1
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
2
|
Barwa E, Ončák M, Pascher TF, Taxer T, van der Linde C, Beyer MK. CO 2/O 2 Exchange in Magnesium-Water Clusters Mg +(H 2O) n. J Phys Chem A 2019; 123:73-81. [PMID: 30516989 PMCID: PMC6331139 DOI: 10.1021/acs.jpca.8b10530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Indexed: 11/30/2022]
Abstract
Hydrated singly charged metal ions doped with carbon dioxide, Mg2+(CO2)-(H2O) n, in the gas phase are valuable model systems for the electrochemical activation of CO2. Here, we study these systems by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry combined with ab initio calculations. We show that the exchange reaction of CO2 with O2 proceeds fast with bare Mg+(CO2), with a rate coefficient kabs = 1.2 × 10-10 cm3 s-1, while hydrated species exhibit a lower rate in the range of kabs = (1.2-2.4) × 10-11 cm3 s-1 for this strongly exothermic reaction. Water makes the exchange reaction more exothermic but, at the same time, considerably slower. The results are rationalized with a need for proper orientation of the reactants in the hydrated system, with formation of a Mg2+(CO4)-(H2O) n intermediate while the activation energy is negligible. According to our nanocalorimetric analysis, the exchange reaction of the hydrated ion is exothermic by -1.7 ± 0.5 eV, in agreement with quantum chemical calculations.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tobias F. Pascher
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Thomas Taxer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Abstract
Nucleic acids are diverse polymeric macromolecules that are essential for all life forms. These biomolecules possess a functional three-dimensional structure under aqueous physiological conditions. Mass spectrometry-based approaches have on the other hand opened the possibility to gain structural information on nucleic acids from gas-phase measurements. To correlate gas-phase structural probing results with solution structures, it is therefore important to grasp the extent to which nucleic acid structures are preserved, or altered, when transferred from the solution to a fully anhydrous environment. We will review here experimental and theoretical approaches available to characterize the structure of nucleic acids in the gas phase (with a focus on oligonucleotides and higher-order structures), and will summarize the structural features of nucleic acids that can be preserved in the gas phase on the experiment time scale.
Collapse
|
4
|
Doussineau T, Antoine R, Santacreu M, Dugourd P. Pushing the Limit of Infrared Multiphoton Dissociation to Megadalton-Size DNA Ions. J Phys Chem Lett 2012; 3:2141-2145. [PMID: 26295761 DOI: 10.1021/jz300844e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the use of infrared multiphoton dissociation (IRMPD) for the determination of relative activation energies for unimolecular dissociation of megadalton DNA ions. Single ions with masses in the megadalton range were stored in an electrostatic ion trap for a few tens of milliseconds and the image current generated by the roundtrips of ions in the trap was recorded. While being trapped, single ions were irradiated by a CO2 laser and fragmented, owing to multiphoton IR activation. The analysis of the single-ion image current during the heating period allows us to measure changes in the charge of the trapped ion. We estimated the activation energy associated with the dissociation of megadalton-size DNA ions in the frame of an Arrhenius-like model by analyzing a large set of individual ions in order to construct a frequency histogram of the dissociation rates for a collection of ions.
Collapse
Affiliation(s)
- Tristan Doussineau
- Université de Lyon, CNRS, UMR5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Rodolphe Antoine
- Université de Lyon, CNRS, UMR5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Marion Santacreu
- Université de Lyon, CNRS, UMR5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| | - Philippe Dugourd
- Université de Lyon, CNRS, UMR5579, LASIM, Université Lyon 1, Villeurbanne, F-69622 Lyon, France
| |
Collapse
|
5
|
van der Linde C, Hemmann S, Höckendorf RF, Balaj OP, Beyer MK. Reactivity of hydrated monovalent first row transition metal ions M(+)(H2O)n, M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide. J Phys Chem A 2012; 117:1011-20. [PMID: 22506540 DOI: 10.1021/jp3020723] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactions of hydrated monovalent transition metal ions M(+)(H(2)O)(n), M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Clusters containing monovalent chromium, cobalt, nickel, or zinc were reactive toward O(2), while only hydrated cobalt was reactive toward N(2)O. A strongly size dependent reactivity was observed. Chromium and cobalt react very slowly with carbon dioxide. Nanocalorimetric analysis, (18)O(2) exchange, and collision induced dissociation (CID) experiments were done to learn more about the structure of the O(2) products. The thermochemistry for cobalt, nickel, and zinc is comparable to the formation of O(2)(-) from hydrated electrons. These results suggest that cobalt, nickel, and zinc are forming M(2+)/O(2)(-) ion pairs in the cluster, while chromium rather forms a covalently bound dioxygen complex in large clusters, followed by an exothermic dioxide formation in clusters with n ≤ 5. The results show that hydrated singly charged transition metal ions exhibit highly specific reactivities toward O(2), N(2)O, and CO(2).
