1
|
Damont A, Legrand A, Cao C, Fenaille F, Tabet JC. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. MASS SPECTROMETRY REVIEWS 2023; 42:1300-1331. [PMID: 34859466 DOI: 10.1002/mas.21765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Collapse
Affiliation(s)
- Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Anaïs Legrand
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Chenqin Cao
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
2
|
Shirzadeh M, Poltash ML, Laganowsky A, Russell DH. Structural Analysis of the Effect of a Dual-FLAG Tag on Transthyretin. Biochemistry 2020; 59:1013-1022. [PMID: 32101399 PMCID: PMC7171973 DOI: 10.1021/acs.biochem.0c00105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recombinant proteins have increased our knowledge regarding the physiological role of proteins; however, affinity purification tags are often not cleaved prior to analysis, and their effects on protein structure, stability and assembly are often overlooked. In this study, the stabilizing effects of an N-terminus dual-FLAG (FT2) tag fusion to transthyretin (TTR), a construct used in previous studies, are investigated using native ion mobility-mass spectrometry (IM-MS). A combination of collision-induced unfolding and variable-temperature electrospray ionization is used to compare gas- and solution-phase stabilities of FT2-TTR to wild-type and C-terminal tagged TTR. Despite an increased stability of both gas- and solution-phase FT2-TTR, thermal degradation of FT2-TTR was observed at elevated temperatures, viz., backbone cleavage occurring between Lys9 and Cys10. This cleavage reaction is consistent with previously reported metalloprotease activity of TTR [Liz et al. 2009] and is suppressed by either metal chelation or excess zinc. This study brings to the fore the effect of affinity tag stabilization of TTR and emphasizes unprecedented detail afforded by native IM-MS to assess structural discrepancies of recombinant proteins from their wild-type counterparts.
Collapse
Affiliation(s)
- Mehdi Shirzadeh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Kim HJ, Liyanage OT, Mulenos MR, Gallagher ES. Mass Spectral Detection of Forward- and Reverse-Hydrogen/Deuterium Exchange Resulting from Residual Solvent Vapors in Electrospray Sources. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2030-2040. [PMID: 29998361 DOI: 10.1007/s13361-018-2019-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 05/22/2023]
Abstract
Characterizing glycans is analytically challenging since glycans are heterogeneous, branched polymers with different three-dimensional conformations. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been used to analyze native conformations and dynamics of biomolecules by measuring the mass increase of analytes as labile protons are replaced with deuterium following exposure to deuterated solvents. The rate of exchange is dependent on the chemical functional group, the presence of hydrogen bonds, pH, temperature, charge, and solvent accessibility. HDX-MS of carbohydrates is challenging due to the rapid exchange rate of hydroxyls. Here, we describe an observed HDX reaction associated with residual solvent vapors saturating electrospray sources. When undeuterated melezitose was infused after infusing D2O, samples with up to 73% deuterium exchange were detected. This residual solvent HDX was observed for both carbohydrates and peptides in multiple instruments and dependent on sample infusion rate, infusion time, and deuterium content of the solvent. This residual solvent HDX was observed over several minutes of sample analysis and persisted long enough to alter the measured deuterium labeling and possibly change the interpretation of the results. This work illustrates that residual solvent HDX competes with in-solution HDX for rapidly exchanging functional groups. Thus, we propose conditions to minimize this effect, specifically for top-down, in-electrospray ionization, and quench-flow HDX experiments. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- H Jamie Kim
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - O Tara Liyanage
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Marina R Mulenos
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA.
