1
|
Ivers C, Chalamalasetti S, Ruiz-Llacsahuanga B, Critzer F, Bhullar M, Nwadike L, Yucel U, Trinetta V. Evaluation of Commercially Available Sanitizers Efficacy to Control Salmonella (Sessile and Biofilm Forms) on Harvesting Bins and Picking Bags. J Food Prot 2024; 87:100394. [PMID: 39486481 DOI: 10.1016/j.jfp.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
This study evaluated the efficacy of five commercially available sanitizers to reduce Salmonella (sessile and biofilm forms) count on experimentally inoculated materials representative of harvesting bins and picking bags in the fresh produce industry. Sessile Salmonella cells were grown onto tryptic soy agar to create a bacterial lawn, while multistrain Salmonella biofilms were grown in a Centers for Disease Control and Prevention (CDC) reactor at 22 ± 2 °C for 96 h. Samples were exposed to 500 ppm free chlorine, 500 ppm peroxyacetic acid (PAA), 75 psi steam, and 5% silver dihydrogen citrate (SDC) for 30 sec, 1, or 2 min or 100 ppm chlorine dioxide gas for 24 h. Sanitizer, surface type, and application time significantly affected the viability of Salmonella in both sessile and biofilm forms (P < 0.05). All treatments resulted in a significant reduction of Salmonella when compared to the control (P < 0.05). Chlorine dioxide gas was the most effective treatment in both sessile and biofilm forms regardless of the type of surface, and it achieved a 5-log reduction. PAA at 500 ppm applied for 2 min was the only liquid sanitizer that resulted in a greater than 3-log reduction in all surfaces. Scanning electronic microscopy demonstrated the porous surface nature of nylon and wood, compared to HDPE, impacted sanitizer antimicrobial activity. Understanding the efficacy of sanitizers to control Salmonella on harvesting bins and picking bags may improve the safety of fresh produce by increasing available sanitizing treatment.
Collapse
Affiliation(s)
- Colton Ivers
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States
| | | | | | - Faith Critzer
- Department of Food Science and Technology, University of Georgia, United States
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, United States
| | - Londa Nwadike
- Department of Dairy and Food Science, South Dakota State University, United States
| | - Umut Yucel
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States
| | - Valentina Trinetta
- Department of Food, Nutrition, Health and Dietetics, Kansas State University, United States.
| |
Collapse
|
2
|
Dlamini SB, Mlambo V, Mnisi CM, Ateba CN. Virulence, multiple drug resistance, and biofilm-formation in Salmonella species isolated from layer, broiler, and dual-purpose indigenous chickens. PLoS One 2024; 19:e0310010. [PMID: 39466757 PMCID: PMC11515961 DOI: 10.1371/journal.pone.0310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/22/2024] [Indexed: 10/30/2024] Open
Abstract
Globally, the significant risk to food safety and public health posed by antimicrobial-resistant foodborne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in usage across poultry production systems. The current study investigated the occurrence of virulence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates sourced from different chicken types. A total of 75 cloacal faecal samples were collected using sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per chicken type). The samples were analysed for the presence of Salmonella spp. using species-specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteritidis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and trimethoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE (16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE (10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and 14% of the isolates respectively. There was no significant difference on the proportion of Salmonella species and the occurrence of virulence and antimicrobial resistance determinants among Salmonella isolates obtained from different chicken types. In addition, neither the chicken type nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms, although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in the study but these did not vary with poultry production systems.
Collapse
Affiliation(s)
- Sicelo B. Dlamini
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Victor Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Caven Mguvane Mnisi
- Department of Animal Science, School of Agricultural Sciences, North-West University, Mafikeng, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| | - Collins Njie Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, South Africa
| |
Collapse
|
3
|
Guo Z, Qin C, Zhang L. Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China. Microorganisms 2024; 12:1742. [PMID: 39203584 PMCID: PMC11357233 DOI: 10.3390/microorganisms12081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 103 to 4.48 × 105 cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as Lysinibacillus, Bacillus, and Klebsiella genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.