Collapse
Affiliation(s)
- Christian van der Linde
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | | | | | | | | |
Collapse
|
6
|
Fentabil MA, Daneshfar R, Kitova EN, Klassen JS. Blackbody infrared radiative dissociation of protonated oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2171-2178. [PMID: 21952784 DOI: 10.1007/s13361-011-0243-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
The dissociation pathways, kinetics, and energetics of protonated oligosaccharides in the gas phase were investigated using blackbody infrared radiative dissociation (BIRD). Time-resolved BIRD measurements were performed on singly protonated ions of cellohexaose (Cel(6)), which is composed of β-(1→4)-linked glucopyranose rings, and five malto-oligosaccharides (Mal(x), where x=4-8), which are composed of α-(1→4)-linked glucopyranose units. At the temperatures investigated (85-160 °C), the oligosaccharides dissociate at the glycosidic linkages or by the loss of a water molecule to produce B- or Y-type ions. The Y ions dissociate to smaller Y or B ions, while the B ions yield exclusively smaller B ions. The sequential loss of water molecules from the smallest B ions (B(1) and B(2)) also occurs. Rate constants for dissociation of the protonated oligosaccharides and the corresponding Arrhenius activation parameters (E(a) and A) were determined. The E(a) and A-factors measured for protonated Mal(x) (x>4) are indistinguishable within error (~19 kcal mol(-1), 10(10) s(-1)), which is consistent with the ions being in the rapid energy exchange limit. In contrast, the Arrhenius parameters for protonated Cel(6) (24 kcal mol(-1), 10(12) s(-1)) are significantly larger. These results indicate that both the energy and entropy changes associated with the glycosidic bond cleavage are sensitive to the anomeric configuration. Based on the results of this study, it is proposed that formation of B and Y ions occurs through a common dissociation mechanism, with the position of the proton establishing whether a B or Y ion is formed upon glycosidic bond cleavage.
Collapse
Affiliation(s)
- Messele A Fentabil
- Alberta Innovates Centre for Carbohydrate Science and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | |
Collapse
|
7
|
Mayer PM, Martineau E. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys Chem Chem Phys 2011; 13:5178-86. [DOI: 10.1039/c0cp02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Ebrahimi A, Habibi-Khorassani M, Bazzi S. The impact of protonation and deprotonation of 3-methyl-2′-deoxyadenosine on N-glycosidic bond cleavage. Phys Chem Chem Phys 2011; 13:3334-43. [DOI: 10.1039/c0cp01279c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Parr C, Brodbelt JS. Increased sequence coverage of thymine-rich oligodeoxynucleotides by infrared multiphoton dissociation compared to collision-induced dissociation. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:1098-103. [PMID: 20648674 PMCID: PMC3112010 DOI: 10.1002/jms.1780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Infrared multiphoton dissociation (IRMPD) of thymine-rich oligodeoxynucleotides in a linear ion-trap mass spectrometer affords far more extensive fragmentation than conventional collision-induced dissociation (CID). For oligodeoxynucleotides containing one non-thymine base, CID results primarily in cleavage on the 3' side of the non-thymine nucleobase, whereas IRMPD results in cleavages between all the nucleobases and thus provides complete sequence coverage. Furthermore, for oligodeoxynucleotides containing a single non-thymine base, it is shown that the full series of diagnostic sequence ions observed in the IRMPD mass spectra arise from secondary dissociation of the two primary products formed from the initial cleavage site located next to the non-thymine base.
