1
|
Bertolini S, Delcorte A. Molecular Dynamics Simulations of Soft and Reactive Landing of Proteins Desorbed by Argon Cluster Bombardment. J Phys Chem B 2024; 128:6716-6729. [PMID: 38975731 DOI: 10.1021/acs.jpcb.4c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Reactive molecular dynamics (MD) simulations were conducted to investigate the soft and reactive landing of hyperthermal velocity proteins transferred to a vacuum using large argon clusters. Experimentally, the interaction of argon cluster ion beams (Ar1000-5000+) with a target biofilm was previously used in such a manner to transfer lysozymes onto a collector with the retention of their bioactivity, paving the way to a new solvent-free method for complex biosurface nanofabrication. However, the experiments did not give access to a microscopic view of the interactions needed for their full understanding, which can be provided by the MD model. Our reactive force field simulations clarify the landing mechanisms of the lysozymes and their fragments on collectors with different natures (gold- and hydrogen-terminated graphite). The results highlight the conditions of soft and reactive landing on rigid surfaces, the effects of the protein structure, energy, and incidence angle before landing, and the adhesion forces with the collector substrate. Many of the obtained results can be generalized to other soft and reactive landing approaches used for biomolecules such as electrospray ionization and matrix-assisted laser desorption ionization.
Collapse
Affiliation(s)
- Samuel Bertolini
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Gladchuk AS, Gorbunov AY, Keltsieva OA, Ilyushonok SK, Babakov VN, Shilovskikh VV, Kolonitskii PD, Stepashkin NA, Soboleva A, Muradymov MZ, Krasnov NV, Sukhodolov NG, Selyutin AA, Frolov A, Podolskaya EP. Coating of a MALDI target with metal oxide nanoparticles by droplet-free electrospraying – a versatile tool for in situ enrichment of human globin adducts of halogen-containing drug metabolites. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Lin H, Yuan K, Deng C. Preparation of a TiO 2-NH 2 modified MALDI plate for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. Talanta 2017; 175:427-434. [PMID: 28842012 DOI: 10.1016/j.talanta.2017.07.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
In this work, a TiO2 film was prepared on a MALDI plate by atomic layer deposition (ALD) technique and then modified with -NH2. The obtained TiO2-NH2 modified plate was applied for on-plate simultaneous enrichment of phosphopeptides and glycopeptides. The ALD TiO2 film displayed quite uniform morphology, and attached firmly to the MALDI plate with rather stable physical and chemical properties, which resulted in fine stability of the plate in performance. The -NH2 groups offered the film better hydrophilicity and affinity toward glycopeptides. The on-plate simultaneous enrichment performance of the TiO2-NH2 modified plate was investigated by β-casein digests, HRP digests and human serum.
Collapse
Affiliation(s)
- Haizhu Lin
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kaiping Yuan
- State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Pompach P, Benada O, Rosůlek M, Darebná P, Hausner J, Růžička V, Volný M, Novák P. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing. Anal Chem 2016; 88:8526-34. [DOI: 10.1021/acs.analchem.6b01366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Petr Pompach
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, Charles University in Prague, CZ-128 00 Prague, Czech Republic
- AffiPro, s.r.o., CZ-250 63 Mratin, Czech Republic
| | - Oldřich Benada
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, J. E. Purkyně University in Ustí nad Labem, CZ-400 96 Ústí nad Labem, Czech Republic
| | - Michal Rosůlek
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, Charles University in Prague, CZ-128 00 Prague, Czech Republic
| | - Petra Darebná
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, Charles University in Prague, CZ-128 00 Prague, Czech Republic
| | - Jiří Hausner
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, Charles University in Prague, CZ-128 00 Prague, Czech Republic
| | | | - Michael Volný
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- AffiPro, s.r.o., CZ-250 63 Mratin, Czech Republic
| | - Petr Novák
- Institute
of Microbiology, v.v.i., Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
- Faculty
of Science, Charles University in Prague, CZ-128 00 Prague, Czech Republic
- AffiPro, s.r.o., CZ-250 63 Mratin, Czech Republic
| |
Collapse
|
5
|
|
6
|
Johnson GE, Gunaratne D, Laskin J. Soft- and reactive landing of ions onto surfaces: Concepts and applications. MASS SPECTROMETRY REVIEWS 2016; 35:439-479. [PMID: 25880894 DOI: 10.1002/mas.21451] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Soft- and reactive landing of mass-selected ions is gaining attention as a promising approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (<100 eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surface modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and reactive landing. Section 2 provides an overview of the ionization sources and mass filters that have been used to date for soft landing of mass-selected ions. A discussion of the competing processes that occur during ion deposition as well as the types of ions and surfaces that have been investigated follows in section 3. Section 4 discusses the physical phenomena that occur during and after ion soft landing, including retention and reduction of ionic charge along with factors that impact the efficiency of ion deposition. The influence of soft landing on the secondary structure and biological activity of complex ions is addressed in section 5. Lastly, an overview of the structure and mobility as well as the catalytic, optical, magnetic, and redox properties of bare ionic clusters and nanoparticles deposited onto surfaces is presented in section 6.
