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:1-13. [PMID: 28115750 DOI: 10.5507/bp.2016.063] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
Nrf2 and NF-κB transcription factors act in wound healing via their anti-inflammatory and anti-oxidant effects or through the immune response. Studying this process is a matter of some importance given the high cost of wound treatment. A major contribution in this regard is being made by models that enable investigation of the involvement of multiple factors in wound healing and testing new curative substances. This literature review was carried out via searches in the PubMed and Web of Science databases up to 2016. It covers skin wound healing, available models for its study (part I), the role of Nrf2 and NF-κB, substances that influence them and whether they can be used as markers (part II). Was found that in vitro assays are used for their availability but a holistic view must be established in vivo. In silico approaches are facilitating assessment of a vast amount of research data. Nfr2 and NF-κB play a crucial and reciprocal role in wound healing. Nrf2 controls repair-associated inflammation and protects against excessive accumulation of ROS while Nf-κB activates the innate immune reaction, proliferation and migration of cells, modulates expression of matrix metalloproteinases, secretion and stability of cytokines and growth factors for wound healing.
Collapse
Affiliation(s)
- Nikola Ambrozova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jitka Ulrichova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Adela Galandakova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
13
|
Topical Minocycline Effectively Decontaminates and Reduces Inflammation in Infected Porcine Wounds. Plast Reconstr Surg 2016; 138:856e-868e. [DOI: 10.1097/prs.0000000000002633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Been RA, Bernatchez SF, Conrad-Vlasak DM, Asmus RA, Ekholm BP, Parks PJ. In vivo methods to evaluate a new skin protectant for loss of skin integrity. Wound Repair Regen 2016; 24:851-859. [PMID: 27312780 DOI: 10.1111/wrr.12455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 11/28/2022]
Abstract
A new skin protectant was developed for use on conditions involving partial-thickness skin loss such as severe incontinence-associated dermatitis. This new formulation is based on a cyanoacrylate chemistry designed to polymerize in situ and create a breathable film able to protect the skin surface from external irritants. This film provides an environment favorable for healing to occur beneath the film. To evaluate the characteristics of the novel chemistry, we devised a preclinical testing strategy comprising three different animal models. The data from all three models was considered collectively to create an overall assessment of effectiveness. A guinea pig model was used to evaluate the barrier efficacy of the new product in protecting intact skin from irritation. A porcine partial-thickness wound model was used to evaluate the efficacy of the product in helping control minor bleeding and exudate. A similar model was also used to assess the process of reepithelialization in the continued presence of an irritant. In the first model, untreated sites had 8.5 times more irritation than sites covered with the new product (p < 0.001). In the second model, a single application of the new product successfully attached to intact peri-wound skin and to denuded, weepy skin. It significantly reduced the amount of fluid weeping from the wounds (p ≤ 0.001) and continued to perform throughout a 96 hours experiment. In the third model, the percent of reepithelialization was significantly greater for the wounds covered with the new product than for the control wounds (p = 0.003; on average, 18.3% greater, with a 95% confidence interval of 9.2% to 27.5%). These results suggest that the new skin protectant protects intact and denuded skin from irritants and provides an environment favorable to healing, offering promise for the management of various conditions involving loss of epidermis.
