1
|
Wang W, Sun JC, Ye P, Tan X, Gao Y, Duan W, Wang YK, Wang WZ. miR-22-3p in the rostral ventrolateral medulla promotes hypertension through inhibiting β-arrestin-1. J Physiol 2024; 602:317-332. [PMID: 38152023 DOI: 10.1113/jp283960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that β-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in β-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the β-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of β-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by β-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced β-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting β-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of β-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of β-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the β-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of β-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting β-arrestin-1 in the RVLM.
Collapse
Affiliation(s)
- Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuan Gao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
2
|
Daniels SD, Boison D. Bipolar mania and epilepsy pathophysiology and treatment may converge in purine metabolism: A new perspective on available evidence. Neuropharmacology 2023; 241:109756. [PMID: 37820933 PMCID: PMC10841508 DOI: 10.1016/j.neuropharm.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Decreased ATPergic signaling is an increasingly recognized pathophysiology in bipolar mania disease models. In parallel, adenosine deficit is increasingly recognized in epilepsy pathophysiology. Under-recognized ATP and/or adenosine-increasing mechanisms of several antimanic and antiseizure therapies including lithium, valproate, carbamazepine, and ECT suggest a fundamental pathogenic role of adenosine deficit in bipolar mania to match the established role of adenosine deficit in epilepsy. The depletion of adenosine-derivatives within the purine cycle is expected to result in a compensatory increase in oxopurines (uric acid precursors) and secondarily increased uric acid, observed in both bipolar mania and epilepsy. Cortisol-based inhibition of purine conversion to adenosine-derivatives may be reflected in observed uric acid increases and the well-established contribution of cortisol to both bipolar mania and epilepsy pathology. Cortisol-inhibited conversion from IMP to AMP as precursor of both ATP and adenosine may represent a mechanism for treatment resistance common in both bipolar mania and epilepsy. Anti-cortisol therapies may therefore augment other treatments both in bipolar mania and epilepsy. Evidence linking (i) adenosine deficit with a decreased need for sleep, (ii) IMP/cGMP excess with compulsive hypersexuality, and (iii) guanosine excess with grandiose delusions may converge to suggest a novel theory of bipolar mania as a condition characterized by disrupted purine metabolism. The potential for disease-modification and prevention related to adenosine-mediated epigenetic changes in epilepsy may be mirrored in mania. Evaluating the purinergic effects of existing agents and validating purine dysregulation may improve diagnosis and treatment in bipolar mania and epilepsy and provide specific targets for drug development.
Collapse
Affiliation(s)
- Scott D Daniels
- Hutchings Psychiatric Center, New York State Office of Mental Health, Syracuse, NY, 13210, USA
| | - Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
El-Naggar AE, Helmy MM, El-Gowilly SM, El-Mas MM. Adenosine A1 receptors of the medullary solitary tract arbitrate the nicotine counteraction of neuroinflammation and cardiovascular dysfunction in septic rats. Sci Rep 2023; 13:17818. [PMID: 37857771 PMCID: PMC10587061 DOI: 10.1038/s41598-023-44601-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The cholinergic pathway plays a crucial role in improving inflammatory end-organ damage. Given the interplay between cholinergic and adenosinergic neurotransmission, we tested the hypothesis that central adenosine A1 receptors (A1ARs) modulate the nicotine counteraction of cardiovascular and inflammatory insults induced by sepsis in rats. Sepsis was induced by cecal ligation and puncture (CLP) 24-h before cardiovascular measurements. Nicotine (25-100 µg/kg i.v.) dose-dependently reversed septic manifestations of hypotension and impaired heart rate variability (HRV) and cardiac sympathovagal balance. Like nicotine, intracisternal (i.c.) administration of N(6)-cyclopentyladenosine (CPA, A1AR agonist) to CLP rats increased indices of HRV and sympathovagal balance. Moreover, greater surges in these parameters were noted upon simultaneous nicotine/CPA administration. The favorable influences of nicotine on blood pressure and HRV in sepsis were diminished after central blockade of A1ARs by i.c. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX). Molecular studies revealed that (i) septic rises in myocardial and brainstem nucleus of solitary tract (NTS) NFκB expression were abrogated by nicotine and largely reinstated after blockade of A1ARs, and (ii) A1AR expression in the same areas was reduced by DPCPX. It is concluded that myocardial and medullary A1ARs facilitate the cholinergic counteraction of cardiac and neuroinflammation induced by sepsis and interrelated cardiomyopathic and neuropathic hitches.
