1
|
Hohenwallner K, Lamp LM, Peng L, Nuske M, Hartler J, Reid GE, Rampler E. FAIMS Shotgun Lipidomics for Enhanced Class- and Charge-State Separation Complemented by Automated Ganglioside Annotation. Anal Chem 2024; 96. [PMID: 39028917 PMCID: PMC11295132 DOI: 10.1021/acs.analchem.4c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The analysis of gangliosides is extremely challenging, given their structural complexity, lack of reference standards, databases, and software solutions. Here, we introduce a fast 6 min high field asymmetric ion mobility spectrometry (FAIMS) shotgun lipidomics workflow, along with a dedicated software solution for ganglioside detection. By ramping FAIMS compensation voltages, ideal ranges for different ganglioside classes were obtained. FAIMS revealed both class- and charge-state separation behavior based on the glycan headgroup moiety. The number of sialic acids attached to the glycan moiety correlates positively with their preferred charge states, i.e., trisialylated gangliosides were mainly present as [M - 3H]3- ions, whereas [M - 4H]4- and [M - 5H]5- ions were observed for GQ1 and GP1. For data evaluation, we developed a shotgun/FAIMS extension for the open-source Lipid Data Analyzer (LDA), enabling automated annotation of gangliosides up to the molecular lipid species level. This extension utilized combined orthogonal fragmentation spectra from CID, HCD, and 213 nm UVPD ion activation methods and covers 29 ganglioside classes, including acetylated and fucosylated modifications. With our new workflow and software extension 117 unique gangliosides species were identified in porcine brain extracts. While conventional shotgun lipidomics favored the observation of singly charged ganglioside species, the utilization of FAIMS made multiply charged lipid species accessible, resulting in an increased number of detected species, primarily due to an improved signal-to-noise ratio arising from FAIMS charge state filtering. Therefore, this FAIMS-driven workflow, complemented by new software capabilities, offers a promising strategy for complex ganglioside and glycosphingolipid characterization in shotgun lipidomics.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Liuyu Peng
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madison Nuske
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
| | - Gavin E. Reid
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| |
Collapse
|
2
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Clemmer DE, Zamfir AD. Human Cerebellum Gangliosides: A Comprehensive Analysis by Ion Mobility Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:683-695. [PMID: 38518248 DOI: 10.1021/jasms.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The human cerebellum is an ultraspecialized region of the brain responsible for cognitive functions and movement coordination. The fine mechanisms through which the process of aging impacts such functions are not well understood; therefore, a rigorous exploration of this brain region at the molecular level is deemed necessary. Gangliosides, sialylated glycosphingolipids, highly and specifically expressed in the human central nervous system, represent possible molecular markers of cerebellum development and aging. In this context, for a comprehensive determination of development- and age-specific components, we have conducted here a comparative profiling and structural determination of the gangliosides expressed in fetal cerebellum in two intrauterine developmental stages and aged cerebellum by ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS). Due to the high sensitivity and efficiency of separation provided by IMS MS, no less than 551 chemically distinct species were identified, which represents 4.5 times more gangliosides than ever discovered in this brain region. The detailed assessment of fetal vs aged cerebellum gangliosidome showed marked discrepancies not only in the general number of the species expressed, but also in their sialylation patterns, the modifications of the glycan core, and the composition of the ceramides. All of these characteristics are potential markers of cerebellum development and aging. The structural analysis by collision-induced dissociation (CID) documented the occurrence of GD1b (d18:1/18:0) isomer in the fetal cerebellum in the second gestational trimester, with all probability of GQ1b (t18:1/18:0) in the near-term fetus and of GQ1b (d18:1/18:0) in aged cerebellum.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300224, Romania
- Department of Physics, West University of Timisoara, Timisoara 300223, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300224, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300224, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 300224, Romania
- Institute for Research, Development and Innovation in Natural and Technical Sciences, Aurel Vlaicu University of Arad, Arad 310330, Romania
| |
Collapse
|
3
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
4
|
Ion Mobility Mass Spectrometry Reveals Rare Sialylated Glycosphingolipid Structures in Human Cerebrospinal Fluid. Molecules 2022; 27:molecules27030743. [PMID: 35164008 PMCID: PMC8839488 DOI: 10.3390/molecules27030743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.
Collapse
|
5
|
Sarbu M, Ica R, Zamfir AD. Developments and applications of separation and microfluidics methods coupled to electrospray mass spectrometry in glycomics of nervous system gangliosides. Electrophoresis 2021; 42:429-449. [PMID: 33314304 DOI: 10.1002/elps.202000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
6
|
Ica R, Petrut A, Munteanu CVA, Sarbu M, Vukelić Ž, Petrica L, Zamfir AD. Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4502. [PMID: 31961034 DOI: 10.1002/jms.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have developed here a superior approach based on high-resolution (HR) mass spectrometry (MS) for monitoring the changes occurring with development and aging in the composition and structure of cerebellar gangliosidome. The experiments were focused on the comparative screening and structural analysis of gangliosides expressed in fetal and aged cerebellum by Orbitrap MS with nanoelectrospray ionization (nanoESI) in the negative ion mode. The employed ultrahigh-resolution MS platform allowed the discrimination, without the need of previous separation, of 159 ions corresponding to 120 distinct species in the native ganglioside mixtures from fetal and aged cerebellar biopsies, many more than detected before, when MS platforms of lower resolution were employed. A number of gangliosides, in particular polysialylated belonging to GT, GQ, GP, and GS classes, modified by O-fucosylation, O-acetylation, or CH3 COO- were discovered here, for the first time in human cerebellum. These components, found differently expressed in fetal and aged tissues, indicated that the ganglioside profile in cerebellum is development stage- and age-specific. Following the fragmentation analysis by high-energy collision-induced dissociation (HCD) tandem MS (MS/MS), we have also observed that the intimate structure of certain compounds has not changed during the development and aging of the brain, an aspect which could open new directions in the investigation of ganglioside biomarkers in cerebellar tissue.
