1
|
Polák M, Černý J, Novák P. Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis. Anal Chem 2024; 96:1478-1487. [PMID: 38226459 PMCID: PMC10831798 DOI: 10.1021/acs.analchem.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
Collapse
Affiliation(s)
- Marek Polák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| | - Jiří Černý
- Laboratory
of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute
of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Science, Charles
University, 12843 Prague, Czech Republic
| |
Collapse
|
2
|
Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods Enzymol 2022; 673:475-516. [PMID: 35965017 DOI: 10.1016/bs.mie.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.
Collapse
|
3
|
Filandrova R, Kavan D, Kadek A, Novak P, Man P. Studying Protein-DNA Interactions by Hydrogen/Deuterium Exchange Mass Spectrometry. Methods Mol Biol 2021; 2247:193-219. [PMID: 33301119 DOI: 10.1007/978-1-0716-1126-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) can be used to study interactions of proteins with various ligands, to describe the effects of mutations, or to reveal structural responses of proteins to different experimental conditions. It is often described as a method with virtually no limitations in terms of protein size or sample composition. While this is generally true, there are, however, ligands or buffer components that can significantly complicate the analysis. One such compound, that can make HDX-MS troublesome, is DNA. In this chapter, we will focus on the analysis of protein-DNA interactions, describe the detailed protocol, and point out ways to overcome the complications arising from the presence of DNA.
Collapse
Affiliation(s)
- Ruzena Filandrova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alan Kadek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Petr Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Man
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Gülbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. J Am Chem Soc 2018; 140:7486-7497. [DOI: 10.1021/jacs.7b13044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Basri Gülbakan
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
- Hacettepe University Institute of Child Health, Ihsan Dogramaci Children’s Hospital, Sıhhiye Square, 06100 Ankara, Turkey
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Max Pillong
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Wang Y, Du Z, Zheng W, Wu K, Xu D, Luo Q, Zhao Y, Han J, Liu Y, Wang F. Deciphering of interactions between platinated DNA and HMGB1 by hydrogen/deuterium exchange mass spectrometry. Dalton Trans 2018; 46:6187-6195. [PMID: 28426082 DOI: 10.1039/c7dt00275k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A high mobility group box 1 (HMGB1) protein has been reported to recognize both 1,2-intrastrand crosslinked DNA by cisplatin (1,2-cis-Pt-DNA) and monofunctional platinated DNA using trans-[PtCl2(NH3)(thiazole)] (1-trans-PtTz-DNA). However, the molecular basis of recognition between the trans-PtTz-DNA and HMGB1 remains unclear. In the present work, we described a hydrogen/deuterium exchange mass spectrometry (HDX-MS) method in combination with docking simulation to decipher the interactions of platinated DNA with domain A of HMGB1. The global deuterium uptake results indicated that 1-trans-PtTz-DNA bound to HMGB1a slightly tighter than the 1,2-cis-Pt-DNA. The local deuterium uptake at the peptide level revealed that the helices I and II, and loop 1 of HMGB1a were involved in the interactions with both platinated DNA adducts. However, docking simulation disclosed different H-bonding networks and distinct DNA-backbone orientations in the two Pt-DNA-HMGB1a complexes. Moreover, the Phe37 residue of HMGB1a was shown to play a key role in the recognition between HMGB1a and the platinated DNAs. In the cis-Pt-DNA-HMGB1a complex, the phenyl ring of Phe37 intercalates into a hydrophobic notch created by the two platinated guanines, while in the trans-PtTz-DNA-HMGB1a complex the phenyl ring appears to intercalate into a hydrophobic crevice formed by the platinated guanine and the opposite adenine in the complementary strand, forming a penta-layer π-π stacking associated with the adjacent thymine and the thiazole ligand. This work demonstrates that HDX-MS associated with docking simulation is a powerful tool to elucidate the interactions between platinated DNAs and proteins.