| |
Collapse
|
4
|
Maleki H, Maurer MM, Ronaghi N, Valentine SJ. Ion Mobility, Hydrogen/Deuterium Exchange, and Isotope Scrambling: Tools to Aid Compound Identification in ‘Omics Mixtures. Anal Chem 2017; 89:6399-6407. [PMID: 28505408 DOI: 10.1021/acs.analchem.7b00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hossein Maleki
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Megan M. Maurer
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Nima Ronaghi
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Stephen J. Valentine
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
5
|
Uppal SS, Beasley SE, Scian M, Guttman M. Gas-Phase Hydrogen/Deuterium Exchange for Distinguishing Isomeric Carbohydrate Ions. Anal Chem 2017; 89:4737-4742. [PMID: 28304155 DOI: 10.1021/acs.analchem.7b00683] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural diversity of carbohydrates presents a major challenge for glycobiology and the analysis of glycoconjugates. Mass spectrometry has become a primary tool for glycan analysis thanks to its speed and sensitivity, but the information content regarding the glycan structure of protonated glycoconjugates is hindered by the inability to differentiate linkage and stereoisomers. Here, we examine a variety of protonated carbohydrate structures by gas-phase hydrogen/deuterium exchange (HDX) to discover that the exchange rates are distinct for isomeric carbohydrates with even subtle structural differences. By incorporating an internal exchange standard, HDX could effectively distinguish all linkage and stereoisomers that were examined and presents a mass spectrometry-based approach for glycan structural analysis with immense potential.
Collapse
Affiliation(s)
- Sanjit S Uppal
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Sarah E Beasley
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Michele Scian
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
6
|
McMahon TB, Ohanessian G. Probing the mechanisms and dynamics of gas phase hydrogen-deuterium exchange reactions of sodiated polyglycines. Phys Chem Chem Phys 2015; 17:4237-49. [PMID: 25573245 DOI: 10.1039/c4cp03960b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate constants for H-D exchange reactions of sodiated polyglycines (GnNa(+), n = 2-8) and polyalanines (AnNa(+), n = 2, 3 and 5) with ND3 have been measured in the cell of an FT-ICR mass spectrometer. All peptides except G2Na(+) are found to undergo three exchange reactions, all of which are consecutive with no sign of multiple exchanges within a single collision event. This information has been used to construct full mechanistic scenarios with the help of detailed quantum chemical calculations of the possible reaction paths for H-D exchange. The first exchange is always located at the C terminus however with different mechanisms depending upon whether the peptide termini can (larger peptides) or cannot (smaller peptides) interact directly without strong energy penalty. The most favourable mechanisms for the second and third exchanges of the N terminus protons, are found to be different from those for the first for all peptide sizes. The peptide distortions that are necessary in order for some of these reactions to occur are made possible by the energy reservoir provided by the favorable interaction of the peptide ion with ND3. Their occurrence and variety preclude any general relationship between H-D exchange kinetics and the most stable ion structures. There is however a break at G7Na(+) in the kinetics trend, with a first exchange rate which is much smaller than for all other peptide sizes. This break can be directly related to a different structural type in which the C terminus is neither free nor close to the N terminus.
Collapse
Affiliation(s)
- T B McMahon
- Laboratoire de Chimie Moléculaire, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France.
| | | |
Collapse
|
7
|
Pan J, Heath BL, Jockusch RA, Konermann L. Structural Interrogation of Electrosprayed Peptide Ions by Gas-Phase H/D Exchange and Electron Capture Dissociation Mass Spectrometry. Anal Chem 2011; 84:373-8. [DOI: 10.1021/ac202730d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingxi Pan
- Department of Chemistry, The University of Western Ontario, London,
Ontario, N6A 5B7, Canada
| | - Brittany L. Heath
- Department of Chemistry, University of Toronto, Toronto, Ontario
M5S 3H6, Canada
| | - Rebecca A. Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario
M5S 3H6, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London,
Ontario, N6A 5B7, Canada
| |
Collapse
|
8
|