Collapse
Affiliation(s)
- Raluca Ica
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina Petrut
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Cristian V A Munteanu
- Molecular Cell Biology Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Mirela Sarbu
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | - Ligia Petrica
- Department of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D Zamfir
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department for Research, Development, Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
7
|
Peng B, Kopczynski D, Pratt BS, Ejsing CS, Burla B, Hermansson M, Benke PI, Tan SH, Chan MY, Torta F, Schwudke D, Meckelmann SW, Coman C, Schmitz OJ, MacLean B, Manke MC, Borst O, Wenk MR, Hoffmann N, Ahrends R. LipidCreator workbench to probe the lipidomic landscape. Nat Commun 2020; 11:2057. [PMID: 32345972 PMCID: PMC7188904 DOI: 10.1038/s41467-020-15960-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Mass spectrometry (MS)-based targeted lipidomics enables the robust quantification of selected lipids under various biological conditions but comprehensive software tools to support such analyses are lacking. Here we present LipidCreator, a software that fully supports targeted lipidomics assay development. LipidCreator offers a comprehensive framework to compute MS/MS fragment masses for over 60 lipid classes. LipidCreator provides all functionalities needed to define fragments, manage stable isotope labeling, optimize collision energy and generate in silico spectral libraries. We validate LipidCreator assays computationally and analytically and prove that it is capable to generate large targeted experiments to analyze blood and to dissect lipid-signaling pathways such as in human platelets.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Dominik Kopczynski
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Brian S Pratt
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Bo Burla
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-, 5230, Odense, Denmark
- Wihuri Research Institute, 00290, Helsinki, Finland
| | - Peter Imre Benke
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Sock Hwee Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Hospital, 119228, Singapore, Singapore
- Cardiovascular Research Institute, National University of Singapore, 117599, Singapore, Singapore
- National University Heart Centre, National University Health System, 117599, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Dominik Schwudke
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), 38124, Braunschweig, Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Brendan MacLean
- University of Washington, Department of Genome Sciences, WA, 98195, Seattle, USA
| | - Mailin-Christin Manke
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Oliver Borst
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44139, Dortmund, Germany.
- Department of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Sarbu M, Raab S, Henderson L, Fabris D, Vukelić Ž, Clemmer DE, Zamfir AD. Cerebrospinal fluid: Profiling and fragmentation of gangliosides by ion mobility mass spectrometry. Biochimie 2020; 170:36-48. [DOI: 10.1016/j.biochi.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/14/2019] [Indexed: 11/30/2022]
|
9
|
Sarbu M, Dehelean L, Munteanu CVA, Ica R, Petrescu AJ, Zamfir AD. Human caudate nucleus exhibits a highly complex ganglioside pattern as revealed by high-resolution multistage Orbitrap MS. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1669632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirela Sarbu
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Liana Dehelean
- Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Raluca Ica
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Andrei J. Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D. Zamfir
- Department of Applied Physics, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
10
|
Sarbu M, Ica R, Petrut A, Vukelić Ž, Munteanu CVA, Petrescu AJ, Zamfir AD. Gangliosidome of human anencephaly: A high resolution multistage mass spectrometry study. Biochimie 2019; 163:142-151. [PMID: 31201844 DOI: 10.1016/j.biochi.2019.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022]
Abstract
Widely dispersed throughout the entire body tissues, gangliosides (GGs) are essential components of neuronal cell membranes, where exhibit a vital role in neuronal function and brain development, directly influencing the neural tube formation, neurogenesis, neurotransmission, etc. Due to several factors, partial or complete closing faults of the fetal neural tube may occur in the first trimester of pregnancy, generating a series of neural tube defects (NTD), among which anencephaly. The absence in anencephaly of the forebrain and skull bones determines the exposure to the amniotic fluid of the remaining brain tissue and the spinal cord, causing the degeneration of the nervous system tissue. Based on the previously achieved information related to the direct alteration of neural development with deficient concentration of several GGs, a systematic and comparative mass spectrometry (MS) mapping assay on GGs originating from fetuses in different intrauterine developmental stages, i.e. the 29th (denoted An29), 35th (An35) and the 37th (An37) gestational weeks was here conducted. Our approach, based on Orbitrap MS under high sensitivity, resolution and mass accuracy conditions, enabled for the first time the nanoelectrospray ionization, detection and identification of over 150 glycoforms, mainly novel, polysialylated species. Such a pattern, specific for incipient developmental stages reliably documents the brain development stagnation, characteristic for anencephaly. Further, the fragmentation MS2-MS3 experiments by collision induced dissociation (CID) confirmed the incidence in all three samples of GT2(d18:1/16:2) as a potential biomarker. Therefore, this fingerprinting of the anencephalic gangliosidome may serve in development of approaches for routine screening and early diagnosis.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Alina Petrut
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | | | - Andrei J Petrescu
- Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania; "Aurel Vlaicu" University of Arad, Arad, Romania.
| |
Collapse
|
11
|
Zeiner PS, Brandhofe A, Müller-Eschner M, Steinmetz H, Pfeilschifter W. Area postrema syndrome as frequent feature of Bickerstaff brainstem encephalitis. Ann Clin Transl Neurol 2018; 5:1534-1542. [PMID: 30564620 PMCID: PMC6292382 DOI: 10.1002/acn3.666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Objective Area postrema (AP) syndrome (defined as: nausea and/or emesis and/or singultus at onset of brainstem dysfunction) comprises complex pathophysiologic mechanisms triggered by different entities. The first objective was to assess the frequency of AP syndrome as a clinical feature in brainstem encephalitis (BE). Finding an especially high prevalence of AP syndrome in Bickerstaff brainstem encephalitis (BBE), we also analyzed the frequency of AP syndrome in other autoimmune diseases with anti-ganglioside antibodies (Guillain-Barré syndrome (GBS) and its variants). Methods We systematically evaluated the prevalence of AP syndrome in BE in all patients treated at our university hospital during a 15-year period. In a second step, BBE patients were compared to GBS and Miller Fisher syndrome (MFS) patients as clinical subtypes of a disease continuum without brainstem dysfunction. Results We found AP syndrome in 8 of 21 BE patients, including 3 of 7 BBE and in 4 of 112 GBS/MFS patients. AP syndrome was as a frequent but under-recognized feature of BE with a significant impact on patients' well being. Interpretation Manifestation of AP syndrome in BBE but also in GBS and its subtypes point toward a role of autoimmune antibodies that should be investigated in future studies. Considerable misdiagnosis or nonrecognition complicates diagnostic and therapeutic management. Therefore, AP syndrome should be considered in any episode of otherwise unexplained nausea, emesis, or singultus.
