1
|
Komatsu S, Nagamata S, Terashima K, Demizu Y, Suga M, Kido M, Yanagimoto H, Toyama H, Tokumaru S, Okimoto T, Terai Y, Fukumoto T. Combination Treatment with Spacer Placement Surgery Followed by Particle Radiotherapy for Lymph Node Metastasis from Uterine Cancer. Ann Surg Oncol 2025:10.1245/s10434-025-17039-9. [PMID: 40000562 DOI: 10.1245/s10434-025-17039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The effectiveness of local treatment in lymph node metastasis from uterine cancer has been proven; the standard treatment is surgical intervention. Although radiotherapy, including particle radiotherapy (PRT), is an alternative local treatment, its application is often contraindicated owing to its proximity to the gastrointestinal tract. Combination treatment with spacer placement surgery followed by PRT is a potential solution to this problem. This study aimed to evaluate the outcomes of this combination treatment of lymph node metastases from uterine cancer. PATIENTS AND METHODS Between December 2007 and March 2023, ten consecutive patients who underwent combination treatment comprising spacer placement surgery and subsequent PRT were assessed for treatment outcomes. RESULTS The median survival time was 53.5 months; the 3- and 5-year overall survival rates were 76.2% and 38.1%, respectively. The 3- and 5-year local control rates in all patients were both 88.9%. The median volume irradiated at 95% of the treatment planning dose (V95%) of the gross tumor volume, clinical target volume, and planning target volume were 100.0%, 99.8%, and 92.2%, respectively. The median dose intensity covering 95% of the target volume (D95%) of the gross tumor volume/planned dose, clinical target volume/planned dose, and planning target volume/planned dose were 98.9%, 99.0%, and 87.2%, respectively. CONCLUSIONS Spacer placement surgery contributed to the optimized PRT dose distribution and might have contributed to favorable local control and survival rates. This innovative combination treatment might have a significant effect on the treatment of lymph node metastases from uterine cancers.
Collapse
Affiliation(s)
- Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Satoshi Nagamata
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Japan
| | - Masaki Suga
- Department of Radiation Physics, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Yanagimoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Komatsu S, Wang T, Terashima K, Demizu Y, Anzai M, Suga M, Yamashita T, Suzuki O, Okimoto T, Sasaki R, Fukumoto T. Innovative Combination Treatment to Expand the Indications of Particle Therapy: Spacer Placement Surgery Using Bio-Absorbable Polyglycolic Acid Spacer. J Am Coll Surg 2024; 238:119-128. [PMID: 37737669 DOI: 10.1097/xcs.0000000000000873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND Particle therapy has favorable dose distribution and high curability. However, radiotherapy for malignant tumors adjacent to the gastrointestinal tract is contraindicated owing to its low tolerance. To overcome this, combination treatment with surgery to make a space between the tumor and adjacent gastrointestinal tract followed by particle therapy has been developed. Several materials have been used for the spacer and recently, we developed the absorbable polyglycolic acid (PGA) spacer, which has been used since 2019. This study is the first report of consecutive case series of spacer placement surgery using the PGA spacer. STUDY DESIGN Fifty consecutive patients undergoing spacer placement surgery with the PGA spacer were evaluated. Postoperative laboratory data, morbidity related to the treatment, and spacer volume after treatment were evaluated. RESULTS There were no treatment-related deaths, and all but 2 patients completed combination treatment. The median ratios of postoperative PGA spacer volume to the pretreatment volume were 96.9%, 87.7%, and 74.6% at weeks 2, 4, and 8, respectively. The spacer volume was maintained at 80% at 7 weeks and was predicted to be 50% at 15 weeks and 20% in 24 weeks. CONCLUSIONS Spacer placement surgery using the PGA spacer was feasible and tolerable. The PGA spacers maintained sufficient thickness during the duration of subsequent particle therapy. Combination treatment using the PGA spacer is innovative and has the potential to become a new standard curative local treatment.