Collapse
Affiliation(s)
- Ziyi Guo
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; (Z.G.); (C.Q.)
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Cunli Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; (Z.G.); (C.Q.)
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; (Z.G.); (C.Q.)
- Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
4
|
Estrada EM, Harris LJ. Phenotypic Characteristics That May Contribute to Persistence of Salmonella Strains in the Pistachio Supply Chain. J Food Prot 2024; 87:100268. [PMID: 38493873 DOI: 10.1016/j.jfp.2024.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Salmonella enterica subsp. enterica strain diversity in California pistachios is limited; some strains have persisted in the pistachio supply chain for ≥10 years. Representative isolates of six persistent strains and three sporadic strains isolated from California pistachios were selected to evaluate copper resistance, growth in pistachio hull slurry, biofilm formation, desiccation tolerance, and survival during subsequent storage. The presence of a copper homeostasis and silver-resistance island sequence in three of the persistent strains was associated with an increase in tolerance to CuSO4 from 7.5 mM to 15 mM under anaerobic but not aerobic conditions; all isolates were resistant to ≥120 mM Cu-EDTA under both anerobic and aerobic conditions. When inoculated into pistachio hull slurry at 2.75 ± 0.04 log CFU/mL and incubated at 30 °C, the populations of Salmonella Enteritidis strain A (sporadic) increased to significantly lower levels than the other strains at 16, 20, 24, and 28 h but not at 40 and 48 h. Maximum populations of 8.70-8.85 log CFU/mL were observed for all strains at ≥40 h of incubation. All nine Salmonella strains produced weak to strong biofilms after 4 days at 25 °C; seven strains, including two sporadic strains, produced moderate biofilms, and Salmonella Liverpool strain A (persistent) produced a strong biofilm. The rdar+ and rdar- morphotypes were observed in both persistent and sporadic Salmonella strains. Population declines of 5.03 log were observed for Salmonella Enteritidis strain A within 18 h of drying on filter paper whereas reductions of 0.50-1.25 log were observed for the other eight Salmonella strains. Population reductions (3.98-5.12 log) of these eight strains were not significantly different after storage at 25 ± 1 °C and 35% relative humidity for 50 days. The phenotypic characteristics evaluated here do not independently account for the persistence of a small number of Salmonella strains associated with the California pistachio production chain.
Collapse
Affiliation(s)
- Erika M Estrada
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Linda J Harris
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
5
|
Obe T, Kiess AS, Nannapaneni R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals (Basel) 2024; 14:578. [PMID: 38396546 PMCID: PMC10886206 DOI: 10.3390/ani14040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella remains a top bacterial pathogen implicated in several food-borne outbreaks, despite the use of antimicrobials and sanitizers during production and processing. While these chemicals have been effective, Salmonella has shown the ability to survive and persist in poultry processing environments. This can be credited to its microbial ability to adapt and develop/acquire tolerance and/or resistance to different antimicrobial agents including oxidizers, acids (organic and inorganic), phenols, and surfactants. Moreover, there are several factors in processing environments that can limit the efficacy of these antimicrobials, thus allowing survival and persistence. This mini-review examines the antimicrobial activity of common disinfectants/sanitizers used in poultry processing environments and the ability of Salmonella to respond with innate or acquired tolerance and survive exposure to persists in such environments. Instead of relying on a single antimicrobial agent, the right combination of different disinfectants needs to be developed to target multiple pathways within Salmonella.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aaron S. Kiess
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ramakrishna Nannapaneni