Collapse
Affiliation(s)
- Pia S Zeiner
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany.,Dr. Senckenberg Institute of Neurooncology University Hospital/Goethe University Frankfurt Heinrich-Hoffmann-Strasse 7 Frankfurt/Main 60528 Germany
| | - Annemarie Brandhofe
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Monika Müller-Eschner
- Institute of Neuroradiology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Helmuth Steinmetz
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| | - Waltraud Pfeilschifter
- Department of Neurology University Hospital/Goethe University Frankfurt Schleusenweg 2-16 Frankfurt/Main 60528 Germany
| |
Collapse
|
12
|
Barrientos RC, Zhang Q. Isobaric Labeling of Intact Gangliosides toward Multiplexed LC-MS/MS-Based Quantitative Analysis. Anal Chem 2018; 90:2578-2586. [PMID: 29384363 DOI: 10.1021/acs.analchem.7b04044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids recognized to play essential role in biological processes. Both the glycan and lipid structures influence their biological function and thus necessitate their determination as intact molecular species. To our knowledge, no multiplexed method for intact gangliosides currently exists. In this paper, we aimed to demonstrate an approach for isobaric labeling of intact gangliosides. Specifically, we carried out the rapid, chemoselective oxidation of sialic acid side chain in common ganglioside core structures using NaIO4 followed by ligation with a carbonyl-reactive isobaric tandem mass tag (TMT) reagent and subsequent RPLC-MS/MS analysis. Attachment of the isobaric label was observed to improve the ionization efficiency of complex gangliosides using electrospray ionization. Fragmentation of the resulting [M + 2H]2+ ions of TMT-labeled gangliosides provided information-rich spectra containing fragments from the glycan, lipid, and TMT reporter ions. This facile approach enabled simultaneous quantification of up to six samples as well as identification of glycan and lipid compositions in a single injection. As a proof-of-concept, using porcine brain total ganglioside extracts pooled at known ratios, we obtained overall sample-to-sample precision of <12% RSD and mean error of <10%. This showcased the great promise and feasibility of this strategy for high-throughput analysis of intact gangliosides in biological extracts.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro , Greensboro, North Carolina 27412, United States.,UNCG Center for Translational Biomedical Research, NC Research Campus , Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro , Greensboro, North Carolina 27412, United States.,UNCG Center for Translational Biomedical Research, NC Research Campus , Kannapolis, North Carolina 28081, United States
| |
Collapse
|
13
|
Sarbu M, Vukelić Ž, Clemmer DE, Zamfir AD. Ion mobility mass spectrometry provides novel insights into the expression and structure of gangliosides in the normal adult human hippocampus. Analyst 2018; 143:5234-5246. [DOI: 10.1039/c8an01118d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
General work-flow for ganglioside analysis by IM-MS.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry
- University of Zagreb Medical School
- Zagreb
- Croatia
| | | | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter
- Timisoara
- Romania
- “Aurel Vlaicu” University of Arad
- Arad
| |
Collapse
|
14
|
Cozma II, Sarbu M, Ilie C, Zamfir AD. Structural analysis by electrospray ionization mass spectrometry of GT1 ganglioside fraction isolated from fetal brain. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1397680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irma I. Cozma
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| | - Constantin Ilie
- Department of Neonatology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department of the Analysis and Modeling of Biological Systems, “Aurel Vlaicu” University of Arad, Arad, Romania
| |
Collapse
|
15
|
Electrospray ionization ion mobility mass spectrometry provides novel insights into the pattern and activity of fetal hippocampus gangliosides. Biochimie 2017; 139:81-94. [DOI: 10.1016/j.biochi.2017.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
|
16
|
Sarbu M, Dehelean L, Munteanu CV, Vukelić Ž, Zamfir AD. Assessment of ganglioside age-related and topographic specificity in human brain by Orbitrap mass spectrometry. Anal Biochem 2017; 521:40-54. [DOI: 10.1016/j.ab.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
|
17
|
Sibille E, Berdeaux O, Martine L, Bron AM, Creuzot-Garcher CP, He Z, Thuret G, Bretillon L, Masson EAY. Ganglioside Profiling of the Human Retina: Comparison with Other Ocular Structures, Brain and Plasma Reveals Tissue Specificities. PLoS One 2016; 11:e0168794. [PMID: 27997589 PMCID: PMC5173345 DOI: 10.1371/journal.pone.0168794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Gangliosides make a wide family of glycosphingolipids, highly heterogeneous in both the ceramide moiety and the oligosaccharide chain. While ubiquitously expressed in mammalian tissues, they are particularly abundant in the brain and the peripheral nervous system. Gangliosides are known to play a crucial role in the development, maintenance and functional integrity of the nervous system. However, the expression and roles of gangliosides in the retina, although often considered as a window on the brain, has been far less studied. We performed an in-depth analysis of gangliosides of the human retina, especially using powerful LC/MS methods. We compared the pattern of ganglioside classes and ceramide molecular species of this tissue with other ocular structures and with brain and plasma in elderly human individuals. About a hundred of ganglioside molecular species among 15 distinct classes were detected illustrating the huge structural diversity of these compounds. The retina exhibited a very diverse ganglioside profile and shared several common features with the brain (prominence of tetraosylgangliosides, abundance of d20:1 long chain base and 18:0 fatty acid…). However, the retina stood out with the specific expression of GD3, GT3 and AcGT3, which further presented a peculiar molecular species distribution. The unique ganglioside pattern we observed in the human retina suggests that these ganglioside species play a specific role in the structure and function of this tissue. This lipidomic study, by highlighting retina specific ganglioside species, opens up novel research directions for a better understanding of the biological role of gangliosides in the retina.