Collapse
Affiliation(s)
- Raha A Been
- 3M Critical & Chronic Care Solutions Division, St. Paul, Minnesota
| | | | | | - Robert A Asmus
- 3M Critical & Chronic Care Solutions Division, St. Paul, Minnesota
| | - Bruce P Ekholm
- 3M Critical & Chronic Care Solutions Division, St. Paul, Minnesota
| | - Patrick J Parks
- 3M Critical & Chronic Care Solutions Division, St. Paul, Minnesota
| |
Collapse
|
15
|
Tsai DM, Tracy LE, Lee CCY, Hackl F, Kiwanuka E, Minasian RA, Onderdonk A, Junker JPE, Eriksson E, Caterson EJ. Full-thickness porcine burns infected with Staphylococcus aureus or Pseudomonas aeruginosa can be effectively treated with topical antibiotics. Wound Repair Regen 2016; 24:356-65. [PMID: 26800421 DOI: 10.1111/wrr.12409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
Burn and blast injuries are frequently complicated by invasive infections, which lead to poor wound healing, delay in treatment, disability, or death. Traditional approach centers on early debridement, fluid resuscitation, and adjunct intravenous antibiotics. These modalities often prove inadequate in burns, where compromised local vasculature limits the tissue penetration of systemic antibiotics. Here, we demonstrate the treatment of infected burns with topical delivery of ultrahigh concentrations of antibiotics. Standardized burns were inoculated with Staphylococcus aureus or Pseudomonas aeruginosa. After debridement, burns were treated with either gentamicin (2 mg/mL) or minocycline (1 mg/mL) at concentrations greater than 1,000 times the minimum inhibitory concentration. Amount of bacteria was quantified in tissue biopsies and wound fluid following treatment. After six days of gentamicin or minocycline treatment, S. aureus counts decreased from 4.2 to 0.31 and 0.72 log CFU/g in tissue, respectively. Similarly, P. aeruginosa counts decreased from 2.5 to 0.0 and 1.5 log CFU/g in tissue, respectively. Counts of both S. aureus and P. aeruginosa remained at a baseline of 0.0 log CFU/mL in wound fluid for both treatment groups. The findings here demonstrate that super-therapeutic concentrations of antibiotics delivered topically can rapidly reduce bacterial counts in infected full-thickness porcine burns. This treatment approach may aid wound bed preparation and accelerate time to grafting.
Collapse
Affiliation(s)
- David M Tsai
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lauren E Tracy
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cameron C Y Lee
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florian Hackl
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel A Minasian
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew Onderdonk
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Johan P E Junker
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E J Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Challenging the Conventional Therapy: Emerging Skin Graft Techniques for Wound Healing. Plast Reconstr Surg 2016; 136:524e-530e. [PMID: 26397272 DOI: 10.1097/prs.0000000000001634] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Split-thickness skin grafting is the current gold standard for treatment of major traumatic skin loss. However, split-thickness skin grafting is limited by donor-skin availability, especially in large burns. In addition, the donor-site wound is associated with pain and scarring. Multiple techniques have been developed in the past to overcome these limitations but have been unable to achieve clinical relevance. In this study, the authors examine the novel emerging skin grafting techniques, aiming to improve the utility of split-thickness skin grafting. METHODS An extensive literature review was conducted on PubMed, MEDLINE, and Google Scholar to look for new skin grafting techniques. Special focus was given to techniques with potential for large expansion ratio and decreased donor-site pain. RESULTS The new modalities of modified skin grafting technique, discussed in this article, include (1) Xpansion Micrografting System, (2) fractional skin harvesting, (3) epidermal suction blister grafting, and (4) ReCell technology. These techniques are able to achieve significantly increased expansion ratios compared with conventional split-thickness skin grafting and also have decreased donor-site morbidity. CONCLUSIONS These techniques can be used separately or in conjunction with split-thickness skin grafting to overcome the associated pitfalls. Further studies and clinical trials are needed to define the utility of these procedures and where they fit into routine clinical practice.
Collapse
|
17
|
|
18
|
Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids Surf B Biointerfaces 2015; 135:166-174. [DOI: 10.1016/j.colsurfb.2015.07.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/01/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022]
|
19
|
Kruse CR, Nuutila K, Lee CCY, Kiwanuka E, Singh M, Caterson EJ, Eriksson E, Sørensen JA. The external microenvironment of healing skin wounds. Wound Repair Regen 2015; 23:456-64. [PMID: 25857996 DOI: 10.1111/wrr.12303] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cameron C Y Lee
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mansher Singh
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward J Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model. J Invest Dermatol 2015; 135:2519-2529. [PMID: 26358387 PMCID: PMC4570841 DOI: 10.1038/jid.2015.182] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/09/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Currently available skin grafts and skin substitute for healing following third-degree burn injuries is fraught with complications, often resulting in long-term physical and psychological sequelae. Synthetic treatment that can promote wound healing in a regenerative fashion would provide an off-the-shelf, non-immunogenic strategy to improve clinical care of severe burn wounds. Here, we demonstrate vulnerary efficacy and accelerated healing mechanism of dextran-based hydrogel in third-degree porcine burn model. The model was optimized to allow examination of the hydrogel treatment for clinical translation and its regenerative response mechanisms. Hydrogel treatment accelerated third-degree burn wound healing by rapid wound closure, improved reepithelialization, enhanced extracellular matrix remodeling, and greater nerve reinnervation, compared to the dressing treated group. These effects appear to be mediated through the ability of the hydrogel to facilitate a rapid but brief initial inflammatory response that coherently stimulates neovascularization within the granulation tissue during the first week of treatment, followed by an efficient vascular regression to promote a regenerative healing process. Our results suggest that the dextran-based hydrogels may substantially improve healing quality and reduce skin grafting incidents and thus pave the way for clinical studies to improve the care of severe burn injury patients.