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi, MS 39762, USA;
| |
Collapse
|
6
|
Pang X, Hu X, Du X, Lv C, Yuk HG. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp. Food Sci Biotechnol 2023; 32:1703-1718. [PMID: 37780596 PMCID: PMC10533767 DOI: 10.1007/s10068-023-01349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xin Hu
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Xueying Du
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Chenglong Lv
- College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing, 210023 Jiangsu Province China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, National University of Transportation, 61 Daehak-ro Jeungpyeong-gun, Chungbuk, 27909 Republic of Korea
| |
Collapse
|
7
|
Castro VS, Fang Y, Yang X, Stanford K. Association of resistance to quaternary ammonium compounds and organic acids with genetic markers and their relationship to Escherichia coli serogroup. Food Microbiol 2023; 113:104267. [PMID: 37098428 DOI: 10.1016/j.fm.2023.104267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Sanitizer resistance is being extensively investigated due to the potential for bacterial survival and cross-resistance with other antimicrobials. Similarly, organic acids are being used due to their microbial inactivation potential as well as being generally recognized as safe (GRAS). However, little is known about associations of genetic and phenotypic factors in Escherichia coli related to resistance to sanitizers and organic acids as well as differences between "Top 7" serogroups. Therefore, we investigated 746 E. coli isolates for resistance to lactic acid and two commercial sanitizers based on quaternary ammonium and peracetic acid. Furthermore, we correlated resistance to several genetic markers and investigated 44 isolates using Whole Genome Sequencing. Results indicate that factors related to motility, biofilm formation, and Locus of Heat Resistance played a role in resistance to sanitizers and lactic acid. In addition, Top 7 serogroups significantly differed in sanitizer and acid resistance, with O157 being the most consistently resistant to all treatments. Finally, mutations in rpoA, rpoC, and rpoS genes were observed, in addition to presence of a Gad gene with alpha-toxin formation in all O121 and O145 isolates, which may be related to increased resistance of these serogroups to the acids used in the present study.
Collapse
|
8
|
Thames HT, Pokhrel D, Willis E, Rivers O, Dinh TTN, Zhang L, Schilling MW, Ramachandran R, White S, Sukumaran AT. Salmonella Biofilm Formation under Fluidic Shear Stress on Different Surface Materials. Foods 2023; 12:foods12091918. [PMID: 37174455 PMCID: PMC10178852 DOI: 10.3390/foods12091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
This study characterized biofilm formation of various Salmonella strains on common processing plant surface materials (stainless steel, concrete, rubber, polyethylene) under static and fluidic shear stress conditions. Surface-coupons were immersed in well-plates containing 1 mL of Salmonella (6 log CFU/mL) and incubated aerobically for 48 h at 37 °C in static or shear stress conditions. Biofilm density was determined using crystal violet assay, and biofilm cells were enumerated by plating on tryptic soy agar plates. Biofilms were visualized using scanning electron microscopy. Data were analyzed by SAS 9.4 at a significance level of 0.05. A surface-incubation condition interaction was observed for biofilm density (p < 0.001). On stainless steel, the OD600 was higher under shear stress than static incubation; whereas, on polyethylene, the OD600 was higher under static condition. Enumeration revealed surface-incubation condition (p = 0.024) and surface-strain (p < 0.001) interactions. Among all surface-incubation condition combinations, the biofilm cells were highest on polyethylene under fluidic shear stress (6.4 log/coupon; p < 0.001). Biofilms of S. Kentucky on polyethylene had the highest number of cells (7.80 log/coupon) compared to all other strain-surface combinations (p < 0.001). Electron microscopy revealed morphological and extracellular matrix differences between surfaces. Results indicate that Salmonella biofilm formation is influenced by serotype, surface, and fluidic shear stress.
