Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day unplanned hospital readmissions: an updated systematic review.
BMJ Open 2016;
6:e011060. [PMID:
27354072 PMCID:
PMC4932323 DOI:
10.1136/bmjopen-2016-011060]
[Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE
To update previous systematic review of predictive models for 28-day or 30-day unplanned hospital readmissions.
DESIGN
Systematic review.
SETTING/DATA SOURCE
CINAHL, Embase, MEDLINE from 2011 to 2015.
PARTICIPANTS
All studies of 28-day and 30-day readmission predictive model.
OUTCOME MEASURES
Characteristics of the included studies, performance of the identified predictive models and key predictive variables included in the models.
RESULTS
Of 7310 records, a total of 60 studies with 73 unique predictive models met the inclusion criteria. The utilisation outcome of the models included all-cause readmissions, cardiovascular disease including pneumonia, medical conditions, surgical conditions and mental health condition-related readmissions. Overall, a wide-range C-statistic was reported in 56/60 studies (0.21-0.88). 11 of 13 predictive models for medical condition-related readmissions were found to have consistent moderate discrimination ability (C-statistic ≥0.7). Only two models were designed for the potentially preventable/avoidable readmissions and had C-statistic >0.8. The variables 'comorbidities', 'length of stay' and 'previous admissions' were frequently cited across 73 models. The variables 'laboratory tests' and 'medication' had more weight in the models for cardiovascular disease and medical condition-related readmissions.
CONCLUSIONS
The predictive models which focused on general medical condition-related unplanned hospital readmissions reported moderate discriminative ability. Two models for potentially preventable/avoidable readmissions showed high discriminative ability. This updated systematic review, however, found inconsistent performance across the included unique 73 risk predictive models. It is critical to define clearly the utilisation outcomes and the type of accessible data source before the selection of the predictive model. Rigorous validation of the predictive models with moderate-to-high discriminative ability is essential, especially for the two models for the potentially preventable/avoidable readmissions. Given the limited available evidence, the development of a predictive model specifically for paediatric 28-day all-cause, unplanned hospital readmissions is a high priority.
Collapse