Collapse
Affiliation(s)
- Carol Parr
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
10
|
Sun X, Lee JK. Stability of DNA Duplexes Containing Hypoxanthine (Inosine): Gas versus Solution Phase and Biological Implications. J Org Chem 2010; 75:1848-54. [DOI: 10.1021/jo9023683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xuejun Sun
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Jeehiun K. Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
11
|
Raczyńska ED, Gal JF, Maria PC, Zientara K, Szelag M. Application of FT-ICR-MS for the study of proton-transfer reactions involving biomolecules. Anal Bioanal Chem 2007; 389:1365-80. [PMID: 17786415 DOI: 10.1007/s00216-007-1508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/06/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
Fourier transform ion cyclotron resonance mass spectrometry, combined with modern ionization (fast atom bombardment , electrospray ionization, matrix-assisted laser desorption-ionization), fragmentation (collision-induced dissociation, surface-induced dissociation, one-photon ultraviolet photodissociation, infrared multiphoton dissociation, blackbody infrared radiative dissociation, electron-capture dissociation), and separation (high-performance liquid chromatography, liquid chromatography, capillary electrophoresis) techniques is now becoming one of the most attractive and frequently used instrumental platforms for gas-phase studies of biomolecules such as amino acids, bioamines, peptides, polypeptides, proteins, nucleobases, nucleosides, nucleotides, polynucleotides, nucleic acids, saccharides, polysaccharides, etc. Since it gives the possibilities to trap the ions from a few seconds up to thousands of seconds, it is often applied to study ion/molecule reactions in the gas phase, particularly proton-transfer reactions which provide important information on acid-base properties. These properties determine in part the three-dimensional structure of biomolecules, most of their intramolecular and intermolecular interactions, and consequently their biological activity. They also indicate the form (unionized, zwitterionic, protonated, or deprotonated) which the biomolecule may take in a nonpolar environment.
Collapse
Affiliation(s)
- E D Raczyńska
- Department of Chemistry, Warsaw University of Agriculture (SGGW), 02-726 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
12
|
Delvolvé A, Tabet JC, Bregant S, Afonso C, Burlina F, Fournier F. Charge dependent behavior of PNA/DNA/PNA triplexes in the gas phase. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1498-508. [PMID: 17103389 DOI: 10.1002/jms.1124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intact noncovalent complexes were studied in the gas phase using negative ion nano-ESI mass spectrometry. Among various noncovalent systems studied in the gas phase, the interaction of DNA strands with peptide nucleic acids (PNAs) presents a strong interest as biologically relevant systems. PNAs originally described by Nielsen are used as DNA mimics as possible medical agents by imprisoning DNA single strands into stable noncovalent complexes. Two types of PNAs were investigated in the PNA/DNA multiplex: the original Nielsen's PNA and a modified backbone PNA by the introduction of syn- and anti-(aminoethyl)thiazolidine rings. We first investigated the stoichiometry of PNA/DNA multiplexes formed in solution and observed them in the gas phase via qualitative kinetics of complementary strand associations. It resulted in observing PNA2/DNA triplexes (ts) as the multiply deprotonated species, most stable in both the solution and gas phase. Second, charge-dependant decompositions of these species were undertaken under low-energy collision conditions. It appears that covalent bond cleavages (base releasing or skeleton cleavage) occur from lower ts charge states rather than ts unzipping, which takes place from higher charge states. This behavior can be explained by considering the presence of zwitterions depending on the charge state. They result in strong salt-bridge interactions between the positively charged PNA side chain and the negatively charged DNA backbone. We propose a general model to clearly display the involved patterns in the noncovalent triplex decompositions. Third, the relative stability of three PNA2/DNA complexes was scrutinized in the gas phase by acquiring the breakdown curves of their ts(6-) form, corresponding to the ts unzipping. The chemical structures of the studied PNAs were chosen in order to evidence the possible influence of backbone stereochemistry on the rigidity of PNA2/DNA complexes. It provided significantly different stabilities via V(m) measurements. The relative gas-phase stability order obtained was compared to that found in solution by Chassaing et al., and shows qualitative agreement.