Mertens LA, Marzluff EM. Gas Phase Hydrogen/Deuterium Exchange of Arginine and Arginine Dipeptides Complexed with Alkali Metals. J Phys Chem A 2011; 115:9180-7. [DOI: 10.1021/jp204896z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laura A. Mertens
- Department of Chemistry, Grinnell College, Grinnell, Iowa, 50112 United States
| | - Elaine M. Marzluff
- Department of Chemistry, Grinnell College, Grinnell, Iowa, 50112 United States
| |
Collapse
|
9
|
Carlton DD, Schug KA. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta 2011; 686:19-39. [DOI: 10.1016/j.aca.2010.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
|
10
|
Morishetti KK, Huang BDS, Yates JM, Ren J. Gas-phase acidities of cysteine-polyglycine peptides: the effect of the cysteine position. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:603-614. [PMID: 20106677 DOI: 10.1016/j.jasms.2009.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 05/28/2023]
Abstract
The sequence and conformational effects on the gas-phase acidities of peptides have been studied by using two pairs of isomeric cysteine-polyglycine peptides, CysGly(3,4)NH(2) and Gly(3,4)CysNH(2). The extended Cooks kinetic method was employed to determine the gas-phase acidities using a triple quadrupole mass spectrometer with an electrospray ionization source. The ion activation was achieved via collision-induced dissociation experiments. The deprotonation enthalpies (Delta(acid)H) were determined to be 323.9 +/- 2.5 kcal/mol (CysGly(3)NH(2)), 319.2 +/- 2.3 kcal/mol (CysGly(4)NH(2)), 333.8 +/- 2.1 kcal/mol (Gly(3)CysNH(2)), and 321.9 +/- 2.8 kcal/mol (Gly(4)CysNH(2)), respectively. The corresponding deprotonation entropies (Delta(acid)S) of the peptides were estimated. The gas-phase acidities (Delta(acid)G) were derived to be 318.4 +/- 2.5 kcal/mol (CysGly(3)NH(2)), 314.9 +/- 2.3 kcal/mol (CysGly(4)NH(2)), 327.5 +/- 2.1 kcal/mol (Gly(3)CysNH(2)), and 317.4 +/- 2.8 kcal/mol (Gly(4)CysNH(2)), respectively. Conformations and energetic information of the neutral and anionic peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single point energy calculations (B3LYP/6-31+G(d)), respectively. Both neutral and deprotonated peptides adopt many possible conformations of similar energies. All neutral peptides are mainly random coils. The two C-cysteine anionic peptides, Gly(3,4)(Cys-H)(-)NH(2), are also random coils. The two N-cysteine anionic peptides, (Cys-H)(-)Gly(3,4)NH(2), may exist in both random coils and stretched helices. The two N-cysteine peptides, CysGly(3)NH(2) and CysGly(4)NH(2), are significantly more acidic than the corresponding C-terminal cysteine ones, Gly(3)CysNH(2) and Gly(4)CysNH(2). The stronger acidities of the former may come from the greater stability of the thiolate anion resulting from the interaction with the helix-macrodipole, in addition to the hydrogen bonding interactions.
Collapse
|
11
|
Nagy K, Redeuil K, Rezzi S. Online Hydrogen/Deuterium Exchange Performed in the Ion Mobility Cell of a Hybrid Mass Spectrometer. Anal Chem 2009; 81:9365-71. [DOI: 10.1021/ac901736j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kornél Nagy
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Karine Redeuil
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Serge Rezzi
- Metabonomics and Biomarkers Group, BioAnalytical Science Department, Nestlé Research Centre, Nestec Limited, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
12
|
Ren J, Tan JP, Harper RT. Gas-Phase Acidities of Cysteine-Polyalanine Peptides I: A3,4CSH and HSCA3,4. J Phys Chem A 2009; 113:10903-12. [DOI: 10.1021/jp903594a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianhua Ren
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - John P. Tan
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| | - Robert T. Harper
- Department of Chemistry, University of the Pacific, Stockton, California 95211
| |
Collapse
|
13
|
Prell JS, O’Brien JT, Steill JD, Oomens J, Williams ER. Structures of Protonated Dipeptides: The Role of Arginine in Stabilizing Salt Bridges. J Am Chem Soc 2009; 131:11442-9. [DOI: 10.1021/ja901870d] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- James S. Prell
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Jeremy T. O’Brien
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Jeffrey D. Steill
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Jos Oomens
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, and FOM Institute for Plasma Physics “Rijnhuizen”, Edisonbaan 14, 3439 MN Nieuwegein, The Netherlands
| |
Collapse
|
14
|
Wright PJ, Douglas DJ. Gas-phase H/D exchange and collision cross sections of hemoglobin monomers, dimers, and tetramers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:484-495. [PMID: 19101164 DOI: 10.1016/j.jasms.2008.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 05/27/2023]
