1
|
Curtis EM, Miguel M, McEvoy C, Ticinesi A, Torre C, Al-Daghri N, Alokail M, Bałkowiec-Iskra E, Bruyère O, Burlet N, Cavalier E, Cerreta F, Clark P, Cherubini A, Cooper C, D'Amelio P, Fuggle N, Gregson C, Halbout P, Kanis JA, Kaufman J, Laslop A, Maggi S, Maier A, Matijevic R, McCloskey E, Ormarsdóttir S, Yerro CP, Radermecker RP, Rolland Y, Singer A, Veronese N, Rizzoli R, Reginster JY, Harvey NC. Impact of dementia and mild cognitive impairment on bone health in older people. Aging Clin Exp Res 2024; 37:5. [PMID: 39725855 DOI: 10.1007/s40520-024-02871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/20/2024] [Indexed: 12/28/2024]
Abstract
Mild cognitive impairment, dementia and osteoporosis are common diseases of ageing and, with the increasingly ageing global population, are increasing in prevalence. These conditions are closely associated, with shared risk factors, common underlying biological mechanisms and potential direct causal pathways. In this review, the epidemiological and mechanistic links between mild cognitive impairment, dementia and skeletal health are explored. Discussion will focus on how changes in brain and bone signalling can underly associations between these conditions, and will consider the molecular and cellular drivers in the context of inflammation and the gut microbiome. There is a complex interplay between nutritional changes, which may precede or follow the onset of mild cognitive impairment (MCI) or dementia, and bone health. Polypharmacy is common in patients with MCI or dementia, and there are difficult prescribing decisions to be made due to the elevated risk of falls associated with many drugs used for associated problems, which can consequently increase fracture risk. Some medications prescribed for cognitive impairment may directly impact bone health. In addition, patients may have difficulty remembering medication without assistance, meaning that osteoporosis drugs may be prescribed but not taken. Cognitive impairment may be improved or delayed by physical activity and exercise, and there is evidence for the additional benefits of physical activity on falls and fractures. Research gaps and priorities with the aim of reducing the burden of osteoporosis and fractures in people with MCI or dementia will also be discussed.
Collapse
Affiliation(s)
- Elizabeth M Curtis
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Mario Miguel
- Centro de Estudos Egas Moniz, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Claire McEvoy
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Carla Torre
- Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines of the University of Lisbon (iMED.ULisboa), Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Nasser Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Majed Alokail
- Biochemistry Department, College of Science, KSU, Riyadh, Kingdom of Saudi Arabia
| | - Ewa Bałkowiec-Iskra
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
- The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products & CHMP, SAWP, CNSWP, PCWP, ETF (European Medicines Agency) Member, Warsaw, Poland
| | - Olivier Bruyère
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
- Department of Physical Activity and Rehabilitation Sciences, University of Liège, Liège, Belgium
| | - Nansa Burlet
- Research Unit in Epidemiology, University of Liege, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, CHU de Liège, Liège, Belgium
| | - Francesca Cerreta
- Digital Health and Geriatrics, European Medicines Agency, Amsterdam, The Netherlands
| | - Patricia Clark
- Clinical Epidemiology Unit, Hospital Infantil Federico Gómez-Facultad de Medicina, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l'invecchiamento, IRCCS INRCA Istituto Nazionale di Ricovero e Cura per Anziani, Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Patrizia D'Amelio
- Department of Medicine, Service of Geriatric Medicine & Geriatric Rehabilitation, University of Lausanne Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicholas Fuggle
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK
| | - Celia Gregson
- Musculoskeletal Research Unit, Bristol Medical School, Learning and Research Building, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
- The Health Research Unit of Zimbabwe (THRU ZIM), The Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | - John A Kanis
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
| | - Jean Kaufman
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Andrea Laslop
- Scientific Office, Austrian Medicines and Medical Devices Agency, Vienna, Austria
| | | | - Andrea Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
- Department of Human Movement Sciences, at AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Radmila Matijevic
- Faculty of Medicine in Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Eugene McCloskey
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- MRC Versus Arthritis Centre for Integrated Research in Musculoskeletal Ageing, University of Sheffield, Sheffield, UK
| | - Sif Ormarsdóttir
- Medicine Assessment and Licencing, Icelandic Medicines Agency, Reykjavik, Iceland
| | | | - Régis P Radermecker
- Department of Diabetes, Nutrition and Metabolic Disorders, Clinical Pharmacology, University of Liege, CHU de Liège, Liège, Belgium
| | - Yves Rolland
- HealthAge, CHU Toulouse, CERPOP UMR 1295, Inserm, Université Paul Sabatier, Toulouse, France
| | - Andrea Singer
- Departments of Obstetrics & Gynecology and Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Nicola Veronese
- Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy
| | - René Rizzoli
- Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jean-Yves Reginster
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, UK.