Collapse
Affiliation(s)
- Alice Delvolvé
- University Pierre et Marie Curie, CNRS-UMR 7613, Synthèse, Structure et Fonction de Molécules Bioactives, FR 2769, Case Courrier 45, 4 place Jussieu, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Daneshfar R, Klassen JS. Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1229-38. [PMID: 16782356 DOI: 10.1016/j.jasms.2006.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/05/2006] [Accepted: 05/05/2006] [Indexed: 05/10/2023]
Abstract
Arrhenius activation parameters (E(a), A) for the loss of neutral nucleobases from a series of T-rich, doubly and triply deprotonated 15- and 20-mer oligodeoxynucleotides (ODN) containing a single reactive base (X = A or C) with the sequence, XT14, XT19 and T19X, have been determined using the blackbody infrared radiative dissociation technique. The A-containing anions are significantly more reactive (> or =3000 times) than the C-containing ions over the temperature range investigated. Importantly, the Arrhenius parameters for the loss of AH exhibit a strong dependence on size of the ODN and, to some extent, the charge state; the Arrhenius parameters increase with size and charge (Ea = 29-39 kcal mol(-1), A = 10(15)-10(20) s(-1)). In contrast, the parameters for the loss of CH are much less sensitive to size (Ea = 35-39 kcal mol(-1), A = 10(14)-10(17) s(-1)). The results are consistent with a greater contribution from the internal solvation of the reactive base to the Arrhenius parameters for the loss of A, compared with C, from the 15- and 20-mers. To further probe differences in internal solvation of A and C, hydrogen/deuterium exchange was carried out on AT19(-3), T19A(-3), CT19(-3) and T19C(-3) using D2O as the exchange reagent. However, the H/D exchange results did not reveal any differences in internal solvation within the ODN anions. Arrhenius parameters for the dissociation of noncovalent complexes of T20(-3) and the neutral nucleobase AH or CH have also been determined. Differences in the parameters indicate differences in the nature of the intermolecular interactions. It is proposed that neutral A-T interactions (i.e., base-base), which originate in solution, dominate in the case of (T20 + AH)(-3), while charge solvation, involving CH and a deprotonated phosphate group, is present for (T20 + CH)(-3).
Collapse
Affiliation(s)
- Rambod Daneshfar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Pan S, Verhoeven K, Lee JK. Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1853-65. [PMID: 16198120 DOI: 10.1016/j.jasms.2005.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 05/04/2023]
Abstract
The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) >> G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN sequences from structurally informative (a-BH) and w ions, we are able to identify the charge locations for the -3 and -2 charge states. For the -3 charge state, one charge resides on each "most terminal" phosphate, with the third being in the middle. For the -2 charge state, each charge resides on the penultimate phosphate groups. We compare our data to earlier experiments in an effort to generalize trends.
Collapse
Affiliation(s)
- Su Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
15
|
Keller KM, Brodbelt JS. Charge state-dependent fragmentation of oligonucleotide/metal complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:28-37. [PMID: 15653361 DOI: 10.1016/j.jasms.2004.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/16/2004] [Accepted: 09/16/2004] [Indexed: 05/24/2023]
Abstract
Collision-activated dissociation (CAD) has been employed to assess the gas-phase fragmentation behavior of a series of 1:1 oligodeoxynucleotide (ODN):metal complexes over a range of charge states, using several ten-residue ODNs and a wide array of alkali, alkaline earth, and transition metals. For parent species in low to intermediate charge states, complexation with Ca(+2), Sr(+2), or Ba(+2) altered the relative intensity of M-B species, promoting loss of cytosine over loss of guanine. The relative intensities of sequence ions were largely unaffected. This behavior was most prevalent for isomeric sequences with complementary residues at the 5'- and 3'-termini, suggesting that metal complexation may change the gas-phase conformation and/or conformational dynamics for some sequences. In higher charge states, some ODN/Ba(+2) complexes produced abundant fragment ions corresponding to metallated a(n)(-m) species, which are not commonly observed in CAD mass spectra for deprotonated ODNs. The formation of these ions was most favored for complexes between Ba(+2) and ODN sequences with a thymine residue at Position 6. Literature precedent exists for the formation of a(n)(-m) ions from sequences in which covalent modification generates one or more neutral sites along the phosphate backbone. ODN/metal adducts in high charge states possess only a few acidic protons, and the juxtaposition of these neutral phosphate groups near thymine residues and the bound Ba(+2) ion may direct formation of the metallated a(n)(-m) species.
Collapse
Affiliation(s)
- Karin M Keller
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|