Collapse
Affiliation(s)
- Estelle Sibille
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Alain M. Bron
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Catherine P. Creuzot-Garcher
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- Department of Ophthalmology, University Hospital, Dijon, France
| | - Zhiguo He
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
| | - Gilles Thuret
- Laboratory for Biology, Imaging, and Engineering of Corneal Grafts, EA2521, Faculty of Medicine, University Jean Monnet, Saint-Etienne, France
- Institut Universitaire de France, Paris, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
| | - Elodie A. Y. Masson
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, University Bourgogne Franche-Comté, Dijon, France
- * E-mail:
| |
Collapse
|
18
|
Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma. Anal Biochem 2016; 509:1-11. [DOI: 10.1016/j.ab.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/01/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
|
19
|
Sarbu M, Robu AC, Ghiulai RM, Vukelić Ž, Clemmer DE, Zamfir AD. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides. Anal Chem 2016; 88:5166-78. [PMID: 27088833 DOI: 10.1021/acs.analchem.6b00155] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.
Collapse
Affiliation(s)
- Mirela Sarbu
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| | - Adrian C Robu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania.,West University of Timisoara , 300223 Timisoara, Romania
| | - Roxana M Ghiulai
- Department of Pharmacy, Victor Babes University of Medicine and Pharmacy , 300041 Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School , HR-10000 Zagreb, Croatia
| | - David E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - Alina D Zamfir
- Aurel Vlaicu University of Arad , 310130 Arad, Romania.,National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania
| |
Collapse
|
20
|
Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RMA. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. Methods 2016; 104:69-78. [PMID: 26922843 DOI: 10.1016/j.ymeth.2016.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI.
Collapse
Affiliation(s)
- Karolina Škrášková
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands; TI-COAST, Amsterdam, The Netherlands
| | | | - Emrys A Jones
- Waters Corporation, Wilmslow, UK; Imperial College London, London, UK
| | | | - Shane R Ellis
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands
| | - Ron M A Heeren
- M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, Maastricht, The Netherlands; FOM-Institute AMOLF, Amsterdam, The Netherlands; TI-COAST, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Capitan F, Robu AC, Popescu L, Flangea C, Vukelić Ž, Zamfir AD. B Subunit Monomers of Cholera Toxin Bind G1 Ganglioside Class as Revealed by Chip-Nanoelectrospray Multistage Mass Spectrometry. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1085061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Feng X, Liu BF, Li J, Liu X. Advances in coupling microfluidic chips to mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:535-57. [PMID: 24399782 DOI: 10.1002/mas.21417] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 05/26/2023]
Abstract
Microfluidic technology has shown advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. Coupling microfluidic chips to mass spectrometry (Chip-MS) can greatly improve the overall analytical performance of MS-based approaches and expand their potential applications. In this article, we review the advances of Chip-MS in the past decade, covering innovations in microchip fabrication, microchips coupled to electrospray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-MS. Development of integrated microfluidic systems for automated MS analysis will be further documented, as well as recent applications of Chip-MS in proteomics, metabolomics, cell analysis, and clinical diagnosis.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid/instrumentation
- Chromatography, Liquid/methods
- Electrophoresis, Microchip/instrumentation
- Electrophoresis, Microchip/methods
- Equipment Design
- Humans
- Lab-On-A-Chip Devices
- Lipids/analysis
- Metabolomics/instrumentation
- Metabolomics/methods
- Polysaccharides/analysis
- Proteins/analysis
- Proteomics/instrumentation
- Proteomics/methods
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjun Li
- Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Integration of microfluidic LC with HRMS for the analysis of analytes in biofluids: past, present and future. Bioanalysis 2015; 7:1397-411. [DOI: 10.4155/bio.15.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Capillary LC (cLC) coupled to MS has the potential to improve detection limits, address limited sample volumes and allow multiple analyses from one sample. This is particularly attractive in areas where ultrahigh assay sensitivity, low limits of detection and small sample volumes are becoming commonplace. However, implementation of cLC–MS in the bioanalytical–drug metabolism area had been hampered by the lack of commercial instrumentation and the need for experts to operate the system. Recent advances in microfabricated devices such as chip-cube and ion-key technologies offer the potential for true implementation of cLC in the modern laboratory including the benefits of the combination of this type of separation with high-resolution MS.
Collapse
|
24
|
Rožman M, Fabris D, Mrla T, Vukelić Ž. Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr Res 2014; 400:1-8. [PMID: 25299937 DOI: 10.1016/j.carres.2014.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.
Collapse
Affiliation(s)
- Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dragana Fabris
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Tomislav Mrla
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Željka Vukelić
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| |
Collapse
|
25
|
Ghiulai RM, Sarbu M, Vukelić Ž, Ilie C, Zamfir AD. Early stage fetal neocortex exhibits a complex ganglioside profile as revealed by high resolution tandem mass spectrometry. Glycoconj J 2014; 31:231-45. [DOI: 10.1007/s10719-014-9517-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 11/30/2022]
|
26
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
27
|
Zamfir AD. Neurological Analyses: Focus on Gangliosides and Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:153-204. [DOI: 10.1007/978-3-319-06068-2_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Profiling and sequence analysis of gangliosides in human astrocytoma by high-resolution mass spectrometry. Anal Bioanal Chem 2013; 405:7321-35. [PMID: 23877172 DOI: 10.1007/s00216-013-7173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/11/2013] [Accepted: 06/24/2013] [Indexed: 01/13/2023]
Abstract
In this preliminary investigation, a low-grade astrocytoma (AcT) is investigated by high-resolution (HR) mass spectrometry (MS) aiming at characterization of gangliosides with potential biomarker value. The research was conducted towards a comparative mapping of ganglioside expression in AcT, its surrounding tissue (ST) and a normal control brain tissue (NT). HR MS was conducted in the negative ion mode nanoelectrospray ionization (nanoESI). Fragmentation analysis was carried out by collision-induced dissociation (CID) MS(2)-MS(4.) Due to the high resolving power and mass accuracy, by comparative mapping of the ganglioside extracts from AcT, ST and NT, under identical conditions, 37 different species in AcT, 40 in ST and 56 in NT were identified. AcT and ST were found to contain 18 identical ganglioside components. Among all three specimens, ST extract presented the highest levels of sialylation, fucosylation and acetylation, a feature which might be correlated to the tumor expansion in the adjacent brain area. MS mapping indicated also that AcT, ST and NT share one doubly deprotonated molecule at m/z 1063.31, attributable to GT1(d18:1/18:0) or GT1(d18:0/18:1). CID MS(2)-MS(4) on these particular ions detected in AcT and ST provided data supporting GT1c isomer in the investigated astrocytoma tissue. Our results show that HR MS has a remarkable potential in brain cancer research for the determination of tumor-associated markers and for their structural determination.