Collapse
Affiliation(s)
- Shohei Komatsu
- From the Department of Surgery, Divisions of Hepato-Biliary-Pancreatic Surgery (Komatsu, Fukumoto), Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tianyuan Wang
- Departments of Radiation Physics (Wang, Suga), Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Kazuki Terashima
- Radiology (Terashima, Demizu, Okimoto), Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Yusuke Demizu
- Radiology (Terashima, Demizu, Okimoto), Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
- Departments of Radiation Oncology (Demizu), Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Makoto Anzai
- Osaka Heavy Ion Therapy Center, Osaka, Japan (Anzai, Suzuki)
| | - Masaki Suga
- Departments of Radiation Physics (Wang, Suga), Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Tomohiro Yamashita
- Radiation Physics (Yamashita), Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Osamu Suzuki
- Osaka Heavy Ion Therapy Center, Osaka, Japan (Anzai, Suzuki)
| | - Tomoaki Okimoto
- Radiology (Terashima, Demizu, Okimoto), Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Ryohei Sasaki
- Radiation Oncology (Sasaki), Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takumi Fukumoto
- From the Department of Surgery, Divisions of Hepato-Biliary-Pancreatic Surgery (Komatsu, Fukumoto), Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Fujinaka R, Komatsu S, Terashima K, Demizu Y, Omiya S, Kido M, Toyama H, Tokumaru S, Okimoto T, Fukumoto T. Clinical impact of spacer placement surgery with expanded polytetrafluoroethylene sheet for particle therapy. Radiat Oncol 2023; 18:173. [PMID: 37875956 PMCID: PMC10594906 DOI: 10.1186/s13014-023-02359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Spacer placement surgery is useful in particle therapy (PT) for patients with abdominopelvic malignant tumors located adjacent to the gastrointestinal tract. This study aimed to assess the safety, efficacy, and long-term outcomes of spacer placement surgery using an expanded polytetrafluoroethylene (ePTFE) spacer. METHODS This study included 131 patients who underwent ePTFE spacer placement surgery and subsequent PT between September 2006 and June 2019. The overall survival (OS) and local control (LC) rates were calculated using Kaplan-Meier method. Spacer-related complications were classified according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 5.0). RESULTS The median follow-up period after spacer placement surgery was 36.8 months. The 3-year estimated OS and LC rates were 60.5% and 76.5%, respectively. A total of 130 patients (99.2%) were able to complete PT. Spacer-related complications of ≥ grade 3 were observed in four patients (3.1%) in the acute phase and 13 patients (9.9%) in the late phase. Ten patients (7.6%) required removal of the ePTFE spacer. CONCLUSIONS Spacer placement surgery using an ePTFE spacer for abdominopelvic malignant tumors is technically feasible and acceptable for subsequent PT. However, severe spacer-related late complications were observed in some patients. Since long-term placement of a non-absorbable ePTFE spacer is associated with risks for morbidity and infection, careful long-term follow-up and prompt therapeutic intervention are essential when complications associated with the ePTFE spacer occur. TRIAL REGISTRATION retrospectively registered.
Collapse
Affiliation(s)
- Ryosuke Fujinaka
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan.
