1
|
Ngando FJ, Zhang X, Qu H, Xiao J, Ren L, Yang F, Feng Y, Shang Y, Chen S, Zhang C, Guo Y. Age determination of Chrysomya megacephala (Diptera: Calliphoridae) using lifespan patterns, gene expression, and pteridine concentration under constant and variable temperatures. Forensic Sci Int 2024; 354:111916. [PMID: 38141350 DOI: 10.1016/j.forsciint.2023.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae), is a blowfly species widely studied in medical, veterinary, and entomological research. Our study examined the impact of constant (15, 20, 25, 30, and 35 °C) and variable (ranging from 21.0 to 25.4 °C, with an average of 23.31 °C) temperatures on the development and larval body length of C. megacephala. Additionally, we analyzed the age of the adult C. megacephala through pteridine content and related metabolic genes analysis. Our findings revealed three distinct growth patterns: isomorphen diagram, isomegalen diagram, and thermal accumulated models. At constant temperatures of 15, 20, 25, 30, and 35 °C, egg-hatching times were 44.5 ± 8.9, 26.7 ± 4.6, 12.6 ± 1.1, 11.0 ± 1.0, and 9.9 ± 1.9 h, respectively, while it was 15.3 ± 5.9 h at variable temperatures. The total development times from oviposition to adult eclosion in C. megacephala required 858.1 ± 69.2, 362.3 ± 5.9, 289.6 ± 17.8, 207.3 ± 9.3, and 184.7 ± 12.1 h at constant temperatures of 15, 20, 25, 30, and 35 °C, respectively. This duration was extended to 282.0 ± 64.1 h under variable temperatures. However, no significant differences were found in hatching times and the total developmental durations between 25 °C and variable temperatures. A developmental threshold temperature (D0) of 9.90 ± 0.77 °C and a thermal summation constant (K) of 4244.0 ± 347.0° hours were ascertained. Pteridine content patterns varied significantly across constant temperatures, but not between 25 °C and variable temperatures. Sex and temperature were identified as the primary factors influencing pteridine levels in the head of C. megacephala. Gene expression associated with pteridine metabolism decreased following adult eclosion, matching with increased pteridine concentration. Further investigations are needed to explore the use of pteridine cofactors for age-grading adult necrophagous flies. These findings provide valuable insights into the lifespan of C. megacephala, thereby offering valuable groundwork for forthcoming investigations and PMImin determination.
Collapse
Affiliation(s)
- Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Hongke Qu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
2
|
Charabidze D, Aubernon C. Aggregation in an heterospecific population of blowfly larvae: social behaviour is impacted by species-specific thermal requirements and settlement order. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220098. [PMID: 37066644 PMCID: PMC10107231 DOI: 10.1098/rstb.2022.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/22/2023] [Indexed: 04/18/2023] Open
Abstract
Larvae of several blowfly species grow on carcasses and actively aggregate together. They face harsh developmental conditions resulting in a strong pressure to reduce development time: this is achieved either through thermoregulation or aggregation. We investigate how these two developmental strategies are modulated within heterospecific groups. In a first experiment, larvae of two species with different thermal requirements were deposited simultaneously on a thermal gradient. This resulted in the formation of two monospecific groups, each located at the species-specific thermal preferendum. However, when Calliphora vomitoria (Linnaeus) larvae were placed first, the later arriving Lucilia sericata (Meigen) larvae attracted the whole group to its own thermal preferendum. In the reverse experiment, half of the replicates resulted in single dense heterospecific groups observed at temperatures ranging from C. vomitoria to L. sericata preferendum. The other half of the replicates resulted in loose groups spread out on the thermal gradient. These results highlight the emergence of collective decisions ranging from thermal optimization to heterospecific aggregation at suboptimal temperatures. They demonstrate that species settlement order strongly affects self-organization processes and mixed-species group formation. We conclude that thermal optimization and heterospecific niche construction are two developmental strategies of carrion fly larvae. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Damien Charabidze