Collapse
|
29
|
Flangea C, Fabris D, Vukelić Ž, Zamfir AD. Mass Spectrometry of Gangliosides from Human Sensory and Motor Cortex. Aust J Chem 2013. [DOI: 10.1071/ch13173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sialylated glycosphingolipids, known as gangliosides, are highly expressed in the central nervous system exhibiting region-specific composition in correlation to the specialised functions of particular brain regions. In the present study high resolution tandem mass spectrometry on a quadrupole time-of-flight instrument with nanoelectrospray was optimised and applied for the first comparative assessment of the ganglioside profile in single specimens of adult human motor and somatosensory cortex. In the second stage, the structural analysis performed by collision induced dissociation tandem MS disclosed the presence in motor cortex of a fucose-ganglioside Fuc-GM1 (d18 : 1/20 : 0) isomer exhibiting both N-acetylneuraminic acid and fucose residues linked to the inner galactose.
Collapse
|
30
|
Serb AF, Sisu E, Vukelić Z, Zamfir AD. Profiling and sequencing of gangliosides from human caudate nucleus by chip-nanoelectrospray mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1561-1570. [PMID: 23280744 DOI: 10.1002/jms.3116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 05/27/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids are involved in many brain functions at the cell and molecular level. Compositional and structural elucidation of GGs in mixtures extracted from human brain is essential for correlating their profile with the specialized function of each brain area in health and disease. As a part of our ongoing study on GG expression and structure in different healthy and diseased brain regions, in this work, a preliminary investigation of GGs in a specimen of human caudate nucleus (CN) was carried out using an advanced mass spectrometry (MS) technique. By chip-nanoelectrospray MS performed on a NanoMate robot coupled to a high capacity ion trap instrument, 81 GG components were detected in human CN in only 1.5 min of signal acquisition. Although the native GG mixture from CN was found dominated by mono-, di- and trisialylated GGs with a slight dominance of disialylated forms (GD), four tetrasialylated structures (GQ) and two pentasialylated (GP) species were also identified. Additionally, species with unusually long fatty acid chains, exceeding 30 carbon atoms in their ceramide (Cer) composition, and several glycoforms modified by fucosyl (Fuc), O-acetyl (O-Ac) and/or lactonization were discovered. By tandem MS (MS(2) ) using collision-induced dissociation, two atypical mono and disialylated species with long-chain fatty acids in their Cer could be confirmed and structurally characterized. These results may be a starting point for new GG-based approaches in the study of CN functions and ethiopathogenesis of CN-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Alina F Serb
- Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Sq. 2A, Timisoara, Romania
| | | | | | | |
Collapse
|
31
|
Lee H, Lerno LA, Choe Y, Chu CS, Gillies LA, Grimm R, Lebrilla CB, German JB. Multiple precursor ion scanning of gangliosides and sulfatides with a reversed-phase microfluidic chip and quadrupole time-of-flight mass spectrometry. Anal Chem 2012; 84:5905-12. [PMID: 22697387 PMCID: PMC3402638 DOI: 10.1021/ac300254d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Precise profiling of polar lipids including gangliosides and sulfatides is a necessary step in understanding the diverse physiological role of these lipids. We have established an efficient method for the profiling of polar lipids using reversed-phase nano high-performance liquid chromatography microfluidic chip quadrupole time-of-flight mass spectrometry (nano-HPLC-chip Q-TOF/MS). A microfluidic chip design provides improved chromatographic performance, efficient separation, and stable nanospray while the advanced high-resolution mass spectrometer allowed for the identification of complex isobaric polar lipids such as NeuAc- and NeuGc-containing gangliosides. Lipid classes were identified based on the characteristic fragmentation product ions generated during data-dependent tandem mass spectrometry (MS/MS) experiments. Each class was monitored by a postprocessing precursor ion scan. Relatively simple quantitation and identification of intact ions was possible due to the reproducible retention times provided by the nano-HPLC chip. The method described in this paper was used to profile polar lipids from mouse brain, which was found to contain 17 gangliosides and 13 sulfatides. Types and linkages of the monosaccharides and their acetyl modifications were identified by low-energy collision-induced dissociation (CID) (40 V), and the type of sphingosine base was identified by higher energy CID (80 V). Accurate mass measurements and chromatography unveiled the degree of unsaturation and hydroxylation in the ceramide lipid tails.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Larry A. Lerno
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Youngshik Choe
- Department of Neurology, University of California, San Francisco, CA 94158, United States
| | - Caroline S. Chu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Laura A. Gillies
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
| | - Rudolf Grimm
- Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, United States
- Agilent Technologies, Life Science Group, Santa Clara, CA 95051, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, United States
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, CA 95616, United States
| |
Collapse
|
32
|
Richards AL, Lietz CB, Wager-Miller J, Mackie K, Trimpin S. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet. J Lipid Res 2012; 53:1390-8. [PMID: 22262808 DOI: 10.1194/jlr.d019711] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MS(n) fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser.