Collapse
Affiliation(s)
- Hudson T Thames
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Diksha Pokhrel
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Emma Willis
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Orion Rivers
- Institute for Imaging & Analytical Technologies, Mississippi State University, Starkville, MS 39762, USA
| | - Thu T N Dinh
- Tyson Foods, 2200 W. Don Tyson Parkway, Springdale, AR 72762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Mark W Schilling
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| | - Shecoya White
- Department of Food Science, Nutrition, and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Anuraj T Sukumaran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
9
|
Krüger GI, Pardo-Esté C, Zepeda P, Olivares-Pacheco J, Galleguillos N, Suarez M, Castro-Severyn J, Alvarez-Thon L, Tello M, Valdes JH, Saavedra CP. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front Microbiol 2023; 14:1072793. [PMID: 37007466 PMCID: PMC10061128 DOI: 10.3389/fmicb.2023.1072793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The presence of mobile genetic elements in Salmonella isolated from a chicken farm constitutes a potential risk for the appearance of emerging bacteria present in the food industry. These elements contribute to increased pathogenicity and antimicrobial resistance through genes that are related to the formation of biofilms and resistance genes contained in plasmids, integrons, and transposons. One hundred and thirty-three Salmonella isolates from different stages of the production line, such as feed manufacturing, hatchery, broiler farm, poultry farm, and slaughterhouse, were identified, serotyped and sequenced. The most predominant serotype was Salmonella Infantis. Phylogenetic analyses demonstrated that the diversity and spread of strains in the pipeline are serotype-independent, and that isolates belonging to the same serotype are very closely related genetically. On the other hand, Salmonella Infantis isolates carried the pESI IncFIB plasmid harboring a wide variety of resistance genes, all linked to mobile genetic elements, and among carriers of these plasmids, the antibiograms showed differences in resistance profiles and this linked to a variety in plasmid structure, similarly observed in the diversity of Salmonella Heidelberg isolates carrying the IncI1-Iα plasmid. Mobile genetic elements encoding resistance and virulence genes also contributed to the differences in gene content. Antibiotic resistance genotypes were matched closely by the resistance phenotypes, with high frequency of tetracycline, aminoglycosides, and cephalosporins resistance. In conclusion, the contamination in the poultry industry is described throughout the entire production line, with mobile genetic elements leading to multi-drug resistant bacteria, thus promoting survival when challenged with various antimicrobial compounds.
Collapse
Affiliation(s)
- Gabriel I. Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antibacteriana en Bacterias Patógenas Ambientales GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Galleguillos
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcia Suarez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta, Chile
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santiago, Chile
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge H. Valdes
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- *Correspondence: Claudia P. Saavedra,
| |
Collapse
|
10
|
Dias de Emery B, Zottis Chitolina G, Qadir MI, Quedi Furian T, Apellanis Borges K, de Souza Moraes HL, Pippi Salle CT, Pinheiro do Nascimento V. Antimicrobial and antibiofilm activity of silver nanoparticles against Salmonella Enteritidis. Braz J Microbiol 2023; 54:285-292. [PMID: 36348257 PMCID: PMC9944331 DOI: 10.1007/s42770-022-00868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Salmonella enterica serotype Enteritidis is one of the main pathogens associated with foodborne illnesses worldwide. Biofilm formation plays a significant role in the persistence of pathogens in food production environments. Owing to an increase in antimicrobial resistance, there is a growing need to identify alternative methods to control pathogenic microorganisms in poultry environments. Thus, this study aimed to synthesize silver nanoparticles (AgNPs) and evaluate their antibiofilm activity against poultry-origin Salmonella Enteritidis in comparison to a chemical disinfectant. AgNPs were synthesized, characterized, and tested for their minimum inhibitory concentration, minimum bactericidal concentration, and antibiofilm activity against S. Enteritidis strains on polyethylene surfaces. The synthesized AgNPs, dispersed in a liquid medium, were spherical in shape with a mean diameter of 6.2 nm. AgNPs exhibited concentration-dependent bactericidal action. The bacterial reduction was significantly higher with AgNPs (3.91 log10 CFU [Formula: see text] cm-2) than that with sanitizer (2.57 log10 CFU ∙ cm-2). Regarding the time of contact, the bacterial count after a contact time of 30 min was significantly lower than that after 10 min. The AgNPs exhibited antimicrobial and antibiofilm activity for the removal of biofilms produced by S. Enteritidis, demonstrating its potential as an alternative antimicrobial agent. The bactericidal mechanisms of AgNPs are complex; hence, the risk of bacterial resistance is minimal, making nanoparticles a potential alternative for microbial control in the poultry chain.
Collapse
Affiliation(s)
- Brunna Dias de Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Muhammad Irfan Qadir
- Laboratório de Catálise Molcular, Instituto de Química, Universidade Federal do Rio Grande Do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande Do Sul, 91501-570, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil.