| |
Collapse
|
2
|
Elhalag RH, Chèbl P, Bayoumy NM, Hassan NAIF, Hagar H, Abowafia M, Gaber H, Belal MM, Shah J, Motawea KR. The risk of bone fractures in dementia patients receiving acetylcholinesterase inhibitors: a meta-analysis. Ann Med Surg (Lond) 2024; 86:2105-2115. [PMID: 38576949 PMCID: PMC10990402 DOI: 10.1097/ms9.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024] Open
Abstract
Aim The authors aimed to conduct a meta-analysis to determine if acetylcholinesterase inhibitors may pose a direct threat, increasing the incidence of fractures in dementia patients. Methods PubMed, Scopus, and Cochrane Library were searched. Inclusion criteria were any original studies that demonstrated the link between acetylcholinesterase inhibitors and the incidence of fracture in patients with dementia. RevMan(5.4) was used. Results Seven observational studies were included. The total number of patients included in the acetylcholinesterase inhibitors group is 274 332 and 290 347 in the control group. The pooled analysis showed that the risk of bone fracture was not statistically different between dementia patients who received acetylcholinesterase inhibitors and those who did not receive them (odds ratio=1.44, CI 0.95, 2.19, P=0.09). Subgroup analysis showed no statistically significant difference between dementia patients who took acetylcholinesterase inhibitors, and those who didn't take acetylcholinesterase inhibitors in those more than or equal to 80 years old and those less than 80 years old (P=0.44) and (P=0.34) respectively. However, our results showed a statistically significant association between dementia patients who received acetylcholinesterase inhibitors and decreased fracture risk in those receiving the treatment for more than or less than 2 years (risk ratio=0.48, CI= 0.45, 0.51, P<0.00001) and (risk ratio=0.84, CI 0.70, 0.99, P=0.04), respectively. Conclusion Our study revealed no role for acetylcholinesterase inhibitors in increasing the risk of fracture compared with controls. Hence, based on our analysis, they might have a protective role against fracture when used for long periods considering their positive action on bone growth and development. Therefore, Acetylcholinesterase inhibitors could be considered a safe option for improving cognitive functions in elderly demented patients without carrying any additional risks.