- Centre d'Histoire Judiciaire, UMR 8025, University of Lille, 59000 Lille, France
- University of Lille, 59000 Lille, France
| | | |
Collapse
|
3
|
Losier C, Boudreau DR, LeBlanc K, Michaud JP, Moreau G. Fall Decay Deceleration in Northern Latitudes: Merely a Matter of Cold? JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:32-39. [PMID: 36305163 DOI: 10.1093/jme/tjac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The decomposition of cadavers and large vertebrate carcasses is the result of complex processes primarily influenced by ambient temperatures. Thus, low temperatures can alter decomposition by curtailing tissue autolysis and bacterial decomposition, and by limiting insect activity contributing to necromass removal. In this study, we tested whether carcass decomposition rate is modulated not only directly by temperature and insect occurrence, but also indirectly by the mediation of interactions among insects by ambient temperature. To test this, a comparative analysis of the decomposition of domestic pig carcasses in summer and fall was conducted in Atlantic Canada. The results indicated that carcass decomposition standardized to account for seasonal differences was significantly decelerated in the fall as opposed to the summer during the later decomposition stages and was sometimes incomplete. Moreover, the arrival, presence, and departure of insects from carcasses during ecological succession differed between summer and fall. Necrodes surinamensis (Fabricius) (Coleoptera: Silphidae) and Creophilus maxillosus (Linnaeus) (Coleoptera: Staphylinidae) maintained higher abundances late during succession in the fall than in the summer and their abundance was related to a decline in decomposition rates, probably because these species feed on dipteran larvae promoting necromass removal. These results demonstrate the variability in response to environmental parameters of insects of forensic importance and support the idea that slowed decomposition in the fall may be exacerbated by changes in interspecific interactions among insects. Furthermore, these results suggest that successional studies of insects carried out in the summer have little forensic utility for cadavers found in cold weather conditions.
Collapse
Affiliation(s)
- Chloé Losier
- Département de biologie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada
| | - Denis R Boudreau
- Département de biologie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada
| | - Kathleen LeBlanc
- Département de biologie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada
| | | | - Gaétan Moreau
- Département de biologie, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada
| |
Collapse
|
4
|
Owings CG, McKee-Zech HS, Schwing ST, Bugajski KN, Davis MC, Steadman DW. Not by the Book: Observations of Delayed Oviposition and Re-Colonization of Human Remains by Blow Flies. INSECTS 2022; 13:879. [PMID: 36292827 PMCID: PMC9604324 DOI: 10.3390/insects13100879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Postmortem interval estimations can be complicated by the inter-individual variation present in human decomposition. Forensic entomologists may especially face challenges interpreting arthropod evidence in scenarios that are not "by the book", or that vary in unexpected ways. Therefore, it is important to report instances where blow fly colonization does not align with expected soft tissue decomposition as blow fly larvae are often used to produce a time of colonization (TOC) estimation to infer a minimum PMI. We followed the decomposition and blow fly activity of three human donors at the Anthropology Research Facility (University of Tennessee). Delayed oviposition occurred on one donor 115 d post-placement, whereas two donors experienced blow fly re-colonization after cessation of the consumption phase, one 22 d and one more than 200 d after blow fly larvae were last observed. A null hypothesis model tested whether the entomological TOC and anthropological total body score (TBS) estimations encompassed the time of placement (TOP) for each donor. While the null hypothesis was rejected for all TOC estimations, it could not be rejected for the TBS estimations. We discuss how the non-linear nature of human decomposition can pose challenges to interpreting blow fly evidence and suggest that forensic entomology practitioners should recognize these limitations in both research endeavors and applied casework.