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande Do Sul, Av. Bento Goncalves 9090, Porto Alegre, Rio Grande Do Sul, 91540-000, Brazil
| |
Collapse
|
11
|
Igbinosa IH, Amolo CN, Beshiru A, Akinnibosun O, Ogofure AG, El-Ashker M, Gwida M, Okoh AI, Igbinosa EO. Identification and characterization of MDR virulent Salmonella spp isolated from smallholder poultry production environment in Edo and Delta States, Nigeria. PLoS One 2023; 18:e0281329. [PMID: 36735693 PMCID: PMC9897568 DOI: 10.1371/journal.pone.0281329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Salmonella is responsible for some foodborne disease cases worldwide. It is mainly transmitted to humans through foods of animal origin through the consumption of poultry products. The increased international trade and the ease of transboundary movement could propel outbreaks of local origin to translate into severe global threats. The present study aimed to characterize Salmonella serovars isolated from poultry farms in Edo and Delta States, Nigeria. A total of 150 samples (faecal, water and feed) were collected from ten poultry farms between January and August 2020 and analyzed for Salmonella characterization using standard bacteriological and molecular methods. Salmonella serovars identified include: Salmonella Enteritidis [n = 17 (39.5%)], Salmonella Typhimurium [n = 13 (30.2%)] and other Salmonella serovars [n = 13 (30.2%)]. All Salmonella serovars were cefotaxime and ampicillin resistant. The presence of the invA gene ranged from 9(69.2%) to 15(88.2%). The spvC gene ranged from 2(14.4%) to 10(58.8%). All Salmonella serovars had sdiA gene. The Salmonella isolates produced some extracellular virulence factors (such as protease, lipase, β-hemolytic activity, and gelatinase), while 13(30.2%) of the overall isolates formed strong biofilms. In conclusion, the detection of multiple antibiotic-resistant Salmonella serovars in faecal sources, which also exhibited virulence determinants, constituted a public health risk as these faecal samples have the potential as manure in the growing of crops. These pathogens can be transmitted to humans nearby and through poultry products, resulting in difficult-to-treat infections and economic loss.
Collapse
Affiliation(s)
- Isoken H. Igbinosa
- Department of Environmental Management & Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Chukwunonso N. Amolo
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abeni Beshiru
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Olajide Akinnibosun
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Abraham G. Ogofure
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mayada Gwida
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Anthony I. Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| | - Etinosa O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape Province, South Africa
| |
Collapse
|
12
|
de Brito FAE, de Freitas APP, Nascimento MS. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022; 11:pathogens11121416. [PMID: 36558750 PMCID: PMC9784232 DOI: 10.3390/pathogens11121416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Biofilms are mono- or multispecies microbial communities enclosed in an extracellular matrix (EPS). They have high potential for dissemination and are difficult to remove. In addition, biofilms formed by multidrug-resistant strains (MDRs) are even more aggravated if we consider antimicrobial resistance (AMR) as an important public health issue. Quorum sensing (QS) and horizontal gene transfer (HGT) are mechanisms that significantly contribute to the recalcitrance (resistance and tolerance) of biofilms, making them more robust and resistant to conventional sanitation methods. These mechanisms coordinate different strategies involved in AMR, such as activation of a quiescent state of the cells, moderate increase in the expression of the efflux pump, decrease in the membrane potential, antimicrobial inactivation, and modification of the antimicrobial target and the architecture of the EPS matrix itself. There are few studies investigating the impact of the use of inhibitors on the mechanisms of recalcitrance and its impact on the microbiome. Therefore, more studies to elucidate the effect and applications of these methods in the food production chain and the possible combination with antimicrobials to establish new strategies to control MDR biofilms are needed.