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rusinga FI, Weis DD. Automated Strong Cation-Exchange Cleanup To Remove Macromolecular Crowding Agents for Protein Hydrogen Exchange Mass Spectrometry. Anal Chem 2016; 89:1275-1282. [PMID: 27936623 DOI: 10.1021/acs.analchem.6b04057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Measuring amide hydrogen exchange (HX) of intrinsically disordered proteins (IDPs) in solutions containing high concentrations of macromolecular crowding agents would give new insights into the structure and dynamics of these proteins under crowded conditions. High concentrations of artificial crowders, required to simulate cellular crowding, introduce overwhelming interferences to mass spectrometry (MS) analysis. We have developed a fully automated, dual-stage online cleanup that uses strong cation-exchange (SCX) followed by reversed-phase desalting to remove Ficoll, a synthetic polymer, for HX-MS analysis of proteins under crowded conditions. We tested the efficiency of our method by measuring the HX-MS signal intensities of myoglobin peptides from crowded samples containing 300 g L-1 Ficoll and from uncrowded samples. Although there was loss of abundance relative to uncrowded myoglobin analyzed using conventional HX-MS, 97% coverage of the myoglobin sequence was still obtained. Control HX-MS experiments using unstructured peptides labeled at pD 4.0 under crowded and uncrowded conditions confirmed that Ficoll does not alter chemical exchange and that the same extent of HX is achieved in uncrowded solutions as in solutions containing 300 g L-1 of predeuterated Ficoll. We validated our method by measuring HX of CBP, the intrinsically disordered nuclear coactivator binding domain of CREB binding protein (UniProt CBP_MOUSE P45481 ), residues 2059-2117, at pD 6.5 under crowded and uncrowded conditions. Ficoll induced both protection and deprotection from HX in different regions of CBP, with the greatest deprotection occurring at the edges of helices. These results are consistent with previous observation of IDPs under the influence of synthetic polymers.
Collapse
Affiliation(s)
- Farai I Rusinga
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| | - David D Weis
- Department of Chemistry and the Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Recent Advances in the Characterization and Analysis of Therapeutic Oligonucleotides by Analytical Separation Methods Coupling with Mass Spectrometry. ADVANCES IN CHROMATOGRAPHY 2016. [DOI: 10.1201/9781315370385-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Structural analysis of the interleukin-8/glycosaminoglycan interactions by amide hydrogen/deuterium exchange mass spectrometry. Methods 2015; 89:45-53. [DOI: 10.1016/j.ymeth.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022] Open
|
9
|
Brock A. Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expr Purif 2012; 84:19-37. [DOI: 10.1016/j.pep.2012.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/19/2023]
|
10
|
Percy AJ, Rey M, Burns KM, Schriemer DC. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry-a review. Anal Chim Acta 2012; 721:7-21. [PMID: 22405295 DOI: 10.1016/j.aca.2012.01.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/17/2022]
Abstract
Assessing the functional outcome of protein interactions in structural terms is a goal of structural biology, however most techniques have a limited capacity for making structure-function determinations with both high resolution and high throughput. Mass spectrometry can be applied as a reader of protein chemistries in order to fill this void, and enable methodologies whereby protein structure-function determinations may be made on a proteome-wide level. Protein hydrogen/deuterium exchange (H/DX) offers a chemical labeling strategy suitable for tracking changes in "dynamic topography" and thus represents a powerful means of monitoring protein structure-function relationships. This review presents the exchange method in the context of interaction analysis. Applications involving interface detection, quantitation of binding, and conformational responses to ligation are discussed, and commentary on recent analytical developments is provided.
Collapse
Affiliation(s)
- Andrew J Percy
- Department of Chemistry, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
11
|
Chalmers MJ, Busby SA, Pascal BD, West GM, Griffin PR. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Expert Rev Proteomics 2011; 8:43-59. [PMID: 21329427 DOI: 10.1586/epr.10.109] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.