Collapse
Affiliation(s)
- Amany E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Mai M Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt.
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alazarita, Alexandria, 21521, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
4
|
Zhao H, Wu Q, Li N, Chen Y. The mechanism of chronic unpredictable mild stress induced high blood pressure in rats: a proteomic and targeted metabolomic analysis. Mol Omics 2023. [PMID: 36938653 DOI: 10.1039/d2mo00332e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Chronic stress, a leading factor for high blood pressure (BP) and even hypertension, affects health quality seriously. However, the management is rather difficult in our rapidly developing modern society, and the underlying mechanism that caused hypertension remains incompletely understood. In this study, we established a rat model of high BP induced by chronic unpredictable mild stress (CUMS). The results showed that CUMS increased the BP and heart rate, as well as the concentrations of CORT, NA, and ACTH. Based on tandem mass tag (TMT)-labeled proteomics, 13 proteins changed in RVLM. Then, targeted metabolomics together with real-time qPCR were applied to validate the levels of the biomolecules quantitatively. The related molecules were confirmed to reveal that CUMS has a great role in the upregulation of muscle contraction, synthesis of cAMP and transport of metals, while down-regulating ralaxin signaling. This finding facilitates a better understanding of the mechanism of hypertension induced by chronic stress and could provide an insight into the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Hongxia Zhao
- Zhanjiang Institution of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China. .,School of medicine, Shanghai University, Shanghai, 200444, China
| | - Qiong Wu
- Department of Pharmacy, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750000, China. .,School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Na Li
- School of medicine, Shanghai University, Shanghai, 200444, China.,School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongchun Chen
- Department of Pharmacy, The First Naval Hospital of Southern Theater Command, Zhanjiang, 524000, China.
| |
Collapse
|
5
|
Mohammed RA, Sayed RH, El-Sahar AE, Khattab MA, Saad MA. Insights into the role of pERK1/2 signaling in post-cerebral ischemia reperfusion sexual dysfunction in rats. Eur J Pharmacol 2022; 933:175258. [PMID: 36096157 DOI: 10.1016/j.ejphar.2022.175258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
6
|
Letson HL, Dobson GP. The Role of Nitric Oxide in the Efficacy of Adenosine, Lidocaine, and Magnesium Treatment for Experimental Hemorrhagic Shock in Rats. Curr Ther Res Clin Exp 2021; 95:100655. [PMID: 34917219 PMCID: PMC8665347 DOI: 10.1016/j.curtheres.2021.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nitric oxide (NO) plays multiple roles regulating the central nervous, cardiovascular, and immune systems. Objective Our aim was to investigate the role of NO in the efficacy of hypertonic saline (7.5% sodium chloride [NaCl]) adenosine, lidocaine, and magnesium (ALM) to improve mean arterial pressure (MAP) and heart rate following hemorrhagic shock. Methods One hundred one male Sprague-Dawley rats (mean [SD] weight = 425 [6] g) were randomly assigned to 20 groups (groups of 4–8 rats each). Hemorrhagic shock (MAP < 40 mm Hg) was induced by 20-minute pressure-controlled bleeding (∼40% blood volume), and the animal was left in shock (MAP = 35-40 mm Hg) for 60 minutes. The NO synthase (NOS) inhibitor L-NAME was administered with a 0.3-mL bolus of different combinations of 7.5% NaCl ALM active ingredients and hemodynamic parameters were monitored for 60 minutes. A number of specific NOS and NO inhibitors were tested. Results We found that 7.5% NaCl ALM corrected MAP after hemorrhagic shock. In contrast, the addition of L-NAME to 7.5% NaCl ALM led to a rapid fall in MAP, sustained ventricular arrhythmias, and 100% mortality. Saline controls receiving 7.5% NaCl with NG-nitro-l-arginine methyl ester (L-NAME) showed improved MAP with no deaths. None of the specific NOS and NO inhibitors mimicked L-NAME's effect on ALM. The addition of inducible NOS inhibitor 1400W to 7.5% NaCl ALM failed to resuscitate, whereas the NO scavenger PTIO and the PI3K inhibitor wortmannin reduced MAP recovery during 60-minute resuscitation. Conclusions The ability of 7.5% NaCl ALM to resuscitate appears to be linked to 1 or more NO-producing pathways. Nonspecific NOS inhibition with L-NAME blocked ALM resuscitation and led to cardiovascular collapse. More studies are required to examine NO site-specific contributions to ALM resuscitation. (Curr Ther Res Clin Exp. 2022; 82:XXX–XXX)
Collapse
Affiliation(s)
- Hayley L Letson
- Heart, Trauma, and Sepsis Research Laboratory, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Geoffrey P Dobson
- Heart, Trauma, and Sepsis Research Laboratory, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
7
|