Collapse
|
13
|
Electrochemical Control of Biofilm Formation and Approaches to Biofilm Removal. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review deals with microbial adhesion to metal-based surfaces and the subsequent biofilm formation, showing that both processes are a serious problem in the food industry, where pathogenic microorganisms released from the biofilm structure may pollute food and related material during their production. Biofilm exhibits an increased resistance toward sanitizers and disinfectants, which complicates the removal or inactivation of microorganisms in these products. In the existing traditional techniques and modern approaches for clean-in-place, electrochemical biofilm control offers promising technology, where surface properties or the reactions taking place on the surface are controlled to delay or prevent cell attachment or to remove microbial cells from the surface. In this overview, biofilm characterization, the classification of bacteria-forming biofilms, the influence of environmental conditions for bacterial attachment to material surfaces, and the evaluation of the role of biofilm morphology are described in detail. Health aspects, biofilm control methods in the food industry, and conventional approaches to biofilm removal are included as well, in order to consider the possibilities and limitations of various electrochemical approaches to biofilm control with respect to potential applications in the food industry.
Collapse
|
14
|
Butucel E, Balta I, Ahmadi M, Dumitrescu G, Morariu F, Pet I, Stef L, Corcionivoschi N. Biocides as Biomedicines against Foodborne Pathogenic Bacteria. Biomedicines 2022; 10:biomedicines10020379. [PMID: 35203588 PMCID: PMC8962343 DOI: 10.3390/biomedicines10020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Biocides are currently considered the first line of defense against foodborne pathogens in hospitals or food processing facilities due to the versatility and efficiency of their chemical active ingredients. Understanding the biological mechanisms responsible for their increased efficiency, especially when used against foodborne pathogens on contaminated surfaces and materials, represents an essential first step in the implementation of efficient strategies for disinfection as choosing an unsuitable product can lead to antibiocide resistance or antibiotic–biocide cross-resistance. This review describes these biological mechanisms for the most common foodborne pathogens and focuses mainly on the antipathogen effect, highlighting the latest developments based on in vitro and in vivo studies. We focus on biocides with inhibitory effects against foodborne bacteria (e.g., Escherichia spp., Klebsiella spp., Staphylococcus spp., Listeria spp., Campylobacter spp.), aiming to understand their biological mechanisms of action by looking at the most recent scientific evidence in the field.
Collapse
Affiliation(s)
- Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mirela Ahmadi
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Florica Morariu
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT4 3SD, UK; (E.B.); (I.B.)
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine—King Michael I of Romania, 300645 Timisoara, Romania; (M.A.); (G.D.); (F.M.); (I.P.)
- Correspondence: (L.S.); (N.C.)
| |
Collapse
|
15
|
Obe T, Richards AK, Shariat NW. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J Appl Microbiol 2021; 132:2410-2420. [PMID: 34821433 DOI: 10.1111/jam.15381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022]
Abstract
AIMS Salmonella is extremely diverse, with >2500 serovars that are genetically and phenotypically diverse. The aim of this study was to build a collection of Salmonella isolates that are genetically diverse and to evaluate their ability to form biofilm under different conditions relevant to a processing environment. METHODS AND RESULTS Twenty Salmonella isolates representative of 10 serovars were subtyped using Clustered regularly interspaced short palindromic repeats (CRISPR)-typing to assess the genetic diversity between isolates of each serovar. Biofilm formation of the isolates on both plastic and stainless-steel surfaces at 25 and 15°C was assessed. At 25°C, 8/20 isolates each produced strong and moderate biofilm on plastic surface compared to stainless-steel (3/20 and 13/20 respectively). At 15°C, 5/20 produced strong biofilm on plastic surface and none on stainless-steel. Several isolates produced weak biofilm on plastic (11/20) and stainless-steel (16/20) surfaces. Serovar Schwarzengrund consistently produced strong biofilm while serovars Heidelberg and Newport produced weak biofilm. CONCLUSION These results suggest that Salmonellae differ in their attachment depending on the surface and temperature conditions encountered, which may influence persistence in the processing environment. SIGNIFICANCE AND IMPACT OF STUDY These differences in biofilm formation could provide useful information for mitigation of Salmonella in processing environments.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amber K Richards
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nikki W Shariat
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|