Collapse
Affiliation(s)
| | - Pensée Chèbl
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | - Hanan Hagar
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Hamed Gaber
- Faculty of Medicine, Alexandria University, Alexandria
| | | | | | | |
Collapse
|
3
|
Hu H, Mei J, Cai Y, Ding H, Niu S, Zhang W, Fang X. No genetic causal association between Alzheimer's disease and osteoporosis: A bidirectional two-sample Mendelian randomization study. Front Aging Neurosci 2023; 15:1090223. [PMID: 36761181 PMCID: PMC9905740 DOI: 10.3389/fnagi.2023.1090223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Objective Many observational studies have found an association between Alzheimer's disease (AD) and osteoporosis. However, it is unclear whether there is causal genetic between osteoporosis and AD. Methods A two-sample Mendelian randomization (MR) study was used to investigate whether there is a causal relationship between osteoporosis and AD. Genes for osteoporosis and AD were obtained from published the genome-wide association studies (GWAS). Single nucleotide polymorphisms (SNPs) with significant genome-wide differences (p < 5 × 10-8) and independent (r 2 < 0.001) were selected, and SNPs with F ≥ 10 were further analyzed. Inverse variance weighted (IVW) was used to assess causality, and the results were reported as odds ratios (ORs). Subsequently, heterogeneity was tested using Cochran's Q test, pleiotropy was tested using the MR-Egger intercept, and leave-one-out sensitivity analysis was performed to assess the robustness of the results. Results Using the IVW method, MR Egger method, and median-weighted method, we found that the results showed no significant causal effect of osteoporosis at different sites and at different ages on AD, regardless of the removal of potentially pleiotropic SNPs. The results were similar for the opposite direction of causality. These results were confirmed to be reliable and stable by sensitivity analysis. Conclusion This study found that there is no bidirectional causal relationship between osteoporosis and AD. However, they share similar pathogenesis and pathways.
Collapse
Affiliation(s)
- Hongxin Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Jian Mei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuanqing Cai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Susheng Niu
- Key Laboratory of Orthopedics and Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,*Correspondence: Wenming Zhang, ✉
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China,Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Xinyu Fang, ✉
| |
Collapse
|
4
|
Wan L, Lu J, Huang J, Huo Y, Jiang S, Guo C. Association Between Peripheral Adiponectin and Lipids Levels and the Therapeutic Response to Donepezil Treatment in Han Chinese Patients With Alzheimer's Disease. Front Aging Neurosci 2020; 12:532386. [PMID: 33061904 PMCID: PMC7518373 DOI: 10.3389/fnagi.2020.532386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/12/2020] [Indexed: 01/11/2023] Open
Abstract
Acetylcholinesterase inhibitors (AChEIs) including donepezil (DNP) are considered to be the most promising therapeutic possibilities of Alzheimer's disease (AD). The response to DNP in AD patients varies and it is valuable to identify the potential markers that can predict the efficacy. Moreover, DNP has been found to affect bone function, but the exact mechanism is still unclear. Lipids and adipokine may link to AD and DNP directly or indirectly and might be potential biomarkers or therapeutic drug targets. The goal of this study was to investigate the relationships among adiponectin (APN), lipids levels, and the response to DNP, and to identify whether the effect of DNP in AD treatment is related to its effect on the level of APN in systemic circulation. The study recruited 85 AD patients with DNP treatment, of whom 47 were DNP responders and 38 were DNP nonresponders. The Mini-Mental State Examination was performed to evaluate the memory impairment. Plasma APN was measured with ELISA. The genotypes of single nucleotide polymorphisms rs1501299 and rs22417661 in APN for each patient were identified. Plasma lipids were quantified with gas chromatography coupled with mass spectrometry. Correlations among APN, lipid metabolomics, and DNP responded were evaluated. APN was significantly decreased in DNP responders. Methyl stearate and glycerol-3-phosphate, used for characterizing adipogenic differentiation, were significantly decreased in DNP responders compared to DNP nonresponders. APN and small-molecule lipids can be used as potential biomarkers to evaluate the efficacy of DNP. The results of metabolomics indicated that there was no change in the metabolic pathway of fatty acid metabolism and glucose metabolism in DNP responders, suggesting that APN-related biological function did not decrease in DNP responders. Our result suggests that more attention should be pay to the sources and biological functions of APN in AD with DNP treatment.
