1
|
Makarov VA, Lobov SA, Shchanikov S, Mikhaylov A, Kazantsev VB. Toward Reflective Spiking Neural Networks Exploiting Memristive Devices. Front Comput Neurosci 2022; 16:859874. [PMID: 35782090 PMCID: PMC9243340 DOI: 10.3389/fncom.2022.859874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The design of modern convolutional artificial neural networks (ANNs) composed of formal neurons copies the architecture of the visual cortex. Signals proceed through a hierarchy, where receptive fields become increasingly more complex and coding sparse. Nowadays, ANNs outperform humans in controlled pattern recognition tasks yet remain far behind in cognition. In part, it happens due to limited knowledge about the higher echelons of the brain hierarchy, where neurons actively generate predictions about what will happen next, i.e., the information processing jumps from reflex to reflection. In this study, we forecast that spiking neural networks (SNNs) can achieve the next qualitative leap. Reflective SNNs may take advantage of their intrinsic dynamics and mimic complex, not reflex-based, brain actions. They also enable a significant reduction in energy consumption. However, the training of SNNs is a challenging problem, strongly limiting their deployment. We then briefly overview new insights provided by the concept of a high-dimensional brain, which has been put forward to explain the potential power of single neurons in higher brain stations and deep SNN layers. Finally, we discuss the prospect of implementing neural networks in memristive systems. Such systems can densely pack on a chip 2D or 3D arrays of plastic synaptic contacts directly processing analog information. Thus, memristive devices are a good candidate for implementing in-memory and in-sensor computing. Then, memristive SNNs can diverge from the development of ANNs and build their niche, cognitive, or reflective computations.
Collapse
Affiliation(s)
- Valeri A. Makarov
- Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Department of Neurotechnologies, Research Institute of Physics and Technology, Laboratory of Stochastic Multistable Systems, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey A. Lobov
- Department of Neurotechnologies, Research Institute of Physics and Technology, Laboratory of Stochastic Multistable Systems, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
- Center For Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Sergey Shchanikov
- Department of Neurotechnologies, Research Institute of Physics and Technology, Laboratory of Stochastic Multistable Systems, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Information Technologies, Vladimir State University, Vladimir, Russia
| | - Alexey Mikhaylov
- Department of Neurotechnologies, Research Institute of Physics and Technology, Laboratory of Stochastic Multistable Systems, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Viktor B. Kazantsev
- Department of Neurotechnologies, Research Institute of Physics and Technology, Laboratory of Stochastic Multistable Systems, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
- Center For Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
2
|
Lobov SA, Zharinov AI, Makarov VA, Kazantsev VB. Spatial Memory in a Spiking Neural Network with Robot Embodiment. SENSORS 2021; 21:s21082678. [PMID: 33920246 PMCID: PMC8070389 DOI: 10.3390/s21082678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
Cognitive maps and spatial memory are fundamental paradigms of brain functioning. Here, we present a spiking neural network (SNN) capable of generating an internal representation of the external environment and implementing spatial memory. The SNN initially has a non-specific architecture, which is then shaped by Hebbian-type synaptic plasticity. The network receives stimuli at specific loci, while the memory retrieval operates as a functional SNN response in the form of population bursts. The SNN function is explored through its embodiment in a robot moving in an arena with safe and dangerous zones. We propose a measure of the global network memory using the synaptic vector field approach to validate results and calculate information characteristics, including learning curves. We show that after training, the SNN can effectively control the robot’s cognitive behavior, allowing it to avoid dangerous regions in the arena. However, the learning is not perfect. The robot eventually visits dangerous areas. Such behavior, also observed in animals, enables relearning in time-evolving environments. If a dangerous zone moves into another place, the SNN remaps positive and negative areas, allowing escaping the catastrophic interference phenomenon known for some AI architectures. Thus, the robot adapts to changing world.
Collapse
Affiliation(s)
- Sergey A. Lobov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia; (A.I.Z.); (V.A.M.); (V.B.K.)
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 1 Universitetskaya Str., 420500 Innopolis, Russia
- Center For Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, 14 Nevsky Str., 236016 Kaliningrad, Russia
- Correspondence:
| | - Alexey I. Zharinov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia; (A.I.Z.); (V.A.M.); (V.B.K.)
| | - Valeri A. Makarov
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia; (A.I.Z.); (V.A.M.); (V.B.K.)
- Instituto de Matemática Interdisciplinar, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor B. Kazantsev
- Neurotechnology Department, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia; (A.I.Z.); (V.A.M.); (V.B.K.)
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 1 Universitetskaya Str., 420500 Innopolis, Russia
- Center For Neurotechnology and Machine Learning, Immanuel Kant Baltic Federal University, 14 Nevsky Str., 236016 Kaliningrad, Russia
- Lab of Neurocybernetics, Russian State Scientific Center for Robotics and Technical Cybernetics, 21 Tikhoretsky Ave., St., 194064 Petersburg, Russia
| |
Collapse
|