1
|
Libouban H, Guintard C, Minier N, Aguado E, Chappard D. Long-Term Quantitative Evaluation of Muscle and Bone Wasting Induced by Botulinum Toxin in Mice Using Microcomputed Tomography. Calcif Tissue Int 2018; 102:695-704. [PMID: 29222689 DOI: 10.1007/s00223-017-0371-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Muscle and bone masses are highly correlated and muscles impose large loads on bone. Muscle wasting that accompanies bone loss has been poorly investigated. 21 female mice were spread into seven groups. At day 0, 18 mice received Botulinum toxin (BTX) injection in the quadriceps muscle to induce paralysis of the right hind limb; the left contralateral side was used as control. Mice were sacrificed at 7, 14, 21, 28, 56 and 90 days post-injection. A remaining group was sacrificed at day 0. Trabecular bone volume was determined by microcomputed tomography (microCT) at the distal femur and tibia proximal metaphyses on both sides. Limbs were immersed in an HgCl2 solution allowing muscle visualization by microCT. On 2D sections, the cross-sectional areas and form-factors were measured for the quadriceps at mid-thigh and gastrocnemius at mid-leg and these muscles were dissected and weighed. Bone volume decreased in the paralysed side. Bone loss was maximal at 56 days followed by recuperation at 90 days. The cross-sectional areas of gastrocnemius and quadriceps were significantly lower in the paralysed limb from 7 days; the decrease was maximum at 21 days for the gastrocnemius and 28 days for the quadriceps. No difference in form-factors was found between the two limbs. Similar results were obtained with the anatomical method and significant correlations were obtained between the two methods. Quantitative analysis of muscle loss and recovery was possible by microCT after using a metallic contrast agent. Loss of bone secondary to muscle wastage induced by BTX and recovery showed a parallel evolution for bone and muscles.
Collapse
Affiliation(s)
- Hélène Libouban
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Claude Guintard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
- Anatomy and Bone Surgery Groups, ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
| | - Nicolas Minier
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
| | - Eric Aguado
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France
- Anatomy and Bone Surgery Groups, ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux - LHEA, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, Angers Cedex, France.
| |
Collapse
|
2
|
Arbez B, Kün-Darbois JD, Convert T, Guillaume B, Mercier P, Hubert L, Chappard D. Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy. J Biomed Mater Res B Appl Biomater 2018; 107:415-423. [PMID: 29675998 DOI: 10.1002/jbm.b.34133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 01/14/2023]
Abstract
Biomaterials are used in the granular form to fill small bone defects. Granules can be prepared with a grinder from trabecular bone samples or provided as synthetic biomaterials by industry. Granules occupy the 3D-space and create a macroporosity allowing invasion of vascular and bone cells when the inter-granular pores are larger than 300 µm. We compared the 3D-porosity of granule stacks obtained or prepared with nine biomaterials Osteopure® , Lubboc® , Bio-Oss® , CopiOs® , TCP Dental® , TCP Dental HP® , KeraOs® , and TCH® in comparison with that of human trabecular bone. For each biomaterial, two sizes of granules were analyzed: 250-1000 and 1000-2000 µm. Microcomputed tomography determined porosity and microarchitectural characteristics of granular stacks and Raman microspectroscopy was used to analyze their composition. Stacks of 250-1000 µm granules had a much lower porosity than 1000-2000 µm granules and the maximum frequency of pores was always centered at 200-250 µm. One biomaterial contained substantial amount of cortical bone (Bio-Oss® ). The highest porosity and pore size was obtained with TCP Dental HP. Raman spectroscopy found differences in biomaterials of the same composition. Stacks of granules represent 3D scaffolds resembling trabecular bone with an interconnected porous microarchitecture. Small granules have created pores <300 µm in diameter; this can interfere with vascular colonization. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 415-423, 2019.
Collapse
Affiliation(s)
- Baptiste Arbez
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France
| | - Jean-Daniel Kün-Darbois
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.,Service de chirurgie maxillo-faciale, CHU d'Angers, 49933, Angers Cedex, France
| | - Thierry Convert
- CFI, Collège Français d'Implantologie, 6 rue de Rome, 75005, Paris, France
| | - Bernard Guillaume
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.,CFI, Collège Français d'Implantologie, 6 rue de Rome, 75005, Paris, France
| | - Philippe Mercier
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France
| | - Laurent Hubert
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France.,Département de chirurgie osseuse, CHU d'Angers, 49933, Angers Cedex, France
| | - Daniel Chappard
- Groupe Etudes Remodelage Osseux et bioMatériaux, GEROM - LabCom NextBone, SFR 42-08, Université d'Angers, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, 49933, Angers Cedex, France
| |
Collapse
|
3
|
Aguado E, Mabilleau G, Goyenvalle E, Chappard D. Hypodynamia Alters Bone Quality and Trabecular Microarchitecture. Calcif Tissue Int 2017; 100:332-340. [PMID: 28160025 DOI: 10.1007/s00223-017-0235-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/07/2017] [Indexed: 01/06/2023]
Abstract
Disuse induces a rapid bone loss in humans and animals; hypodynamia/sedentarity is now recognized as a risk factor for osteoporosis. Hypodynamia also decreases bone mass but its effects are largely unknown and only few animal models have been described. Hypodynamic chicken is recognized as a suitable model of bone loss but the effects on the quality have not been fully explored. We have used ten chickens bred in a large enclosure (FREE group); ten others were confined in small cages with little space to move around (HYPO group). They were sacrificed at 53 days and femurs were evaluated by microcomputed tomography (microCT) and nanoindentation. Sections (4 µm thick) were analyzed by Fourier Transform InfraRed Microspectroscopy (FTIR) to see the effects on mineralization and collagen and quantitative backscattered electron imaging (qBEI) to image the mineral of the bone matrix. Trabecular bone volume and microarchitecture were significantly altered in the HYPO group. FTIR showed a significant reduction of the mineral-to-matrix ratio in the HYPO group associated with an increase in the carbonate content and an increase in crystallinity (calculated as the area ratio of subbands located at 1020 and 1030 cm-1) indicating a poor quality of the mineral. Collagen maturity (calculated as the area ratio of subbands located at 1660 and 1690 cm-1) was significantly reduced in the HYPO group. Reduced biomechanical properties were observed at the tissue level. Confined chicken represents a new model for the study of hypodynamia because bone changes are not created by a surgical lesion or a traumatic method. Animals have a reduced bone mass and present with an altered bone matrix quality which is less mineralized and whose collagen contains less crosslinks than in control chicken.
Collapse
Affiliation(s)
- Eric Aguado
- ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Eric Goyenvalle
- ONIRIS, Ecole Nationale Vétérinaire, route de Gachet, 44307, Nantes Cedex 3, France
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France
| | - Daniel Chappard
- GEROM Groupe Etudes Remodelage Osseux et bioMatériaux, IRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, 49933, ANGERS Cedex, France.
| |
Collapse
|