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Yusuke Demizu
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, 1-6-8 Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Hyogo, Japan
| | - Satoshi Omiya
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, 1-2-1 Kouto, Shingu-cho, Tatsuno, 679-5165, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Hyogo, Japan
| |
Collapse
|
4
|
Redmond KJ, Schaub SK, Lo SFL, Khan M, Lubelski D, Bilsky M, Yamada Y, Fehlings M, Gogineni E, Vajkoczy P, Ringel F, Meyer B, Amin AG, Combs SE, Lo SS. Radiotherapy for Mobile Spine and Sacral Chordoma: A Critical Review and Practical Guide from the Spine Tumor Academy. Cancers (Basel) 2023; 15:cancers15082359. [PMID: 37190287 DOI: 10.3390/cancers15082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chordomas are rare tumors of the embryologic spinal cord remnant. They are locally aggressive and typically managed with surgery and either adjuvant or neoadjuvant radiation therapy. However, there is great variability in practice patterns including radiation type and fractionation regimen, and limited high-level data to drive decision making. The purpose of this manuscript was to summarize the current literature specific to radiotherapy in the management of spine and sacral chordoma and to provide practice recommendations on behalf of the Spine Tumor Academy. A systematic review of the literature was performed using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) approach. Medline and Embase databases were utilized. The primary outcome measure was the rate of local control. A detailed review and interpretation of eligible studies is provided in the manuscript tables and text. Recommendations were defined as follows: (1) consensus: approved by >75% of experts; (2) predominant: approved by >50% of experts; (3) controversial: not approved by a majority of experts. Expert consensus supports dose escalation as critical in optimizing local control following radiation therapy for chordoma. In addition, comprehensive target volumes including sites of potential microscopic involvement improve local control compared with focal targets. Level I and high-quality multi-institutional data comparing treatment modalities, sequencing of radiation and surgery, and dose/fractionation schedules are needed to optimize patient outcomes in this locally aggressive malignancy.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie K Schaub
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| | - Sheng-Fu Larry Lo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra, Hempstead, NY 11549, USA
| | - Majid Khan
- Department of Radiology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel Lubelski
- Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Mark Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Fehlings
- Department of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Emile Gogineni
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charite University Hospital, 10117 Berlin, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, 55131 Mainz, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, 80333 Munich, Germany
| | - Anubhav G Amin
- Department of Neurological Surgery, University of Washington, Seattle, WA 98115, USA
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, 81675 Munich, Germany
| | - Simon S Lo
- Department of Radiation Oncology, The University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Pennington Z, Ehresman J, Elsamadicy AA, Shin JH, Goodwin CR, Schwab JH, Sciubba DM. Systematic review of charged-particle therapy for chordomas and sarcomas of the mobile spine and sacrum. Neurosurg Focus 2021; 50:E17. [PMID: 33932924 DOI: 10.3171/2021.2.focus201059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Long-term local control in patients with primary chordoma and sarcoma of the spine and sacrum is increasingly reliant upon en bloc resection with negative margins. At many institutions, adjuvant radiation is recommended; definitive radiation is also recommended for the treatment of unresectable tumors. Because of the high off-target radiation toxicities associated with conventional radiotherapy, there has been growing interest in the use of proton and heavy-ion therapies. The aim of this study was to systematically review the literature regarding these therapies. METHODS The PubMed, OVID, Embase, and Web of Science databases were queried for articles describing the use of proton, combined proton/photon, or heavy-ion therapies for adjuvant or definitive radiotherapy in patients with primary sarcoma or chordoma of the mobile spine and sacrum. A qualitative synthesis of the results was performed, focusing on overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and disease-specific survival (DSS); local control; and postradiation toxicities. RESULTS Of 595 unique articles, 64 underwent full-text screening and 38 were included in the final synthesis. All studies were level III or IV evidence with a high risk of bias; there was also significant overlap in the reported populations, with six centers accounting for roughly three-fourths of all reports. Five-year therapy outcomes were as follows: proton-only therapies, OS 67%-82%, PFS 31%-57%, and DFS 52%-62%; metastases occurred in 17%-18% and acute toxicities in 3%-100% of cases; combined proton/photon therapy, local control 62%-85%, OS 78%-87%, PFS 90%, and DFS 61%-72%; metastases occurred in 12%-14% and acute toxicities in 84%-100% of cases; and carbon ion therapy, local control 53%-100%, OS 52%-86%, PFS (only reported for 3 years) 48%-76%, and DFS 50%-53%; metastases occurred in 2%-39% and acute toxicities in 26%-48%. There were no studies directly comparing outcomes between photon and charged-particle therapies or comparing outcomes between radiation and surgical groups. CONCLUSIONS The current evidence for charged-particle therapies in the management of sarcomas of the spine and sacrum is limited. Preliminary evidence suggests that with these therapies local control and OS at 5 years are comparable among various charged-particle options and may be similar between those treated with definitive charged-particle therapy and historical surgical cohorts. Further research directly comparing charged-particle and photon-based therapies is necessary.
Collapse
Affiliation(s)
- Zach Pennington
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aladine A Elsamadicy
- 2Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - John H Shin
- 3Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - C Rory Goodwin
- 4Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina; and
| | - Joseph H Schwab
- 5Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Sciubba
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|