Collapse
|
21
|
Topical delivery of ultrahigh concentrations of gentamicin is highly effective in reducing bacterial levels in infected porcine full-thickness wounds. Plast Reconstr Surg 2015; 135:151-159. [PMID: 25539303 DOI: 10.1097/prs.0000000000000801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Injury to the skin can predispose individuals to invasive infection. The standard of care for infected wounds is treatment with intravenous antibiotics. However, antibiotics delivered intravenously may have poor tissue penetration and be dose limited by systemic side effects. Topical delivery of antibiotics reduces systemic complications and delivers increased drug concentrations directly to the wound. METHODS Porcine full-thickness wounds infected with Staphylococcus aureus were treated with ultrahigh concentrations (over 1000 times the minimum inhibitory concentration) of gentamicin using an incubator-like wound healing platform. The aim of the present study was to evaluate clearance of infection and reduction in inflammation following treatment. Gentamicin cytotoxicity was evaluated by in vitro assays. RESULTS Application of 2000 μg/ml gentamicin decreased bacterial counts in wound tissue from 7.2 ± 0.3 log colony-forming units/g to 2.6 ± 0.6 log colony-forming units/g in 6 hours, with no reduction observed in saline controls (p < 0.005). Bacterial counts in wound fluid decreased from 5.7 ± 0.9 log colony-forming units/ml to 0.0 ± 0 log colony-forming units/ml in 1 hour, with no reduction observed in saline controls (p < 0.005). Levels of interleukin-1β were significantly reduced in gentamicin-treated wounds compared with saline controls (p < 0.005). In vitro, keratinocyte migration and proliferation were reduced at gentamicin concentrations between 100 and 1000 μg/ml. CONCLUSIONS Topical delivery of ultrahigh concentrations of gentamicin rapidly decontaminates acutely infected wounds and maintains safe systemic levels. Treatment of infected wounds using the proposed methodology protects the wound and establishes a favorable baseline for subsequent treatment.
Collapse
|
22
|
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 2014; 66:14-21. [PMID: 25466611 DOI: 10.1016/j.molimm.2014.10.023] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 01/21/2023]
Abstract
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | - François Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Meret E Ricklin
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| |
Collapse
|
23
|
Hackl F, Kiwanuka E, Philip J, Gerner P, Aflaki P, Diaz-Siso JR, Sisk G, Caterson E, Junker JP, Eriksson E. Moist dressing coverage supports proliferation and migration of transplanted skin micrografts in full-thickness porcine wounds. Burns 2014; 40:274-80. [DOI: 10.1016/j.burns.2013.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/18/2013] [Accepted: 06/03/2013] [Indexed: 10/26/2022]
|
24
|
Li M, Ti D, Han W, Fu X. Microenvironment-induced myofibroblast-like conversion of engrafted keratinocytes. SCIENCE CHINA-LIFE SCIENCES 2014; 57:209-20. [PMID: 24443179 DOI: 10.1007/s11427-014-4613-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022]
Abstract
Myofibroblasts, recognized classically by α-smooth muscle actin (α-SMA) expression, play a key role in the wound-healing process, promoting wound closure and matrix deposition. Although a body of evidence shows that keratinocytes explanted onto a wound bed promote closure of a skin injury, the underlying mechanisms are not well understood. The basal layer of epidermis is rich in undifferentiated keratinocytes (UKs). We showed that UKs injected into granulation tissue could switch into α-SMA positive cells, and accelerate the rate of skin wound healing. In addition, when the epidermis sheets isolated from foreskin cover up the wound bed or are induced in vitro, keratinocytes located at the basal layers or adjacent sites were observed to convert into myofibroblast-like cells. Thus, UKs have a potential for myofibroblastic transition, which provides a novel mechanism by which keratinocyte explants accelerate skin wound healing.