Collapse
Affiliation(s)
- Charity G. Owings
- Department of Anthropology, University of Tennessee, 1621 Cumberland Ave., Knoxville, TN 37996, USA
| | - Hayden S. McKee-Zech
- Department of Anthropology, University of Tennessee, 1621 Cumberland Ave., Knoxville, TN 37996, USA
| | - Sarah T. Schwing
- Department of Anthropology, University of Tennessee, 1621 Cumberland Ave., Knoxville, TN 37996, USA
| | - Kristi N. Bugajski
- Department of Biology, Valparaiso University, 1610 Campus Drive East, Valparaiso, IN 46383, USA
| | - Mary C. Davis
- Department of Anthropology, University of Tennessee, 1621 Cumberland Ave., Knoxville, TN 37996, USA
| | - Dawnie W. Steadman
- Department of Anthropology, University of Tennessee, 1621 Cumberland Ave., Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Chappell TM, Rusch TW, Tarone AM. A Fly in the Ointment: How to Predict Environmentally Driven Phenology of an Organism That Partially Regulates Its Microclimate. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.837732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenological models representing physiological and behavioral processes of organisms are used to study, predict, and optimize management of ecological subsystems. One application of phenological models is the prediction of temporal intervals associated with the measurable physiological development of arthropods, for the purpose of estimating future time points of interest such as the emergence of adults, or estimating past time points such as the arrival of ovipositing females to new resources. The second of these applications is of particular use in the conduct of forensic investigations, where the time of a suspicious death must be estimated on the basis of evidence, including arthropods with measurable size/age, found at the death scene. Because of the longstanding practice of using necrophagous insects to estimate time of death, standardized data and methods exist. We noticed a pattern in forensic entomological validation studies: bias in the values of a model parameter is associated with improved model fit to data, for a reason that is inconsistent with how the models used in this practice are interpreted. We hypothesized that biased estimates for a threshold parameter, representing the lowest temperature at which insect development is expected to occur, result in models’ accounting for behavioral and physiological thermoregulation but in a way that results in low predictive reliability and narrowed applicability of models involving these biased parameter estimates. We explored a more realistic way to incorporate thermoregulation into insect phenology models with forensic entomology as use context, and found that doing so results in improved and more robust predictive models of insect phenology.
Collapse
|
6
|
Navas CA, Agudelo-Cantero GA, Loeschcke V. Thermal boldness: Volunteer exploration of extreme temperatures in fruit flies. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104330. [PMID: 34848182 DOI: 10.1016/j.jinsphys.2021.104330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
A dominant perception is that small and motile ectothermic animals must use behavior to avoid exposure to critical or sub-critical temperatures impairing physiological performance. Concomitantly, volunteer exploration of extreme environments by some individuals may promote physiological adjustments and enhance ecological opportunity. Here we introduce to the literature a Thermal Decision System (TDS) which is fully modular, thermally stable, versatile, and adaptable to study navigation through thermal landscapes in insects and other small motile animals. We used a specific setting of the TDS to investigate volunteer navigation through critical cold and hot temperatures in Drosophila melanogaster. We demonstrate that a thermally bold behavior (volunteer crossings through a Critical Temperature Zone, CTZ) characterized a fraction of flies in a sample, and that such a fraction was higher in an outbred population relative to isofemale lines. As set, the TDS generated a thermal gradient within the cold and hot CTZs, and the exploration of this gradient by flies did not relate simply with a tendency to be thermally bold. Mild fasting affected thermal exploration and boldness in complex manners, but thermal boldness was evident in both fasted and fed flies. Also, thermal boldness was not associated with individual critical temperatures. Finally, some flies showed consistent thermal boldness, as flies that performed an extreme thermal cross were more likely to perform a second cross compared with untested flies. We hypothesize that a simple "avoidance principle" is not the only behavioral drive for D. melanogaster facing extreme temperatures over space, and that this pattern may characterize other small motile ectothermic animals with analogous natural history. The physiological correlates, genetic architecture, and interspecific variation of thermal boldness deserve further consideration.
Collapse
Affiliation(s)
- Carlos A Navas
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Tv 14, 05508-090 São Paulo, Brazil; Department of Biology - Genetics, Ecology and Evolution, Faculty of Natural Sciences, Aarhus University. Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Gustavo A Agudelo-Cantero
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão 101, Tv 14, 05508-090 São Paulo, Brazil; Department of Biology - Genetics, Ecology and Evolution, Faculty of Natural Sciences, Aarhus University. Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Volker Loeschcke
- Department of Biology - Genetics, Ecology and Evolution, Faculty of Natural Sciences, Aarhus University. Ny Munkegade 116, 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Matuszewski S. Post-Mortem Interval Estimation Based on Insect Evidence: Current Challenges. INSECTS 2021; 12:314. [PMID: 33915957 PMCID: PMC8066566 DOI: 10.3390/insects12040314] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
During death investigations insects are used mostly to estimate the post-mortem interval (PMI). These estimates are only as good as they are close to the true PMI. Therefore, the major challenge for forensic entomology is to reduce the estimation inaccuracy. Here, I review literature in this field to identify research areas that may contribute to the increase in the accuracy of PMI estimation. I conclude that research on the development and succession of carrion insects, thermogenesis in aggregations of their larvae and error rates of the PMI estimation protocols should be prioritized. Challenges of educational and promotional nature are discussed as well, particularly in relation to the collection of insect evidence.