Collapse
Affiliation(s)
- Alicia L Richards
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
33
|
Guo M, Li Z, Wei D, Jiang K, Lee MR. Analysis of methyl-, chloro-, bromo- and trifluoromethyl-substituted 1,9-diphenyl-9H-fluorene and its isomers by gas chromatography-ion trap multistage tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:483-492. [PMID: 23654193 DOI: 10.1255/ejms.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This work presents a modified method to analyze methyL-, chloro-, bromo- and trifluoromethyl-substituted 1,9-diphenyt-9H-fluorene and their isomers by ion trap mass spectrometry with electron impact ionization (EI). Since MS spectra of 1,9-diphenyl-9H-fluorene with these four groups and their isomers are similar, it is difficult to distinguish them from its isomers. Multistage tandem mass spectrometry analysis involves selecting molecular ions obtained in MS spectra as precursor ions in the MS/MS process, and the fragment [C25H17]+ (m/z 317) obtained in MS/MS spectra as a precursor ion in MS3 processes. Collision-induced dissociation (CID) experiments at different activation energies were done to elucidate possible fragmentation pathways. Proposed fragmentation pathways including m/z 317 and structures of the product ions are acquired simultaneously. At a higher CID voltage, the isomers of C25H17-F3 can be distinguished in MS/MS, while the isomers of C25H17-CH3, C25H17-Cl and C25H17-Br can be distinguished in MS3. This work can provide new and valuable information needed for unambiguous characterization of such substances in complex sample matrices.
Collapse
Affiliation(s)
- Ming Guo
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
| | | | | | | | | |
Collapse
|
34
|
Zamfir AD, Serb A, Vukeli Ž, Flangea C, Schiopu C, Fabris D, Kalanj-Bognar S, Capitan F, Sisu E. Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2145-2159. [PMID: 22002228 DOI: 10.1007/s13361-011-0250-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di-O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Revolutiei Blvd. 77, RO-310130, Arad, Romania.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Flangea C, Serb A, Sisu E, Zamfir AD. Reprint of: chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:897-917. [PMID: 21958495 DOI: 10.1016/j.bbalip.2011.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/11/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023]
Abstract
In the past few years, a considerable effort was invested in interfacing mass spectrometry (MS) to microfluidics-based systems for electrospray ionization (ESI). Since its first introduction in biological mass spectrometry, chip-based ESI demonstrated a high potential to discover novel structures of biomarker value. Therefore, recently, microfluidics for electrospray in conjunction with advanced MS instruments able to perform multistage fragmentation were introduced also in glycolipid research. This review is focused on the strategies, which allowed a successful application of chip technology for ganglioside mapping and sequencing by ESI MS and tandem MS (MS/MS). The first part of the review is dedicated to the progress of MS methods in brain ganglioside research, which culminated with the introduction of two types of microfluidic devices: the NanoMate robot and a polymer microchip for electrospray. In the second part a systematic description of most relevant results obtained by using MS in combination with the two chip systems is presented. Chip-based ESI accomplishments for determination of ganglioside expression and structure in normal brain regions and brain pathologies such as neurodegenerative diseases and primary brain tumors are described together with some considerations upon the perspectives of microfluidics-MS to be routinely introduced in biomedical investigation.
Collapse
Affiliation(s)
- Corina Flangea
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Arad, Romania
| | | | | | | |
Collapse
|
36
|
Chip-based nanoelectrospray mass spectrometry of brain gangliosides. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:513-35. [DOI: 10.1016/j.bbalip.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 05/11/2011] [Accepted: 06/08/2011] [Indexed: 01/06/2023]
|
37
|
Sisu E, Flangea C, Serb A, Rizzi A, Zamfir AD. High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. Electrophoresis 2011; 32:1591-609. [DOI: 10.1002/elps.201100067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 11/06/2022]
|
38
|
Mosoarca C, Ghiulai RM, Novaconi CR, Vukelić Ž, Chiriac A, Zamfir AD. Application of Chip-Based Nanoelectrospray Ion Trap Mass Spectrometry to Compositional and Structural Analysis of Gangliosides in Human Fetal Cerebellum. ANAL LETT 2011. [DOI: 10.1080/00032719.2010.506938] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Cortes DF, Kabulski JL, Lazar AC, Lazar IM. Recent advances in the MS analysis of glycoproteins: Capillary and microfluidic workflows. Electrophoresis 2011; 32:14-29. [PMID: 21171110 PMCID: PMC3717299 DOI: 10.1002/elps.201000394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 12/26/2022]
Abstract
Recent developments in bioanalytical instrumentation, MS detection, and computational data analysis approaches have provided researchers with capabilities for interrogating the complex cellular glycoproteome, to help gain a better insight into the cellular and physiological processes that are associated with a disease and to facilitate the efforts centered on identifying disease-specific biomarkers. This review describes the progress achieved in the characterization of protein glycosylation by using advanced capillary and microfluidic MS technologies. The major steps involved in large-scale glycoproteomic analysis approaches are discussed, with special emphasis given to workflows that have evolved around complex MS detection functions. In addition, quantitative analysis strategies are assessed, and the bioinformatics aspects of glycoproteomic data processing are summarized. The developments in commercial and custom fabricated microfluidic front-end platforms to ESI- and MALDI-MS instrumentation, for addressing major challenges in carbohydrate analysis such as sensitivity, throughput, and ability to perform structural characterization, are further evaluated and illustrated with relevant examples.
Collapse
Affiliation(s)
- Diego F. Cortes
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | - Jarod L. Kabulski
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| | | | - Iulia M. Lazar
- Virginia Bioinformatics Institute Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
- Department of Biological Sciences, Virginia Polytechnic Institute and State University Washington St. Bio II/283, Blacksburg, VA 24061
| |
Collapse
|
40
|
Vanderschaeghe D, Festjens N, Delanghe J, Callewaert N. Glycome profiling using modern glycomics technology: technical aspects and applications. Biol Chem 2010; 391:149-161. [PMID: 20128687 DOI: 10.1515/bc.2010.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycomics research has become indispensable in many research fields such as immunity, signal transduction and development. Moreover, changes in the glycosylation of proteins and lipids have been reported in several diseases including cancer. The analysis of a complex post-translational modification such as glycosylation depends on the availability or development of appropriate analytical technologies. The research goal determines the sensitivity, resolution and throughput requirements and guides the choice of a particular technology. This review highlights the evolution of glycan profiling tools in the past 5 years. We focus on capillary electrophoresis, liquid chromatography, mass spectrometry and lectin microarrays.
