Hanna MG, Ardon O. Digital pathology systems enabling quality patient care.
Genes Chromosomes Cancer 2023;
62:685-697. [PMID:
37458325 PMCID:
PMC11265285 DOI:
10.1002/gcc.23192]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 09/20/2023] Open
Abstract
Pathology laboratories are undergoing digital transformations, adopting innovative technologies to enhance patient care. Digital pathology systems impact clinical, education, and research use cases where pathologists use digital technologies to perform tasks in lieu of using glass slides and a microscope. Pathology professional societies have established clinical validation guidelines, and the US Food and Drug Administration have also authorized digital pathology systems for primary diagnosis, including image analysis and machine learning systems. Whole slide images, or digital slides, can be viewed and navigated similar to glass slides on a microscope. These modern tools not only enable pathologists to practice their routine clinical activities, but can potentially enable digital computational discovery. Assimilation of whole slide images in pathology clinical workflow can further empower machine learning systems to support computer assisted diagnostics. The potential enrichment these systems can provide is unprecedented in the field of pathology. With appropriate integration, these clinical decision support systems will allow pathologists to increase the delivery of quality patient care. This review describes the digital pathology transformation process, applicable clinical use cases, incorporation of image analysis and machine learning systems in the clinical workflow, as well as future technologies that may further disrupt pathology modalities to deliver quality patient care.
Collapse