Collapse
Affiliation(s)
- Szymon Matuszewski
- Laboratory of Criminalistics, Adam Mickiewicz University, Święty Marcin 90, 61-809 Poznań, Poland;
- Wielkopolska Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Hans KR, Vanlaerhoven SL. Impact of Comingled Heterospecific Assemblages on Developmentally Based Estimates of the Post-Mortem Interval-A Study with Lucilia sericata (Meigen), Phormia regina (Meigen) and Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). INSECTS 2021; 12:insects12040280. [PMID: 33805865 PMCID: PMC8064309 DOI: 10.3390/insects12040280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary In forensic entomology, blow flies are often the first insects to arrive to decomposing remains. The development rates of blow flies are used to estimate the minimum amount of time between death and discovery of the remains, or post-mortem interval (PMI). When there are multiple species of flies interacting on the same remains, there could be changes in the development of the flies. We tested the development of three different species of blow flies in different combinations at different temperatures and measured the development and the rate of growth. One species (Lucilia sericata) grew larger when it developed with the species Phormia regina at certain temperatures. The larvae of Calliphora vicina gained weight slower when interacting with P. regina and P. regina grew faster when interacting with these two other species. Due to these differences in the development rates of the flies, depending on the species they are interacting with, more research is needed to further examine other species combinations and temperatures. Abstract Estimates of the minimum post-mortem interval (mPMI) using the development rate of blow flies (Diptera: Calliphoridae) are common in modern forensic entomology casework. These estimates are based on single species developing in the absence of heterospecific interactions. Yet, in real-world situations, it is not uncommon to have 2 or more blow fly species developing on a body. Species interactions have the potential to change the acceptance of resources as suitable for oviposition, the timing of oviposition, growth rate, size and development time of immature stages, as well as impacting the survival of immature stages to reach adult. This study measured larval development and growth rate of the blow flies Lucilia sericata (Meigen, 1826), Phormia regina (Meigen, 1826) and Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae) over five constant temperatures (15, 20, 25, 30, 35 °C), in the presence of conspecifics or two-species heterospecific assemblages. Temperature and species treatment interacted such that L. sericata larvae gained mass more rapidly when in the presence of P. regina at 20 and 30 °C, however only developed faster at first instar. At later stages, the presence of P. regina slowed development of L. sericata immatures. Development time of C. vicina immatures was not affected by the presence of P. regina, however larvae gained mass more slowly. Development time of P. regina immatures was faster in the presence of either L. sericata or C. vicina until third instar, at which point, the presence of L. sericata was neutral whereas C. vicina negatively impacted development time. Phormia regina larvae gained mass more rapidly in the presence of L. sericata at 20 °C but were negatively impacted at 25 °C by the presence of either L. sericata or C. vicina. The results of this study indicate that metrics such as development time or larval mass used for estimating mPMI with blow flies are impacted by the presence of comingled heterospecific blow fly assemblages. As the effects of heterospecific assemblages are not uniformly positive or negative between stages, temperatures or species combinations, more research into these effects is vital. Until then, caution should be used when estimating mPMI in cases with multiple blow fly species interacting on a body.
Collapse
Affiliation(s)
- Krystal R. Hans
- Department of Biology, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada;
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-1079
| | - Sherah L. Vanlaerhoven
- Department of Biology, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada;
| |
Collapse
|
9
|
Moreau G. The Pitfalls in the Path of Probabilistic Inference in Forensic Entomology: A Review. INSECTS 2021; 12:insects12030240. [PMID: 33809033 PMCID: PMC7998533 DOI: 10.3390/insects12030240] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
To bridge the gap between experimentation and the court of law, studies in forensic entomology and other forensic sciences have to comply with a set of experimental rules to generate probabilistic inference of quality. These rules are illustrated with successional studies of insects on a decomposing substrate as the main example. The approaches that have been used in the scientific literature to solve the issues associated with successional data are then reviewed. Lastly, some advice to scientific editors, reviewers and academic supervisors is provided to prevent the publication and eventual use in court of forensic studies using poor research methods and abusing statistical procedures.