Li J, He Y, Du YH, Zhang M, Georgi R, Kolberg B, Sun DW, Ma K, Li YF, Zhang XZ. Effect of Electro-acupuncture on Vasomotor Symptoms in Rats with Acute Cerebral Infarction Based on Phosphatidylinositol System. Chin J Integr Med 2021; 28:145-152. [PMID: 34874522 PMCID: PMC8649319 DOI: 10.1007/s11655-021-3341-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Objective To investigate the effect of electro-acupuncture (EA) on vasomotor symptoms in rats with acute cerebral infarction, by observing the changes in the expression of factors related to the phosphatidylinositol (PI) system. Methods Forty-two Wistar rats were randomly divided into 3 groups by a random number table: the control group (n=6), the model group (n=18) and the EA group (n=18). The EA group was given EA treatment at Shuigou (GV 26) instantly after modeling with middle cerebral artery occlusion (MCAO) method, while the model and control groups were not given any treatment. The degrees of neurological deficiency were evaluated using neurological severity scores (NSS) and the brain blood flow was evaluated by a laser scanning confocal microscope. Western blot analysis was conducted to detect the expression levels of G-protein subtype (Gq) and calmodulin (CaM). Competition for protein binding was conducted to detect the expression level of inositol triphosphate (IP3). Thin layer quantitative analysis was conducted to detect the expression level of diacylglycerol (DAG). The expression level of intracellular concentration of free calcium ion ([Ca2+]i) was detected by flow cytometry. Results The NSS of the model group was significantly higher than the control group at 3 and 6 h after MCAO (P<0.01), while the EA group was significantly lower than the model group at 6 h (P<0.01). The cerebral blood flow in the model group was significantly lower than the control group at 1, 3 and 6 h after MCAO (P<0.01), while for the EA group it was remarkably higher than the model group at the same time points (P<0.01). The expressions of Gq, CaM, IP3, DAG and [Ca2+]i in the model group were significantly higher than the control group (P<0.05 or P<0.01), and those in the EA group were significantly lower than the model group at the same time points (P<0.05 or P<0.01). Conclusion EA treatment at GV 26 can effectively decrease the over-expression of related factors of PI system in rats with acute cerebral infarction, improve cerebral autonomy movement, and alleviate cerebral vascular spasm.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Acupuncture of Tianjin, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Ying He
- Key Laboratory of Acupuncture of Tianjin, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuan-Hao Du
- Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
| | - Min Zhang
- Key Laboratory of Acupuncture of Tianjin, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Rainer Georgi
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, 69120, Germany
| | - Bernhard Kolberg
- Department of Internal Medicine, Mannheim Medical School of Heidelberg University, Mannheim, 68167, Germany
| | - Dong-Wei Sun
- Department of Chinese Medicine Rehabilitation, Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong Province, 518000, China
| | - Kun Ma
- Department of Preventive Treatment of Disease, Binhai New Area Hospital of Traditional Chinese Medicine, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yong-Feng Li
- Institute of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xue-Zhu Zhang
- Key Laboratory of Acupuncture of Tianjin, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
8
|
Mohammed RA, El-Yamany MF, Abdel-Rahman AA, Nassar NN, Al-Shorbagy MY. Role of pERK1/2-NFκB signaling in the neuroprotective effect of thalidomide against cerebral ischemia reperfusion injury in rats. Eur J Pharmacol 2021; 895:173872. [PMID: 33465355 DOI: 10.1016/j.ejphar.2021.173872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/08/2023]
Abstract
In the present investigation, we tested the hypothesis that suppression of the phospho-extracellular signal regulated kinase (pERK1/2)-nuclear factor kappa (NFκ)-B signaling, subsequent to tumor necrosis factor-α (TNF-α) inhibition, underlies thalidomide (TLM) mediated neuroprotection. Male Wistar rats (250-280 g) were divided into five groups: (1) sham; (2) negative control receiving TLM (5μg/1μl/site) and 3 groups of ischemia-reperfusion (IR) injury rats pretreated with: (3) vehicle (DMSO 100%); (4) TLM (5μg/1μl/site) or (5) PD98059 (0.16μg/1μl/site). IR rats were subjected to occlusion of both common carotid arteries for 45 min followed by reperfusion for 24 h. Drugs and/or vehicles were administered by unilateral intrahippocampal injection after removal of the carotid occlusion and at the beginning of the reperfusion period. IR rats exhibited significant infarct size, histopathological damage, memory impairment, motor incoordination and hyperactivity. Unilateral intra-hippocampal TLM ameliorated these behavioral deficits along with the following ex vivo hippocampal effects: (i) abrogation of the IR-evoked elevations in hippocampal TNF-α, pERK1/2, NFκB, BDNF, iNOS contents and (ii) partial restoration of the reduced anti-inflammatory cytokine IL-10 and p-nNOS S852. These neurochemical effects, which were replicated by the pERK1/2 inhibitor PD98059, likely underlie the reductions in c-Fos and caspase-3 levels as well as the anti-apoptotic effect of TLM in the IR model. These results suggest a crucial anti-inflammatory role for pERK1/2 inhibition in the salutary neuronal and behavioral effects of TLM in a model of brain IR injury.
