1
|
Yan X, Jiang P, Li C, Liu F, Fu P, Liu D, Du X, Ma L, Wang T, Yuan X, Ye S, Wang Z. Intravenous immunoglobulin ameliorates doxorubicin-induced intestinal mucositis by inhibiting the Syk/PI3K/Akt axis and ferroptosis. Apoptosis 2024:10.1007/s10495-024-02064-y. [PMID: 39720979 DOI: 10.1007/s10495-024-02064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chemotherapy-induced mucositis (CIM) significantly impacts quality of life and reduces survival in patients treated with specific chemotherapeutic agents. However, effective clinical treatments for CIM remain limited. Intravenous immunoglobulin (IVIg), a therapeutic derived from pooled human plasma, is widely used to treat inflammatory diseases. This study aimed to evaluate the therapeutic efficacy and underlying mechanisms of IVIg in CIM. METHODS A murine model of doxorubicin (Dox)-induced intestinal mucositis and an organoid model of small intestinal injury were used to explore the protective effects of IVIg on CIM. Immunostaining, transmission electron microscopy (TEM), western blotting (WB), and proteomic analysis were used to further investigate ferroptosis in intestinal epithelial cells and the underlying mechanisms. RESULTS In the murine model of Dox-induced intestinal mucositis, intestinal epithelial barrier was destroyed and ferroptosis increased, characterized by weight loss, hematological injury, inflammation, mitochondrial atrophy in intestinal epithelial cells, lipid peroxidation, impairment of tight junctions, and damage to intestinal microvilli. IVIg treatment significantly ameliorated intestinal epithelial barrier damage and reduced ferroptosis both in vitro and in vivo. Proteomic analysis revealed that the FcγR-mediated phagocytosis signaling pathway was involved in the therapeutic effects of IVIg on CIM mice. WB results demonstrated that key proteins downstream of this pathway, Syk, PI3K, and Akt, showed increased phosphorylation in CIM mice, whereas IVIg treatment significantly reduced the phosphorylation levels. Furthermore, the inhibitory effects of IVIg on Dox-induced activation of the Syk/PI3K/Akt axis and ferroptosis, as well as its protective effects on intestinal inflammation and intestinal barrier damage, were reversed by 740Y-P (an PI3K activator) or SC79 (an Akt activator). CONCLUSIONS Our findings highlight that IVIg ameliorates CIM by inhibiting ferroptosis via the Syk/PI3K/Akt axis. These results suggest that IVIg may represent a potential therapeutic approach for CIM.
Collapse
Affiliation(s)
- Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Ping Fu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610041, Chengdu, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China
| | - Shengliang Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China.
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, 610052, Chengdu, China.
| |
Collapse
|
2
|
Qiao Z, Li Z, Shi Y, Yi J, Zhu J, Kang Q, Hao L, Zhao C, Lu J. Radiation protection of sodium alginate and its regulatory effect on intestinal microflora in mice. Int J Biol Macromol 2024; 280:135809. [PMID: 39306170 DOI: 10.1016/j.ijbiomac.2024.135809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prolonged or high-dose exposure to ionizing radiation (IR) can cause damage to normal tissues of the body. Therefore, it is imperative to find effective radiation protective agents to mitigate IR-induced damage. This study evaluated the effects of sodium alginate (SA) on the radiation protection and modulatory effects of gut microorganisms using a 60Coγ-induced damage model in mice. Results showed that SA could reduce the damage of hematopoietic system; and alleviate the oxidative damage in irradiated mice by inhibiting the content of malondialdehyde (MDA) and increasing the activities of superoxide dismutase (SOD) and glutathione (GSH) in serum, spleen, jejunum and liver. Moreover, SA treatment ameliorated IR-induced small intestine lesions and alleviated liver injury. This was consistent with decreased levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and tumor necrosis factor-α (TNF-α), and increased levels of interferon-γ (IFN-γ) and interleukin-2 (IL-2) after SA treatment. Furthermore, SA treatment reversed IR-induced gut dysbiosis, elevated the Firmicutes/Bacteroidetes ratio, increased the beneficial bacteria and reduced the pathogenic bacteria in the small intestine. In conclusion, the present study demonstrated that SA exerted good radioprotective effect by improving hematopoietic system, alleviating oxidative stress, attenuating liver injury and inflammatory response, and modulating the intestinal microbiota in irradiated mice.