Collapse
Affiliation(s)
- Gaétan Moreau
- Département de biologie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
10
|
Zhang X, Li Y, Shang Y, Ren L, Chen W, Wang S, Guo Y. Development of Sarcophaga dux (diptera: Sarcophagidae) at constant temperatures and differential gene expression for age estimation of the pupae. J Therm Biol 2020; 93:102735. [PMID: 33077146 DOI: 10.1016/j.jtherbio.2020.102735] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 12/01/2022]
Abstract
Sarcophaga dux (Diptera: Sarcophagidae) is a necrophagous flesh fly species with potential forensic value for estimating minimum postmortem interval (PMImin). The basic developmental data and precise age estimates of the pupae are significant for PMImin estimation in forensic investigations. In the present study, we investigated the development data of that species at seven constant temperatures varying from 16 °C to 34 °C, including body length changes of the larve, developmental duration and accumulated degree hours of the preadults. Several reference genes for relative quantification of the differentially expressed genes (DEGs) were firstly selected and evaluated in the pupae of different ages under different temperatures. The DEGs of the insects during the pupal period at different constant temperatures (34, 25 and 16 °C) were further analyzed for more precise age estimation. The results showed that the developmental durations of the preadults at 16, 19, 22, 25, 28, 31 and 34 °C were 1478.6 ± 18.3 h, 726.1 ± 15.8 h, 538.5 ± 0.9 h, 394.1 ± 9.5 h, 375.6 ± 10.8 h, 284.1 ± 7.3 h, and 252.5 ± 6.1 h, respectively. The developmental threshold temperature the flies was 12.27 ± 0.35 °C, and the thermal summation constant was 5341.71 ± 249.29° hours. The most reliable reference genes during the pupal period at different temperatures were found: GST1 and 18S rRNA for the 34 °C group, GST1 and RPL49 for 25 °C, and 18S rRNA and 28S rRNA for 16 °C. The four differential expression genes (Hsp60, A-alpha, ARP, and RPL8) have the potential to be used for more precise age estimation of pupal S. dux. This work provides important basic developmental data and a more precise age estimation method for pupal S. dux, and improves the value of this species for PMImin estimation in forensic investigations.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yi Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Wei Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shiwen Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Gunn A. The colonisation of remains by the sarcophagid fly Sarcophaga argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae). Forensic Sci Int 2020; 315:110465. [PMID: 32853971 DOI: 10.1016/j.forsciint.2020.110465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 10/23/2022]
Abstract
This article discusses the ability of the sarcophagid fly Sarcophaga argyrostoma (Robineau-Desvoidy) to exploit various food sources. These include living, freshly dead, and highly decayed remains. It also considers the factors affecting larval thermogenesis and compares S. argyrostoma with Lucilia sericata (Meigen). In addition, the ability of S. argyrostoma to colonise buried baits, those out of reach, and those protected by bandaging is considered. Both fresh and decayed liver stimulated ovoviviposition by S. argyrostoma and oviposition by L. sericata. Even liver that had decayed for 840 days supported larval development by both species to adulthood. Thermogenesis during larval development was dependent upon larval density. There was no difference in thermogenesis characteristics between S. argyrostoma and L. sericata or between diets of fresh liver and fresh minced pork. Thermogenesis was less pronounced on 840-day-old liver than on fresh liver but was still dependent upon larval density and there was no species effect. When starved, third instar S. argyrostoma larvae did not exhibit cannibalism or attack third instar L. sericata larvae. Sarcophaga argyrostoma adults could detect fresh liver baits buried at 20 cm in loose soil and ovoviviposited on the soil surface. The larvae then rapidly crawled through the soil to reach the baits and completed their development below ground. Sarcophaga argyrostoma also colonised baits that were at least 5 cm out of reach by dropping larvae onto them. They could infest baits through gauze bandages but not wound dressings. The adults would not ovoviviposit on living invertebrates but dead snails and dead L. sericata third instar larvae were infested and supported larval growth to adulthood. The adults were willing to ovoviviposit on human faeces and it supported larval growth to adulthood. Human urine stimulated very limited ovoviviposition and the larvae all died shortly afterwards and without developing. They did not ovoviviposit on banana or melon.