Collapse
Affiliation(s)
- Dieter Vanderschaeghe
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Nele Festjens
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| | - Joris Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | - Nico Callewaert
- Unit for Molecular Glycobiology, Department for Molecular Biomedical Research, VIB, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
41
|
Li Y, Arigi E, Eichert H, Levery SB. Mass spectrometry of fluorocarbon-labeled glycosphingolipids. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:504-519. [PMID: 20301184 DOI: 10.1002/jms.1734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A method for generation of novel fluorocarbon derivatives of glycosphingolipids (GSLs) with high affinity for fluorocarbon phases has been developed, and their potential applications to mass spectrometry (MS)-based methodologies for glycosphingolipidomics have been investigated. Sphingolipid ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides, and four fungal glycosylinositol phosphorylceramides (GIPCs) were de-N-acylated, derivatized by prototype F-Tags, and recovered by solid phase extraction on fluorocarbon-derivatized silica (F-SPE). The efficacy of SCDase treatment of GIPCs was here demonstrated for the first time. Compatibility with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application was then demonstrated on a crude ganglioside mixture extracted from bovine brain. Finally, a simple trial in microarray format demonstrated fixation of F-tagged G(M1) ganglioside to a fluorous glass surface, with the glycan intact and available for interaction with a fluorescent derivative of cholera toxin B chain. The methods described thus provide a new avenue for rapid GSL recovery or cleanup, potentially compatible with a variety of platforms for mass spectrometric profiling and structure analysis, as well as parallel analysis of functional interactions.
Collapse
Affiliation(s)
- Yunsen Li
- University of New Hampshire, Durham, NH 03824-3598, USA
| | | | | | | |
Collapse
|
42
|
Schiopu C, Flangea C, Capitan F, Serb A, Vukelić Ž, Kalanj-Bognar S, Sisu E, Przybylski M, Zamfir AD. Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry. Anal Bioanal Chem 2009; 395:2465-77. [DOI: 10.1007/s00216-009-3188-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
43
|
Serb A, Schiopu C, Flangea C, Sisu E, Zamfir AD. Top-down glycolipidomics: fragmentation analysis of ganglioside oligosaccharide core and ceramide moiety by chip-nanoelectrospray collision-induced dissociation MS2-MS6. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1434-1442. [PMID: 19658121 DOI: 10.1002/jms.1625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We developed a straightforward approach for high-throughput top-down glycolipidomics based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision-induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M-2H]2- ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2-MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top-down experiment was performed in a high-throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range.
Collapse
Affiliation(s)
- Alina Serb
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224, Timisoara, Romania
| | | | | | | | | |
Collapse
|
44
|
Bindila L, Peter-Katalinić J. Chip-mass spectrometry for glycomic studies. MASS SPECTROMETRY REVIEWS 2009; 28:223-253. [PMID: 19145581 DOI: 10.1002/mas.20197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The introduction of micro- and nanochip front end technologies for electrospray mass spectrometry addressed a major challenge in carbohydrate analysis: high sensitivity structural determination and heterogeneity assessment in high dynamic range mixtures of biological origin. Chip-enhanced electrospray ionization was demonstrated to provide reproducible performance irrespective of the type of carbohydrate, while the amenability of chip systems for coupling with different mass spectrometers greatly advance the chip/MS technique as a versatile key tool in glycomic studies. A more accurate representation of the glycan repertoire to include novel biologically-relevant information was achieved in different biological sources, asserting this technique as a valuable tool in glycan biomarker discovery and monitoring. Additionally, the integration of various analytical functions onto chip devices and direct hyphenation to MS proved its potential for glycan analysis during the recent years, whereby a new analytical tool is on the verge of maturation: lab-on-chip MS glycomics. The achievements until early beginning of 2007 on the implementation of chip- and functional integrated chip/MS in systems glycobiology studies are reviewed here.
Collapse
Affiliation(s)
- Laura Bindila
- Institute for Medical Physics and Biophysics, University of Münster, Robert Koch Str. 31, 48149 Münster, Germany.
| | | |
Collapse
|
45
|
Serb A, Schiopu C, Flangea C, Vukelić Z, Sisu E, Zagrean L, Zamfir AD. High-throughput analysis of gangliosides in defined regions of fetal brain by fully automated chip-based nanoelectrospray ionization multi-stage mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2009; 15:541-553. [PMID: 19661562 DOI: 10.1255/ejms.1009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gangliosides (GGs), a large group of sialylated glycosphingolipids, are considered biomarkers of human brain development, aging and certain diseases. Determination of individual GG components in complex mixtures extracted from a human brain represents a fundamental prerequisite for correlating their specificity with the specialized function of each brain area. In the context of modern glycomics, detailed investigation of GG expression and structure in human brain requires a continuous development and application of innovative methods able to improve the quality of data and speed of analysis. In this work, for the first time, a high-throughput mapping and sequencing of gangliosides in human fetal brain was performed by a novel mass spectrometry (MS)-based approach developed recently in our laboratory. Three GG mixtures extracted and purified from different regions of the same fetal brain in the 36th gestational week: frontal neocortex (NEO36), white matter of the frontal lobe (FL36) and white matter of the occipital lobe (OL36) were subjected to comparative high-throughput screening and multi-stage fragmentation by fully automated chip-based nanoelectrospray ionization (nanoESI) high capacity ion trap (HCT) MS. Using this method, in only a few minutes of signal acquisitions, over 100 GG and asialo-GG species were detected and identified in the three mixtures. Obtained data revealed for the first time that differences in GG expression in human fetal brain are dependent on phylogenetic development rather than topographic factors. While a significant variation of GG distribution in NEO36 vs FL36 was observed, no significant differences in GG expression in white matter of frontal vs occipital lobe were detected. Additionally, the largest number of species was identified in NEO36, which correlates with the functional complexity of neocortex as the newest brain region. In the last stage of analysis, using MS(2)-MS(3) molecular ion fragmentation at variable amplitudes, a NEO36-associated GD1b isomer could clearly be discriminated. Present results indicate that the combination of fully automated chipESI with HCT MS(n) is able to provide ultra-fast, sensitive and reliable analyses of complex lipid-linked carbohydrates from which the pattern of their expression and structure in a certain type of bio-matrix can be determined.