Collapse
Affiliation(s)
- Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA, 99352
| | - Don Gunaratne
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA, 99352
| | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA, 99352
| |
Collapse
|
7
|
Krásný L, Pompach P, Strnadová M, Hynek R, Vališ K, Havlíček V, Novák P, Volný M. High-throughput workflow for identification of phosphorylated peptides by LC-MALDI-TOF/TOF-MS coupled to in situ enrichment on MALDI plates functionalized by ion landing. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:802-811. [PMID: 26169134 DOI: 10.1002/jms.3586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
We report an MS-based workflow for identification of phosphorylated peptides from trypsinized protein mixtures and cell lysates that is suitable for high-throughput sample analysis. The workflow is based on an in situ enrichment on matrix-assisted laser desorption/ionization (MALDI) plates that were functionalized by TiO2 using automated ion landing apparatus that can operate unsupervised. The MALDI plate can be functionalized by TiO2 into any array of predefined geometry (here, 96 positions for samples and 24 for mass calibration standards) made compatible with a standard MALDI spotter and coupled with high-performance liquid chromatography. The in situ MALDI plate enrichment was compared with a standard precolumn-based separation and achieved comparable or better results than the standard method. The performance of this new workflow was demonstrated on a model mixture of proteins as well as on Jurkat cells lysates. The method showed improved signal-to-noise ratio in a single MS spectrum, which resulted in better identification by MS/MS and a subsequent database search. Using the workflow, we also found specific phosphorylations in Jurkat cells that were nonspecifically activated by phorbol 12-myristate 13-acetate. These phosphorylations concerned the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and its targets and were in agreement with the current knowledge of this signaling cascade. Control sample of non-activated cells was devoid of these phosphorylations. Overall, the presented analytical workflow is able to detect dynamic phosphorylation events in minimally processed mammalian cells while using only a short high-performance liquid chromatography gradient.
Collapse
Affiliation(s)
- Lukáš Krásný
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
- Institute of Chemical Technology, Technická 5, Prague, 16628, Czech Republic
| | - Petr Pompach
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 40, Czech Republic
| | - Marcela Strnadová
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
| | - Radovan Hynek
- Institute of Chemical Technology, Technická 5, Prague, 16628, Czech Republic
| | - Karel Vališ
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 40, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, 17.listopadu 12, Olomouc, 771 46, Czech Republic
| | - Petr Novák
- Institute of Microbiology ASCR, v.v.i., Vídeňská 1083, Prague, 142 20, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, Prague, 128 40, Czech Republic
| | - Michael Volný
- Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle, WA, 98105, USA
| |
Collapse
|
8
|
Yang C, Zhong X, Li L. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics. Electrophoresis 2014; 35:3418-29. [PMID: 24687451 PMCID: PMC4849134 DOI: 10.1002/elps.201400017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/29/2022]
Abstract
Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in the recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enable comprehensive profiling of the phosphoproteome and facilitate deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009-2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
9
|
Johnson GE, Gunaratne KDD, Laskin J. In situ SIMS and IR spectroscopy of well-defined surfaces prepared by soft landing of mass-selected ions. J Vis Exp 2014:51344. [PMID: 24961913 PMCID: PMC4195338 DOI: 10.3791/51344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3](2+) (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Collapse
Affiliation(s)
- Grant E Johnson
- Physical Sciences Division, Pacific Northwest National Laboratory
| | | | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory;
| |
Collapse
|
10
|
Novel nanomaterials used for sample preparation for protein analysis. Anal Bioanal Chem 2013; 406:35-47. [DOI: 10.1007/s00216-013-7392-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
|
11
|
Gopal J, Hasan N, Wu HF. Fabrication of titanium based MALDI bacterial chips for rapid, sensitive and direct analysis of pathogenic bacteria. Biosens Bioelectron 2013; 39:57-63. [DOI: 10.1016/j.bios.2012.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/07/2012] [Accepted: 06/19/2012] [Indexed: 11/29/2022]
|
12
|
Stolowitz ML. On-target and nanoparticle-facilitated selective enrichment of peptides and proteins for analysis by MALDI-MS. Proteomics 2012; 12:3438-50. [DOI: 10.1002/pmic.201200252] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 09/20/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Mark L. Stolowitz
- Canary Center at Stanford for Cancer Early Detection; Department of Radiology; Stanford University School of Medicine; Palo Alto CA USA
| |
Collapse
|
13
|
Krásný L, Pompach P, Strohalm M, Obsilova V, Strnadová M, Novák P, Volný M. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1294-302. [PMID: 23019160 DOI: 10.1002/jms.3081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We report substantial in-situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide-coated matrix assisted laser desorption-ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium-tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in-vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI-Fourier transform ion cyclotron resonance (FTICR) and MALDI-time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption-ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results.