Collapse
Affiliation(s)
- Michael J Chalmers
- The Scripps Research Molecular Screening Center, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | |
Collapse
|
12
|
Shaw BF, Arthanari H, Narovlyansky M, Durazo A, Frueh DP, Pollastri MP, Lee A, Bilgicer B, Gygi SP, Wagner G, Whitesides GM. Neutralizing positive charges at the surface of a protein lowers its rate of amide hydrogen exchange without altering its structure or increasing its thermostability. J Am Chem Soc 2010; 132:17411-25. [PMID: 21090618 DOI: 10.1021/ja9067035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper combines two techniques--mass spectrometry and protein charge ladders--to examine the relationship between the surface charge and hydrophobicity of a representative globular protein (bovine carbonic anhydrase II; BCA II) and its rate of amide hydrogen-deuterium (H/D) exchange. Mass spectrometric analysis indicated that the sequential acetylation of surface lysine-ε-NH3(+) groups--a type of modification that increases the net negative charge and hydrophobicity of the surface of BCA II without affecting its secondary or tertiary structure--resulted in a linear decrease in the aggregate rate of amide H/D exchange at pD 7.4, 15 °C. According to analysis with MS, the acetylation of each additional lysine generated between 1.4 and 0.9 additional hydrogens that are protected from H/D exchange during the 2 h exchange experiment at 15 °C, pD 7.4. NMR spectroscopy demonstrated that none of the hydrogen atoms which became protected upon acetylation were located on the side chain of the acetylated lysine residues (i.e., lys-ε-NHCOCH3) but were instead located on amide NHCO moieties in the backbone. The decrease in rate of exchange associated with acetylation paralleled a decrease in thermostability: the most slowly exchanging rungs of the charge ladder were the least thermostable (as measured by differential scanning calorimetry). This observation--that faster rates of exchange are associated with slower rates of denaturation--is contrary to the usual assumptions in protein chemistry. The fact that the rates of H/D exchange were similar for perbutyrated BCA II (e.g., [lys-ε-NHCO(CH2)2CH3]18) and peracetylated BCA II (e.g., [lys-ε-NHCOCH3]18) suggests that the electrostatic charge is more important than the hydrophobicity of surface groups in determining the rate of H/D exchange. These electrostatic effects on the kinetics of H/D exchange could complicate (or aid) the interpretation of experiments in which H/D exchange methods are used to probe the structural effects of non-isoelectric perturbations to proteins (i.e., phosphorylation, acetylation, or the binding of the protein to an oligonucleotide or to another charged ligand or protein).
Collapse
Affiliation(s)
- Bryan F Shaw
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chu YQ, Dai XH, Jiang D, Jiang GY, Fang X, Ding CF. Studies on the non-covalent interactions between cyclodextrins and aryl alkanol piperazine derivatives by mass spectrometry and fluorescence spectroscopy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2255-2261. [PMID: 20623479 DOI: 10.1002/rcm.4622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The non-covalent complexes of alpha- and beta-cyclodextrins (alpha-, beta-CDs) with two aryl alkanol piperazine derivatives (Pipe I and Pipe II) have been studied by electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectroscopy. The ESI-MS experimental results demonstrated that Pipe I can conjugate to beta-CD and form 1:1 or 1:2 stoichiometric non-covalent complexes, and Pipe II can only form 1:1 complexes with alpha- or beta-CD. Fluorescence spectra indicated that the fluorescence intensities of Pipe I and Pipe II can be enhanced by increasing the content of beta-CD. The mass spectrometric titration experiments showed that the dissociation constants K(d1) were 5.77 and 9.52 x 10(-4) mol L(-1) for the complexes of alpha-CD with Pipe I and Pipe II, respectively, revealing that the binding of alpha-CD-Pipe I was stronger than alpha-CD-Pipe II. The K(d1) and K(d2) values were 9.81 x 10(-4) mol L(-1) and 1.11 x 10(-7) (mol L(-1))(2) for 1:1 and 1:2 complexes of Pipe I with beta-CD, respectively. The K(d) values obtained from fluorescence spectroscopy were in agreement with those from ESI-MS titration.