Collapse
Affiliation(s)
- Alina Serb
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str 1, RO-300224, Timisoara, Romania
| | | | | | | | | | | | | |
Collapse
|
46
|
Almeida R, Mosoarca C, Chirita M, Udrescu V, Dinca N, Vukelić Ž, Allen M, Zamfir AD. Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal Biochem 2008; 378:43-52. [DOI: 10.1016/j.ab.2008.03.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/09/2008] [Accepted: 03/12/2008] [Indexed: 11/26/2022]
|
47
|
Zarei M, Bindila L, Souady J, Dreisewerd K, Berkenkamp S, Müthing J, Peter-Katalinić J. A sialylation study of mouse brain gangliosides by MALDI a-TOF and o-TOF mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:716-725. [PMID: 18200606 DOI: 10.1002/jms.1367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) process of sialoglycoconjugates is generally accompanied by different levels of cleavage of sialic acid residues and/or by dehydration, and decarboxylation reactions. Quantitative densitometry of the mouse brain ganglioside (MBG) components separated by high-performance thin layer chromatography (HPTLC) and evidenced by orcinol staining was a basis to verify the ganglioside composition pattern with respect to the relative abundances of individual components in the mixture. A systematic mass spectrometry (MS) sialylation analysis has been carried out to evaluate the feasibility of an axial time-of-flight (a-TOF) MS, equipped with a vacuum MALDI source and an orthogonal-TOF (o-TOF) instrument with an ion source operated at about 1 mbar of N(2). Besides, the esterification by one methyl group of the carboxyl group in sialic acid to increase the stability of the ganglioside species for MALDI MS analysis has been tested and the yield of intact ganglioside species and of the neutral loss of water and carbon dioxide estimated. For the sialylation analysis of native ganglioside mixtures the MALDI o-TOF analysis with 6-azo-2-thiothymine/diammonium citrate (ATT/DAC) as a matrix appears as an optimal approach for ganglioside profiling.
Collapse
Affiliation(s)
- Mostafa Zarei
- Institute for Medical Physics and Biophysics, Biomedical Analysis, University of Münster, Robert Koch Str. 31, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Gu J, Tifft CJ, Soldin SJ. Simultaneous quantification of GM1 and GM2 gangliosides by isotope dilution tandem mass spectrometry. Clin Biochem 2008; 41:413-7. [PMID: 18241673 DOI: 10.1016/j.clinbiochem.2007.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/26/2007] [Accepted: 12/28/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Gangliosides (GGs) are considered as diagnostic biomarkers and therapeutic targets and agents. The goal of this study was to develop a tandem mass spectrometry (MS/MS) method for the simultaneous measurement of both GM1 and GM2 gangliosides in human cerebrospinal fluid (CSF) samples in order to be able to determine their concentrations in patients with Tay-Sachs and Sandhoff disease and assess whether drugs or transplantation affect their concentrations. DESIGN AND METHODS An API-4000 tandem mass spectrometer equipped with TurboIonSpray source and Shimadzu HPLC system was employed to perform the analysis using isotope dilution with deuterium labeled internal standards. To a 1.5 mL conical plastic Eppendorf centrifuge tube, 40 microL of human CSF sample was added and mixed with 400 microL of internal standard solution for deproteinization. After centrifugation, 100 microL of supernatant was injected onto a C-18 column. After a 2.5 min wash, the switching valve was activated and the analytes were eluted from the column with a water/methanol gradient into the MS/MS system. Quantification by multiple reaction-monitoring (MRM) analysis was performed in the negative mode. RESULTS The within-day coefficients of variation were <3% for GM1 and <2% for GM2 and the between-day coefficients of variation were <5% for both GM1 and GM2 at all concentrations tested. Accuracy ranged between 98% and 102% for both analytes. Good linearity was also obtained within the concentration range of 10-200 ng/mL (6.5-129.3 nmol/L) for GM1 and 5-100 ng/mL (3.6-72.3 nmol/L) for GM2 (r> or =0.995). CONCLUSIONS A new simple, accurate, and fast isotope dilution tandem mass spectrometry method was developed for the simultaneous quantification of GM1 and GM2 gangliosides in a small amount of human CSF. Concentrations were measured in "normal" CSF and in CSF from patients with Tay-Sachs disease.
Collapse
Affiliation(s)
- Jianghong Gu
- Department of Laboratory Medicine, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC, USA
| | | | | |
Collapse
|
49
|
Mapping and Sequencing of Gangliosides from Anencephaly by Electrospray Ionization High Capacity Ion Trap Mass Spectrometry. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-1-4020-8811-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
50
|
Vakhrushev SY, Snel MF, Langridge J, Peter-Katalinić J. MALDI-QTOFMS/MS identification of glycoforms from the urine of a CDG patient. Carbohydr Res 2007; 343:2172-83. [PMID: 18155684 DOI: 10.1016/j.carres.2007.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 12/17/2022]
Abstract
Identification of single glycoconjugate components in a complex mixture from the urine of a patient suffering from a congenital disorder of glycosylation was probed by MALDIMS analysis on a hybrid quadrupole time-of-flight instrument. In negative ion mode, complex maps containing more than 50 ionic species were obtained and a number of molecular ions directly as-signed using a previously developed computer-assisted algorithm. To confirm the data and determine the carbohydrate sequence, single molecular ions were selected and submitted to fragmentation experiments. Interpretation of fragmentation spectra was also assisted by the soft-ware using alignment with spectra generated in silico. According to fragmentation data, the majority of glycoconjugate ionic species could be assigned to free oligosaccharides along with ten species tentatively assigned to glycopeptides. Following this approach for glycan identification by a combination of MALDI-QTOFMS and MS/MS experiments, computer-assisted assignment and fragment analysis, data for a potential glycan data base are produced. Of high benefit for this approach are two main factors: low sample consumption due to the high sensitivity of ion formation, and generation of only singly charged species in MALDIMS allowing interpretation with-out any deconvolution. In this experimental set-up, sequencing of single components from the MALDI maps by low energy CID followed by computer-assisted assignment and data base search is proposed as a most efficient strategy for the rapid identification of complex carbohydrate structures in clinical glycomics.
Collapse
Affiliation(s)
- Sergey Y Vakhrushev
- Institute for Medical Physics and Biophysics, Biomedical Analysis, University of Muenster, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|