Collapse
Affiliation(s)
- Lukáš Krásný
- Institute of Microbiology of the ASCR, vvi, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
14
|
Manikandan M, Hasan N, Wu HF. Rapid and direct detection of attomole adenosine triphosphate (ATP) by MALDI-MS using rutile titania chips. Analyst 2012; 137:5128-34. [PMID: 22993752 DOI: 10.1039/c2an35754b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the rutile titania-based capture of ATP and its application as a MALDI-MS target plate. This chip, when immersed in solutions containing different concentrations of ATP, can capture ATP and lead to its successful detection in MALDI-MS. We have optimized the ideal surface, showing an increased capture efficacy of the 900 °C (rutile) titania surfaces. We demonstrate the use of this chip as a target plate for direct analysis of the attached ATP using MALDI-MS, down to attomolar concentrations. This chip has a promising future for the detection of ATP in environmental samples, which may eventually be used as a pollution indicator in particular environments.
Collapse
Affiliation(s)
- Muthu Manikandan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | | | | |
Collapse
|
15
|
Cyriac J, Pradeep T, Kang H, Souda R, Cooks RG. Low-Energy Ionic Collisions at Molecular Solids. Chem Rev 2012; 112:5356-411. [DOI: 10.1021/cr200384k] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jobin Cyriac
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| | - T. Pradeep
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - H. Kang
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747,
Republic of Korea
| | - R. Souda
- International
Center for Materials
Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - R. G. Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| |
Collapse
|
16
|
Salim M, Fowler GJ, Wright PC, Vaidyanathan S. A selective metabolite array for the detection of phosphometabolites. Anal Chim Acta 2012; 724:119-26. [DOI: 10.1016/j.aca.2012.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/06/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
|
17
|
Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. MASS SPECTROMETRY REVIEWS 2011; 30:435-478. [PMID: 21254192 DOI: 10.1002/mas.20288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review the literature that describes how (matrix-assisted) laser desorption/ionization (MA)LDI target plates can be used not only as sample supports, but beyond that: as functional parts of analytical protocols that incorporate detection by MALDI-MS or matrix-free LDI-MS. Numerous steps of analytical procedures can be performed directly on the (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer. These include homogenization, preconcentration, amplification, purification, extraction, digestion, derivatization, synthesis, separation, detection with complementary techniques, data storage, or other steps. Therefore, we consider it helpful to define the "lab-on-a-plate" as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates. This review introduces the lab-on-plate approach and illustrates it with the aid of relevant examples from the scientific and patent literature.
Collapse
Affiliation(s)
- Pawel L Urban
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Kouvonen P, Rainio EM, Suni V, Koskinen P, Corthals GL. Enrichment and sequencing of phosphopeptides on indium tin oxide coated glass slides. MOLECULAR BIOSYSTEMS 2011; 7:1828-37. [PMID: 21523302 DOI: 10.1039/c0mb00269k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Unambiguous identification of phosphorylation sites is of premier importance to biologists, who seek to understand the role of phosphorylation from the perspective of site-specific control of biological phenomena. Despite this widely asked and highly specific information, many methods developed are aimed at analysis of complete proteomes, indeed even phospho-proteomes, surpassing the basic requests of many biologists. We have therefore further developed a simple method that specifically deals with the analysis of multiple phosphorylation sites on singular proteins or small collections of proteins. With this method, the whole purification process, from sample application to MALDI-MS analysis, can be performed on commercially available indium tin oxide (ITO) coated glass slides. We show that fifteen (15) samples can be purified within one hour, and that low femtomole sensitivity can be achieved. This limit of identification is demonstrated by the successful MS/MS-based identification of 6 fmol of monophosphopeptide from β-casein. We demonstrate that the method can be applied for identifying phosphorylation sites from recombinant and cell-derived biological protein samples. Since ITO-coated glass slides are inexpensive and available from several suppliers the method is readily and inexpensively available to other researchers. Taken together, the presented protocols and materials render this method as an extremely fast and sensitive phosphopeptide identification protocol that should aid biologists in discovery and validation of phosphorylation sites.
Collapse
Affiliation(s)
- Petri Kouvonen
- University of Turku, Centre for Biotechnology, Turku, Finland
| | | | | | | | | |
Collapse
|
19
|
Wang WH, Palumbo AM, Tan YJ, Reid GE, Tepe JJ, Bruening ML. Identification of p65-Associated Phosphoproteins by Mass Spectrometry after On-Plate Phosphopeptide Enrichment Using Polymer-oxotitanium Films. J Proteome Res 2010; 9:3005-15. [DOI: 10.1021/pr901200m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wei-Han Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Amanda M. Palumbo
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yu-Jing Tan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
20
|
Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC–ESI-MS/MS. Anal Bioanal Chem 2010; 396:2965-75. [DOI: 10.1007/s00216-010-3527-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 01/11/2023]
|
21
|
|