Abstract
The conformations of gas-phase ions of hemoglobin, and its dimer and monomer subunits have been studied with H/D exchange and cross section measurements. During the H/D exchange measurements, tetramers undergo slow dissociation to dimers, and dimers to monomers, but this did not prevent drawing conclusions about the relative exchange levels of monomers, dimers, and tetramers. Assembly of the monomers into tetramers, hexamers, and octamers causes the monomers to exchange a greater fraction of their hydrogens. Dimer ions, however, exchange a lower fraction of their hydrogens than monomers or tetramers. Solvation of tetramers affects the exchange kinetics. Solvation molecules do not appear to exchange, and solvation lowers the overall exchange level of the tetramers. Cross section measurements show that monomer ions in low charge states, and tetramer ions have compact structures, comparable in size to the native conformations in solution. Dimers have remarkably compact structures, considerably smaller than the native conformation in solution and smaller than might be expected from the monomer or tetramer cross sections. This is consistent with the relatively low level of exchange of the dimers.
Collapse
Affiliation(s)
- P John Wright
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
15
|
Niemeyer ED, Brodbelt JS. Isomeric differentiation of green tea catechins using gas-phase hydrogen/deuterium exchange reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1749-59. [PMID: 17702600 PMCID: PMC2048816 DOI: 10.1016/j.jasms.2007.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 06/29/2007] [Accepted: 07/02/2007] [Indexed: 05/16/2023]
Abstract
Hydrogen/deuterium exchange reactions in a quadrupole ion trap mass spectrometer are used to differentiate galloylated catechin stereoisomers (catechin gallate and epicatechin gallate; gallocatechin gallate and epigallocatechin gallate) and the nongalloylated analogs (catechin and epicatechin, gallocatechin and epigallocatechin). Significant differences in the hydrogen/deuterium exchange behavior of the four pairs of deprotonated catechin stereoisomers are observed upon reaction with D(2)O. Interestingly, the nongalloylated catechins undergo H/D exchange to a much greater extent than the galloylated species, incorporating deuterium at both aromatic/allylic and active phenolic sites. Nongalloylated catechin isomers are virtually indistinguishable by their H/D exchange kinetics over a wide range of reaction times (0.05 to 10 s). Our experimental results are explained using high-level ab initio calculations to elucidate the subtle structural variations in the catechin stereoisomers that lead to their differing H/D exchange kinetics.
Collapse
Affiliation(s)
- Emily D Niemeyer
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, Texas 78626, USA.
| | | |
Collapse
|
16
|
Chipuk JE, Brodbelt JS. Gas-phase hydrogen/deuterium exchange of 5'- and 3'-mononucleotides in a quadrupole ion trap: exploring the role of conformation and system energy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:724-36. [PMID: 17289398 DOI: 10.1016/j.jasms.2006.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 05/13/2023]
Abstract
Gas-phase hydrogen/deuterium (H/D) exchange reactions for deprotonated 2'-deoxy-5'-monophosphate and 2'-deoxy-3'-monophosphate nucleotides with D(2)O were performed in a quadrupole ion trap mass spectrometer. To augment these experiments, molecular modeling was also conducted to identify likely deprotonation sites and potential gas-phase conformations of the anions. A majority of the 5'-monophosphates exchanged extensively with several of the compounds completely incorporating deuterium in place of their labile hydrogen atoms. In contrast, most of the 3'-monophosphate isomers exchanged relatively few hydrogen atoms, even though the rate of the first two exchanges was greater than observed for the 5'-monophosphates. Mononucleotides that failed to incorporate more than two deuterium atoms under default reaction conditions were often found to exchange more extensively when reactions were performed under higher energy conditions. Integration of the experimental and theoretical results supports the use of a relay exchange mechanism and suggests that the exchange behavior depends highly on the identity and orientation of the nucleobase and the position and flexibility of the deprotonated phosphate moiety. These observations also highlight the importance of the distance between the various participating groups in addition to their gas-phase acidity and basicity.