Collapse
Affiliation(s)
- Alan Gunn
- School of Biological & Environmental Sciences, John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
12
|
Dombrovski M, Kuhar R, Mitchell A, Shelton H, Condron B. Cooperative foraging during larval stage affects fitness in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:743-755. [PMID: 32623493 PMCID: PMC7392940 DOI: 10.1007/s00359-020-01434-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
Cooperative behavior can confer advantages to animals. This is especially true for cooperative foraging which provides fitness benefits through more efficient acquisition and consumption of food. While examples of group foraging have been widely described, the principles governing formation of such aggregations and rules that determine group membership remain poorly understood. Here, we take advantage of an experimental model system featuring cooperative foraging behavior in Drosophila. Under crowded conditions, fly larvae form coordinated digging groups (clusters), where individuals are linked together by sensory cues and group membership requires prior experience. However, fitness benefits of Drosophila larval clustering remain unknown. We demonstrate that animals raised in crowded conditions on food partially processed by other larvae experience a developmental delay presumably due to the decreased nutritional value of the substrate. Intriguingly, same conditions promote the formation of cooperative foraging clusters which further extends larval stage compared to non-clustering animals. Remarkably, this developmental retardation also results in a relative increase in wing size, serving an indicator of adult fitness. Thus, we find that the clustering-induced developmental delay is accompanied by fitness benefits. Therefore, cooperative foraging, while delaying development, may have evolved to give Drosophila larvae benefits when presented with competition for limited food resources.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rives Kuhar
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Alexandra Mitchell
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Hunter Shelton
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, VA, 22901, USA.
| |
Collapse
|
13
|
Gruszka J, Krystkowiak-Kowalska M, Frątczak-Łagiewska K, Mądra-Bielewicz A, Charabidze D, Matuszewski S. Patterns and mechanisms for larval aggregation in carrion beetle Necrodes littoralis (Coleoptera: Silphidae). Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Beyramysoltan S, Ventura MI, Rosati JY, Giffen-Lemieux JE, Musah RA. Identification of the Species Constituents of Maggot Populations Feeding on Decomposing Remains-Facilitation of the Determination of Post Mortem Interval and Time Since Tissue Infestation through Application of Machine Learning and Direct Analysis in Real Time-Mass Spectrometry. Anal Chem 2020; 92:5439-5446. [PMID: 32091197 DOI: 10.1021/acs.analchem.0c00199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of entomological specimens such as larvae (maggots) for the estimation of time since oviposition (i.e., egg laying) for post mortem interval determination, or for estimation of time since tissue infestation (in investigations of elder or child care neglect and animal abuse cases), requires accurate determination of insect species identity. Because the larvae of multiple species are visually highly similar and difficult to distinguish, it is customary for species determination of maggots to be made by rearing them to maturity so that the gross morphological features of the adult can be used to accurately identify the species. This is a time-consuming and resource-intensive process which also requires that the sample be viable. The situation is further complicated when the maggot mass being sampled is comprised of multiple species. Therefore, a method for accurate species identification, particularly for mixtures, is needed. It is demonstrated here that direct analysis in real time-high resolution mass spectrometric (DART-HRMS) analysis of ethanol suspensions containing combinations of maggots representing Calliphora vicina, Chrysomya rufifacies, Lucilia coeruleiviridis, L. sericata, Phormia regina, and Phoridae exhibit highly reproducible chemical signatures. An aggregated hierarchical conformal predictor applied to a hierarchical classification tree that was trained against the DART-HRMS data enabled, for the first time, multispecies identification of maggots in mixtures of two, three, four, five, and six species. The conformal predictor provided label specific regions with confidence limits between 80 and 99% for species identification. The study demonstrates a novel, rapid, facile, and powerful approach for identification of maggot species in field-derived samples.
Collapse
Affiliation(s)
- Samira Beyramysoltan
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Mónica I Ventura
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Jennifer Y Rosati
- Department of Sciences, John Jay College of Criminal Justice, 524 West 59th St, New York, New York 10019, United States
| | - Justine E Giffen-Lemieux
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rabi A Musah
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|