Collapse
Affiliation(s)
- Zhangning Qiao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Zhiying Li
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Yanling Shi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Juanjuan Yi
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Jiaqing Zhu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Qiaozhen Kang
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China
| | - Limin Hao
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China; Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, China
| | - Changcheng Zhao
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| | - Jike Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, Luohe 462300, Henan, China.
| |
Collapse
|
3
|
Gong W, Lu L, Ma H, Shan M, Fan X, Bai M, Zhang Y, Huang S, Jia Z, Zhang A. DY131 activates ERRγ/TFAM axis to protect against metabolic disorders and acute kidney injury. Clin Sci (Lond) 2024; 138:777-795. [PMID: 38860674 DOI: 10.1042/cs20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingling Lu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haoyang Ma
- Department of Geriatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Mingfeng Shan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xinwen Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Long L, Zhang Y, Zang J, Liu P, Liu W, Sun C, Tian D, Li P, Tian J, Xiao J. Investigating the relationship between postoperative radiotherapy and intestinal flora in rectal cancer patients: a study on efficacy and radiation enteritis. Front Oncol 2024; 14:1408436. [PMID: 38988709 PMCID: PMC11233437 DOI: 10.3389/fonc.2024.1408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Objective This study aimed to investigate the impact of radiation therapy and radiation enteritis on intestinal flora, providing insights for treatment and prevention. Methods Fecal samples were collected from 16 patients undergoing pelvic radiotherapy at Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital). Samples were collected before and after radiotherapy (27-30Gy), and analyzed using DNA sequencing and biostatistical methods. Results Patients with radiation enteritis showed increased α-diversity and β-diversity of intestinal flora compared to those without radiation enteritis. Differences in flora composition were observed, with higher abundance of secondary pathways such as amino acid metabolism, carbohydrate metabolism, cofactors and vitamins metabolism, and lipid metabolism. Conclusion The study revealed that patients developing radiation enteritis during pelvic radiation therapy had increased diversity and abundance of intestinal flora compared to those who did not develop radiation enteritis. Additionally, patients without radiation enteritis showed significantly higher diversity and abundance of intestinal flora post-radiation compared to pre-radiation.
Collapse
Affiliation(s)
- Lin Long
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Yexi Zhang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Jianhua Zang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Peng Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Wei Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Cheng Sun
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Dan Tian
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Jin Tian
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Jun Xiao
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| |
Collapse
|
5
|
Kong S, Liao Q, Liu Y, Luo Y, Fu S, Lin L, Li H. Prenylated Flavonoids in Sophora flavescens: A Systematic Review of Their Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1087-1135. [PMID: 38864547 DOI: 10.1142/s0192415x24500447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.
Collapse
Affiliation(s)
- Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Nanxiaojie 16, Dongzhimennei Ave, 100700 Beijing, P. R. China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, 330006 Jiangxi, P. R. China
| |
Collapse
|
6
|
He J, Jiang P, Ma L, Liu F, Fu P, Du X, Xu Z, Xu J, Cheng L, Wang Z, Li C, Liu D. Intravenous immunoglobulin protects the integrity of the intestinal epithelial barrier and inhibits ferroptosis induced by radiation exposure by activating the mTOR pathway. Int Immunopharmacol 2024; 131:111908. [PMID: 38518594 DOI: 10.1016/j.intimp.2024.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Radiation exposure often leads to serious health problems in humans. The intestinal epithelium is sensitive to radiation damage, and radiation causes destruction of the intestinal epithelial barrier, which leads to radiation enteritis (RE), the loss of fluids, and the translocation of intestinal bacteria and toxins; radiation can even threaten survival. In this study, we aimed to explore the influence of IVIg on the integrity of the intestinal epithelial barrier after RE. Using a RE mouse model, we investigated the protective effects of intravenous immunoglobulin (IVIg) on the epithelial junctions of RE mice and validated these findings with intestinal organoids cultured in vitro. In addition, transmission electron microscopy (TEM), western blotting (WB) and immunostaining were used to further investigate changes in intestinal epithelial ferroptosis and related signaling pathways. When RE occurs, the intestinal epithelial barrier is severely damaged. IVIg treatment significantly ameliorated this damage to epithelial tight junctions both in vivo and in vitro. Notably, IVIg alleviated RE by inhibiting intestinal epithelial ferroptosis in RE mice. Mechanistically, IVIg promoted activation of the mTOR pathway and inhibited ferroptosis in the intestinal epithelium of mice. Rapamycin, which is a potent inhibitor of the mTOR protein, significantly abolished the protective effect of IVIg against radiation-induced damage to intestinal epithelial tight junctions. Overall, IVIg can prevent RE-induced damage to the intestinal epithelial barrier and inhibit ferroptosis by activating the mTOR pathway; this study provides a new treatment strategy for patients with RE caused by radiotherapy or accidental nuclear exposure.