Collapse
Affiliation(s)
- Joseph E Chipuk
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
17
|
Polfer NC, Dunbar RC, Oomens J. Observation of zwitterion formation in the gas-phase H/D-exchange with CH(3)OD: solution-phase structures in the gas phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:512-6. [PMID: 17174103 DOI: 10.1016/j.jasms.2006.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 05/13/2023]
Abstract
Infrared spectroscopy of gas-phase singly deuterated [Trp + K](+) (formed by H/D exchange with CH(3)OD) shows that some (approximately 20%) kinetically stable zwitterionic (ZW) conformer is formed, based on the diagnostic antisymmetric CO stretch of the deprotonated carboxylate moiety, upsilon(as)(CO(2)(-)), at 1680 cm(-1). A majority of the deuterated [Trp + K](+) is found to be in the charge solvation (CS) conformation, with deuterium exchange occurring on both the acid and amino groups, which is consistent with H/D scrambling. Interestingly, H/D exchange with the more basic ND(3) reagent did not result in the stabilization of a kinetically stable zwitterion, although it is not clear yet what causes this observation. The result for CH(3)OD shows that H/D exchange can in fact alter the structure of the analyte and, hence, care needs to be taken when interpreting gas-phase H/D exchange studies. Moreover, this result shows the possibility of forming solution-phase structures that are thermodynamically disfavored in the gas phase, thus opening a new area of study.
Collapse
Affiliation(s)
- Nick C Polfer
- FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein, The Netherlands.
| | | | | |
Collapse
|
18
|
Abstract
The ions formally corresponding to protonated heme [Fe(II)-hemeH](+) have been obtained by collision-induced dissociation from the electrospray ionization of microperoxidase (MP11) and their gas-phase chemistry has been studied by FTICR mass spectrometry. H/D-exchange reactions, used as a tool to gain information on the protonation sites in polyfunctional molecules, show that labile hydrogens pertain to the propionyl substituents at the periphery of the protoporphyrin IX. Several conceivable isomers for protonated heme have been evaluated by density functional theory. The most stable among the species investigated is the one corresponding to protonation at the beta carbon atom of a vinyl group, yielding a proton affinity (PA) value for [Fe(II)-heme] of 1220 kJ mol(-1). This high PA is consistent with the inertness of the hydrogen atoms at the protonation site towards H/D exchange with ND(3) and CD(3)CO(2)D. Peculiar features of this [Fe(II)-hemeH](+) isomer emerge by analysis of its electronic structure, showing that the vinyl group undergoing formal protonation has gained significant radical character due to electron transfer from the metal center. As a consequence, the iron atom acquires partial iron(III) character and none of the two formal descriptions [Fe(II)-hemeH(+)] and [Fe(III)-hemeH(.)](+) alone may adequately illustrate the protonated heme ion. In agreement with this description, the reactivity of protonated heme presents dual facets, resembling iron(III) in some aspects and iron(II) in others. On the one hand, protonated heme behaves like [Fe(III)-heme](+) ions in H/D-exchange reactions. On the other, it shows markedly decreased reactivity towards the addition of ligands with the notable exception of NO, in line with the high affinity shown by iron(II) complexes towards this molecule, NO, of key biological role.