Collapse
Affiliation(s)
- Reham A Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
9
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
10
|
Caffeine Neuroprotection Decreases A2A Adenosine Receptor Content in Aged Mice. Neurochem Res 2019; 44:787-795. [PMID: 30610653 DOI: 10.1007/s11064-018-02710-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.
Collapse
|
11
|
Yamazato M, Nakamoto M, Sakima A, Yamazato Y, Takishita S, Ohya Y. Responsiveness of α2-adrenoceptor/I1-imidazoline receptor in the rostral ventrolateral medulla to cardiovascular regulation is enhanced in conscious spontaneously hypertensive rat. Clin Exp Hypertens 2018; 41:255-262. [PMID: 29764227 DOI: 10.1080/10641963.2018.1469641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Stimulation of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla decreases the blood pressure via sympathoinhibition. However, alteration of receptor responses in genetically hypertensive rats remains unclear. We examined cardiovascular responses of α2-adrenoceptor/I1-imidazoline receptor agonist and antagonists microinjected into the rostral ventrolateral medulla of conscious spontaneously hypertensive rats and normotensive Wistar Kyoto rats. Injection of 2-nmol clonidine-an α2-adrenoceptor/I1-imidazoline receptor agonist-unilaterally into the rostral ventrolateral medulla decreased the blood pressure, heart rate, and renal sympathetic nerve activity; the responses were significantly enhanced in spontaneously hypertensive rats than in Wistar Kyoto rats. Co-injection of 2-nmol 2-methoxyidazoxan (a selective α2-adrenoceptor antagonist) or 2-nmol efaroxan (an I1-receptor antagonist) with 2 nmol of clonidine attenuated the hypotensive and bradycardic effects of clonidine-only injection. Injection of 2-methoxyidazoxan alone increased the blood pressure and heart rate in spontaneously hypertensive rats, but not in Wistar Kyoto rats. These results suggest enhanced responsiveness of α2-adrenoceptor/I1-imidazoline receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Masanobu Yamazato
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Minori Nakamoto
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Atsushi Sakima
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Yoriko Yamazato
- b Department of Infectious, Respiratory and Digestive Medicine, Faculty of Medicine , University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Shuichi Takishita
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| | - Yusuke Ohya
- a Department of Cardiovascular Medicine, Nephrology and Neurology , Graduate School of Medicine, University of the Ryukyus , Nishihara-cho, Okinawa , Japan
| |
Collapse
|
12
|
Reply. Pain 2018; 159:997-999. [DOI: 10.1097/j.pain.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Street JM, Koritzinsky EH, Bellomo TR, Hu X, Yuen PST, Star RA. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am J Physiol Renal Physiol 2018; 314:F788-F797. [PMID: 29117994 PMCID: PMC6031909 DOI: 10.1152/ajprenal.00051.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.
Collapse
Affiliation(s)
- Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
14
|
Parkinson FE, Paul S, Zhang D, Mzengeza S, Ko JH. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study. J Neuroimaging 2016; 26:403-5. [PMID: 27082948 PMCID: PMC5021151 DOI: 10.1111/jon.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 11/29/2022] Open
Abstract
2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats.
Collapse
Affiliation(s)
- Fiona E Parkinson
- Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Health Sciences Centre, Winnipeg, MB, Canada
| | - Soumen Paul
- Departments of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Health Sciences Centre, Winnipeg, MB, Canada
| | - Dali Zhang
- Departments of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Health Sciences Centre, Winnipeg, MB, Canada
| | - Shadreck Mzengeza
- Departments of Radiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Departments of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.,Neuroscience Research Program, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
15
|
|