Collapse
Affiliation(s)
- Jia He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Fengjuan Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Ping Fu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610041, China
| | - Jun Xu
- Shanghai RAAS Blood Products Co., Ltd., Shanghai 201401, China
| | - Lu Cheng
- Shanghai RAAS Blood Products Co., Ltd., Shanghai 201401, China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan Province 610052, China.
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
7
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
8
|
Zhang H, Dong M, Zheng J, Yang Y, He J, Liu T, Wei H. Fecal bacteria-free filtrate transplantation is proved as an effective way for the recovery of radiation-induced individuals in mice. Front Cell Infect Microbiol 2024; 13:1343752. [PMID: 38357210 PMCID: PMC10864540 DOI: 10.3389/fcimb.2023.1343752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Background Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns. Results FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice. Conclusions FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Wu F, Zhang X, Zhang S, Zhang Y, Feng Y, Jiang Z, Shi Y, Zhang S, Tu W. Construction of an immune-related lncRNA-miRNA-mRNA regulatory network in radiation-induced esophageal injury in rats. Int Immunopharmacol 2023; 122:110606. [PMID: 37423154 DOI: 10.1016/j.intimp.2023.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Radiation-induced esophageal injury (RIEI) is an adverse reaction of radiation therapy in patients with esophageal cancer, lung cancer and other malignant tumors. Competitive endogenous RNA (ceRNA) network is known to play a significant role in the onset and progression of many diseases, but the exact mechanism of ceRNA in RIEI has not been fully elucidated. In this study, rat esophaguses were obtained after conducting irradiation under different doses (0 Gy, 25 Gy, 35 Gy). Total RNA was extracted and mRNA, lncRNA, circRNA, and miRNA sequencing was performed. Multiple dose-dependent differentially expressed RNAs (dd-DERs), including 870 lncRNAs, 82 miRNAs, 2478 mRNAs, were obtained through the integration of differential expression analysis and dose-dependent screening (35 Gy ≥ 25 Gy > 0 Gy, or 35 Gy ≤ 25 Gy < 0 Gy). Co-expression analysis and prediction of the binding site in dd-DER were conducted and 27 lncRNAs, 20 miRNAs, and 168 mRNAs were selected to construct a ceRNA network. As the immune microenvironment is crucial for RIEI progression, we constructed an immune-related ceRNA network consisting of 11 lncRNAs, 9 miRNAs, and 9 mRNAs. The expression levels of these immune-related RNAs were verified by RT-qPCR. Immune infiltration analysis showed that the RNAs in the immune-related ceRNA network were mainly associated with the proportion of monocytes, M2 macrophages, activated NK cells, and activated CD4+ memory T cells. Drug sensitivity analysis was conducted based on the expression levels of mRNAs in the immune-related ceRNA network, and small molecule drugs with preventive and therapeutic effects on RIEI were identified. In summary, an immune-related ceRNA network associated with RIEI progression was constructed in this study. The findings provide useful information on new potential targets for the prevention and treatment of RIEI.
Collapse
Affiliation(s)
- Fengping Wu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Xiaolin Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuaijun Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yahui Feng
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| | - Zhiqiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Yuhong Shi
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Shuyu Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China.
| |
Collapse
|
11
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:pharmaceutics15041111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
|