Collapse
Affiliation(s)
- MeiRong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, 100853, China
| | | | | | | |
Collapse
|
25
|
Kiwanuka E, Andersson L, Caterson EJ, Junker JPE, Gerdin B, Eriksson E. CCN2 promotes keratinocyte adhesion and migration via integrin α5β1. Exp Cell Res 2013; 319:2938-46. [DOI: 10.1016/j.yexcr.2013.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
26
|
Junker JP, Kamel RA, Caterson E, Eriksson E. Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments. Adv Wound Care (New Rochelle) 2013; 2:348-356. [PMID: 24587972 DOI: 10.1089/wound.2012.0412] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 11/12/2022] Open
Abstract
SIGNIFICANCE Successful treatment of wounds relies on precise control and continuous monitoring of the wound-healing process. Wet or moist treatment of wounds has been shown to promote re-epithelialization and result in reduced scar formation, as compared to treatment in a dry environment. RECENT ADVANCES By treating wounds in a controlled wet environment, delivery of antimicrobials, analgesics, other bioactive molecules such as growth factors, as well as cells and micrografts, is allowed. The addition of growth factors or transplantation of cells yields the possibility of creating a regenerative wound microenvironment that favors healing, as opposed to excessive scar formation. CRITICAL ISSUES Although several manufacturers have conceived products implementing the concept of moist wound healing, there remains a lack of commercial translation of wet wound-healing principles into clinically available products. This can only be mitigated by further research on the topic. FUTURE DIRECTIONS The strong evidence pointing to the favorable healing of wounds in a wet or moist environment compared to dry treatment will extend the clinical indications for this treatment. Further advances are required to elucidate by which means this microenvironment can be optimized to improve the healing outcome.
Collapse
Affiliation(s)
- Johan P.E. Junker
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rami A. Kamel
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Kiwanuka E, Hackl F, Caterson EJ, Nowinski D, Junker JPE, Gerdin B, Eriksson E. CCN2 is transiently expressed by keratinocytes during re-epithelialization and regulates keratinocyte migration in vitro by the ras-MEK-ERK signaling pathway. J Surg Res 2013; 185:e109-19. [PMID: 24079812 DOI: 10.1016/j.jss.2013.05.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND CCN2 (previously known as connective tissue growth factor) is a multifunctional matricellular protein that has numerous effects on cell life and cell interactions with the connective tissue. Although the importance of CCN2 for the fibrotic process in wound healing has been well studied, the involvement of CCN2 in keratinocyte function has not yet been explored. Therefore, the aim of the present study was to investigate the role of CCN2 in the epidermis during wound healing. MATERIALS AND METHODS Immunohistochemistry was done on sections from full-thickness porcine wounds. The effect of CCN2 on the migration of cultured human keratinocytes exposed to scratch wounds, the effect on phosphorylation of extracellular signal-related kinases (ERK), and the effect of adding inhibitors to the ERK/mitogen-activated protein kinase pathway to human keratinocytes were studied. RESULTS The CCN2 protein was transiently expressed in vivo at the leading keratinocyte edge during re-epithelialization of full-thickness porcine wounds. In vitro, exogenous addition of CCN2 to human keratinocyte cultures regulated keratinocyte migration and resulted in phosphorylation of ERK. The addition of inhibitors of ERK/mitogen-activated protein kinase counteracted the effect of CCN2 on migration. CONCLUSIONS CCN2 was transiently expressed at the leading keratinocyte edge in vivo. The biologic importance of this was supported in vitro, because CCN2 regulated human keratinocyte migration through activation of the Ras-mitogen-activated protein kinase kinase-ERK signal transduction pathway.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Surgical Sciences, Plastic Surgery Unit, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|