Collapse
Affiliation(s)
- Yan-Qiu Chu
- Laser Chemistry Institute, Chemistry Department, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
14
|
Fabris D. A role for the MS analysis of nucleic acids in the post-genomics age. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1-13. [PMID: 19897384 DOI: 10.1016/j.jasms.2009.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
The advances of mass spectrometry in the analysis of nucleic acids have tracked very closely the exciting developments of instrumentation and ancillary technologies, which have taken place over the years. However, their diffusion in the broader life sciences community has been and will be linked to the ever evolving focus of biomedical research and its changing demands. Before the completion of the Human Genome Project, great emphasis was placed on sequencing technologies that could help accomplish this project of exceptional scale. After the publication of the human genome, the emphasis switched toward techniques dedicated to the exploration of sequences not coding for actual protein products, which amount to the vast majority of transcribed elements. The broad range of capabilities offered by mass spectrometry is rapidly advancing this platform to the forefront of the technologies employed for the structure-function investigation of these noncoding elements. Increasing focus on the characterization of functional assemblies and their specific interactions has prompted a re-evaluation of what has been traditionally construed as nucleic acid analysis by mass spectrometry. Inspired by the accelerating expansion of the broader field of nucleic acid research, new applications to fundamental biological studies and drug discovery will help redefine the evolving role of MS-analysis of nucleic acids in the post-genomics age.
Collapse
Affiliation(s)
- Daniele Fabris
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA.
| |
Collapse
|
15
|
Talib J, Beck JL, Urathamakul T, Nguyen CD, Aldrich-Wright JR, Mackay JP, Ralph SF. A mass spectrometric investigation of the ability of metal complexes to modulate transcription factor activity. Chem Commun (Camb) 2009:5546-8. [PMID: 19753352 DOI: 10.1039/b904751d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ESI mass spectrometry was used to assess the ability of metal complexes to inhibit binding of a transcription factor to a DNA molecule containing its recognition sequence.
Collapse
Affiliation(s)
- Jihan Talib
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu YH, Belcheva A, Konermann L, Golemi-Kotra D. Phosphorylation-Induced Activation of the Response Regulator VraR from Staphylococcus aureus: Insights from Hydrogen Exchange Mass Spectrometry. J Mol Biol 2009; 391:149-63. [DOI: 10.1016/j.jmb.2009.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
|
17
|
Fitzgerald MC, West GM. Painting proteins with covalent labels: what's in the picture? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1193-1206. [PMID: 19269190 DOI: 10.1016/j.jasms.2009.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
Knowledge about the structural and biophysical properties of proteins when they are free in solution and/or in complexes with other molecules is essential for understanding the biological processes that proteins regulate. Such knowledge is also important to drug discovery efforts, particularly those focused on the development of therapeutic agents with protein targets. In the last decade a variety of different covalent labeling techniques have been used in combination with mass spectrometry to probe the solution-phase structures and biophysical properties of proteins and protein-ligand complexes. Highlighted here are five different mass spectrometry-based covalent labeling strategies including: continuous hydrogen/deuterium (H/D) exchange labeling, hydroxyl radical-mediated footprinting, SUPREX (stability of unpurified proteins from rates of H/D exchange), PLIMSTEX (protein-ligand interaction by mass spectrometry, titration, and H/D exchange), and SPROX (stability of proteins from rates of oxidation). The basic experimental protocols used in each of the above-cited methods are summarized along with the kind of biophysical information they generate. Also discussed are the relative strengths and weaknesses of the different methods for probing the wide range of conformational states that proteins and protein-ligand complexes can adopt when they are in solution.
Collapse
Affiliation(s)
- Michael C Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA.
| | | |
Collapse
|