Collapse
Affiliation(s)
- Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jin Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yan Huo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shan Jiang
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ilomäki J, Bell JS, Chan AYL, Tolppanen AM, Luo H, Wei L, Lai ECC, Shin JY, De Paoli G, Pajouheshnia R, Ho FK, Reynolds L, Lau KK, Crystal S, Lau WCY, Man KKC, Brauer R, Chan EW, Shen CY, Kim JH, Lum TYS, Hartikainen S, Koponen M, Rooke E, Bazelier M, Klungel O, Setoguchi S, Pell JP, Cook S, Wong ICK. Application of Healthcare 'Big Data' in CNS Drug Research: The Example of the Neurological and mental health Global Epidemiology Network (NeuroGEN). CNS Drugs 2020; 34:897-913. [PMID: 32572794 PMCID: PMC7306570 DOI: 10.1007/s40263-020-00742-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurological and psychiatric (mental health) disorders have a large impact on health burden globally. Cognitive disorders (including dementia) and stroke are leading causes of disability. Mental health disorders, including depression, contribute up to one-third of total years lived with disability. The Neurological and mental health Global Epidemiology Network (NeuroGEN) is an international multi-database network that harnesses administrative and electronic medical records from Australia, Asia, Europe and North America. Using these databases NeuroGEN will investigate medication use and health outcomes in neurological and mental health disorders. A key objective of NeuroGEN is to facilitate high-quality observational studies to address evidence-practice gaps where randomized controlled trials do not provide sufficient information on medication benefits and risks that is specific to vulnerable population groups. International multi-database research facilitates comparisons across geographical areas and jurisdictions, increases statistical power to investigate small subpopulations or rare outcomes, permits early post-approval assessment of safety and effectiveness, and increases generalisability of results. Through bringing together international researchers in pharmacoepidemiology, NeuroGEN has the potential to be paradigm-changing for observational research to inform evidence-based prescribing. The first focus of NeuroGEN will be to address evidence-gaps in the treatment of chronic comorbidities in people with dementia.
Collapse
Affiliation(s)
- Jenni Ilomäki
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| | - J Simon Bell
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Adrienne Y L Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | | | - Hao Luo
- Department of Social Work and Social Administration and Sau Po Centre on Ageing, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Li Wei
- Research Department of Practice and Policy, University College London School of Pharmacy, London, UK
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeong gi-do, South Korea
| | - Giorgia De Paoli
- Medicines Monitoring Unit, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, UK
| | - Romin Pajouheshnia
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Frederick K Ho
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Lorenna Reynolds
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Kui Kai Lau
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Stephen Crystal
- Center for Health Services Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Wallis C Y Lau
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Research Department of Practice and Policy, University College London School of Pharmacy, London, UK
| | - Kenneth K C Man
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR
- Research Department of Practice and Policy, University College London School of Pharmacy, London, UK
| | - Ruth Brauer
- Research Department of Practice and Policy, University College London School of Pharmacy, London, UK
| | - Esther W Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Chin-Yao Shen
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ju Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeong gi-do, South Korea
| | - Terry Y S Lum
- Department of Social Work and Social Administration and Sau Po Centre on Ageing, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | | | - Marjaana Koponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Evelien Rooke
- Medicines Monitoring Unit, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, UK
| | - Marloes Bazelier
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Olaf Klungel
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Soko Setoguchi
- Rutgers Robert Wood Johnson Medical School and School of Public Health and Center for Pharmacoepidemiology and Treatment Sciences, Institute for Health, Rutgers University, New Brunswick, NJ, USA
| | - Jill P Pell
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sharon Cook
- Center for Health Services Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Ian C K Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR.
- Research Department of Practice and Policy, University College London School of Pharmacy, London, UK.
| |
Collapse
|
6
|
Kim JH, Byun SJ, Shin JY. Authors' Response to Association between Acetylcholinesterase Inhibitors and Osteoporotic Fractures in Older Persons With Alzheimer's Disease. J Am Med Dir Assoc 2020; 21:707. [DOI: 10.1016/j.jamda.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
|
7
|
Comment on "Association Between Acetylcholinesterase Inhibitors and Osteoporotic Fractures in Alzheimer's Patients". J Am Med Dir Assoc 2020; 21:706-707. [PMID: 32334774 DOI: 10.1016/j.jamda.2020.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/22/2022]
|