Collapse
Affiliation(s)
- Barbara Chiavarino
- Dipartimento Studi di Chimica e Tecnologia delle Sostanze, Biologicamente Attive, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
19
|
Robinson EW, Garcia DE, Leib RD, Williams ER. Enhanced mixture analysis of poly(ethylene glycol) using high-field asymmetric waveform ion mobility spectrometry combined with fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 2006; 78:2190-8. [PMID: 16579597 PMCID: PMC2562220 DOI: 10.1021/ac051709x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of high-field asymmetric waveform ion mobility spectrometry (FAIMS) with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) makes possible lower detection limits, increased sensitivity, and increased dynamic range in the analysis of poly(ethylene glycol) (PEG) samples of low molecular weight. The signal gain obtained using FAIMS depends on ion identity, with a range between 1.8x and 14x obtained for various molecular ions of PEG 600. A 1.7-fold reduction in noise is obtained using FAIMS due to the elimination of chemical noise. The improved detection performance is predominantly due to a reduction in adverse Coulomb effects as a result of ions being selectively introduced into the mass spectrometer. The high ion transmission obtained using FAIMS combined with the high sensitivity of FTICR-MS detection make possible separation of multiple gas-phase conformers of PEG molecular cations that have low abundance (less than 0.2% relative abundance) and that have not been detected previously. Mixed dications of PEG that have the same nominal mass but differ by the number polymer subunits (m/Delta m up to 25,000) can be separately introduced into the mass spectrometer using FAIMS. Interactions of the carrier gas with the metal ions that are attached to the PEG molecules appear to be the most significant factor in these FAIMS separations.
Collapse
Affiliation(s)
- Errol W Robinson
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | |
Collapse
|
20
|
Prakash H, Mazumdar S. Direct correlation of the crystal structure of proteins with the maximum positive and negative charge states of gaseous protein ions produced by electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1409-1421. [PMID: 16006142 DOI: 10.1016/j.jasms.2005.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 03/30/2005] [Accepted: 04/04/2005] [Indexed: 05/03/2023]
Abstract
Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.
Collapse
Affiliation(s)
- Halan Prakash
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Colaba, Mumbai, Maharastra, India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, 400 005, Colaba, Mumbai, Maharastra, India.
| |
Collapse
|
21
|
Robinson EW, Williams ER. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1427-1437. [PMID: 16023362 PMCID: PMC2735248 DOI: 10.1016/j.jasms.2005.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 05/03/2023]
Abstract
Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.
Collapse
Affiliation(s)
- Errol W Robinson
- Department of Chemistry, University of California at Berkeley, 94720, Berkeley, CA, USA
| | - Evan R Williams
- Department of Chemistry, University of California at Berkeley, 94720, Berkeley, CA, USA.
| |
Collapse
|
22
|
Wong RL, Williams ER, Counterman AE, Clemmer DE. Evaluation of ion mobility spectroscopy for determining charge-solvated versus salt-bridge structures of protonated trimers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1009-19. [PMID: 15914022 DOI: 10.1016/j.jasms.2005.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/21/2005] [Accepted: 03/24/2005] [Indexed: 05/02/2023]
Abstract
The cross sections of five different protonated trimers consisting of two base molecules and trifluoroacetic acid were measured by using ion mobility spectrometry. The gas-phase basicities of these five base molecules span an 8-kcal/mol range. These cross sections are compared with those determined from candidate low-energy salt-bridge and charge-solvated structures identified by using molecular mechanics calculations using three different force fields: AMBER*, MMFF, and CHARMm. With AMBER*, the charge-solvated structures are all globular and the salt-bridge structures are all linear, whereas with CHARMm, these two forms of the protonated trimers can adopt either shape. Globular structures have smaller cross sections than linear structures. Conclusions about the structure of these protonated trimers are highly dependent on the force field used to generate low-energy candidate structures. With AMBER*, all of the trimers are consistent with salt-bridge structures, whereas with MMFF the measured cross sections are more consistent with charge-solvated structures, although the assignments are ambiguous for two of the protonated trimers. Conclusions based on structures generated by using CHARMm suggest a change in structure from charge-solvated to salt-bridge structures with increasing gas-phase basicity of the constituent bases, a result that is most consistent with structural conclusions based on blackbody infrared radiative dissociation experiments for these protonated trimers and theoretical calculations on the uncharged base-acid pairs.
Collapse
Affiliation(s)
- Richard L Wong
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
23
|
|