1
|
Wu D, Tang Z, Dong L, Li G, Li D, Wang L, Shi T, Rahman MM, Zhang X. Enhanced ultrasonic spray ionization for direct mass spectrometry analysis of aqueous solution and complex samples using a single-orifice piezoelectric atomizer. Talanta 2023; 255:124237. [PMID: 36587426 DOI: 10.1016/j.talanta.2022.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
An efficient and superior soft ionization approach for direct mass spectrometry analysis of a variety of samples such as aqueous solution, raw biological sample and proteins, was developed based on commercially available piezoelectric atomizers. A single conical orifice (5 μm in diameter) was created on the atomizer, which resulted in generation of uniform fine droplets and long-duration of MS signal. The two electrodes of piezoelectric atomizer were connected to the two sides of ceramic ring which was insulated from the metallic substrate. The unique design allowed an additional high voltage input towards the spray reagents, which facilitated direct analysis of more complex samples without sample pre-treatment, such as biological samples (tomato tissue). The ionization was driven by an extremely low electrical power (3.5 V rechargeable battery) yet providing an efficient and superior soft ionization. The method displayed a better thermal and pH stability than nano electrospray ionization (nanoESI) and electrospray ionization (ESI) on direct analysis of Vitamin B and protein aqueous solutions. Quantitative analysis of Vitamin B and Rhodamine B aqueous solutions was also investigated, showing a good linearity (R2 > 0.99). In addition, our results suggested that compared with ESI and nanoESI, the method not only could be used for direct analysis of intact protein, but also provide more information concerning the association between intact protein and the subunits.
Collapse
Affiliation(s)
- Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Ziyang Tang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Lulu Dong
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Guolin Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Dian Li
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Li Wang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China.
| | - Tong Shi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Md Matiur Rahman
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Guanglan Avenue 418, 330013, Nanchang, PR China
| |
Collapse
|
2
|
Ranganathan N, Lozier AM, Rawson MC, Johnson MB, Li P. Direct analysis of surface chemicals using vibrating sharp-edge spray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8902. [PMID: 32692897 PMCID: PMC7811172 DOI: 10.1002/rcm.8902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
RATIONALE Direct analysis of chemicals on a surface using mass spectrometry (MS) is of great importance in forensics, food and drug safety, environmental monitoring, and defense. Solvent extraction-based surface analysis offers a convenient way of controlling the desorption conditions and applying internal standards. To date, it mainly relies on a separate electrospray process to nebulize and ionize the solvents. Here, we report a simple and stand-alone ionization system for the solvent extraction-based surface analysis without the need for high voltage, based on vibrating sharp-edge spray ionization (VSSI). METHODS We modified the original VSSI device and developed a stand-alone, integrated surface sampling, and ionization system for MS analysis. By incorporating a micropipette-based solvent dispenser with the VSSI device, the new system performs solvent extraction and ionization, and still maintains a small footprint. RESULTS We demonstrated a four order-of-magnitude linear response for glucose spotted on a glass surface with a limit of detection (LOD) of 0.1 pg/mm2 . We further characterized the performance of this method with a series of compounds and demonstrated a similar LOD to literature values obtained by desorption electrospray ionization. Finally, we applied this method to quantitatively measure the concentration of a pesticide ametryn on spinach surfaces. We demonstrated good linearity (R2 = 0.99) for ametryn with surface densities in the range of 8-800 pg/mm2 and an LOD of 9 pg/mm2 . CONCLUSIONS We have demonstrated a simple, effective, direct ambient-ionization method that is highly sensitive to molecules on a wide range of surfaces. The flexibility, small footprint, low cost, and voltage-free nature of this method make it an attractive technique for direct surface sample analysis using MS.
Collapse
Affiliation(s)
- Nandhini Ranganathan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Austin M. Lozier
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Michael C. Rawson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
- Correspondence should be addressed to P.L. ()
| |
Collapse
|
3
|
Lee JY, Kottke PA, Fedorov AG. Electrohydrodynamics of Gas-Assisted Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2073-2085. [PMID: 32869991 DOI: 10.1021/jasms.0c00197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gas-flow assistance is commonly used in ESI-MS for improved transport and desolvation, and fundamental understanding of the underlying phenomena is essential for improvement of aerodynamic interfaces that couple ESI sources and MS. For this purpose, an electrohydrodynamic model is developed for simulation of charged droplet dynamics under the combined effects of gas flow and electric fields with consideration of space charge interactions within the charged aerosol plume. The model is implemented in COMSOL by exploiting a formalism for establishing the droplet trajectories as a sequence of successive droplets ejected at a frequency defined by the electrospray current. The model is used to assess the effect of two distinct flow configurations and compared to the baseline care of electrospray without assist gas. The simulated flows are jet flows oriented coaxially with the ESI spray, with and without imposed vorticity (swirling). Droplet trajectory simulations of a bimodal droplet population consisting of large primary droplets and small progeny droplets reveal a unique capability for vortical assist jet flow to selectively transmit smaller droplets into the MS due to inertial separation. ESI-MS analysis of fluorinated phosphazines subjected to the different gas flow conditions supports the model predictions. The electrohydrodynamic model developed in this work provides a versatile tool to analyze and design aerodynamic ESI interfaces with rigorous incorporation of drag, inertia, and space-charge repulsion and can be used as a powerful simulation methodology for optimizing charged droplet transmission and ultimately improved analytical performance of gas-assisted ESI-MS workflows.
Collapse
Affiliation(s)
- Jung Y Lee
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Peter A Kottke
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrei G Fedorov
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Li C, Attanayake K, Valentine SJ, Li P. Facile Improvement of Negative Ion Mode Electrospray Ionization Using Capillary Vibrating Sharp-Edge Spray Ionization. Anal Chem 2020; 92:2492-2502. [PMID: 31940176 PMCID: PMC7318871 DOI: 10.1021/acs.analchem.9b03983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospray ionization (ESI) is often affected by corona discharge when spraying 100% aqueous solutions as the voltage that induces discharge can be well below the onset voltage of ESI. As a result, it is especially challenging to perform native mass spectrometry in negative ion mode where 100% aqueous solution is preferred. Here we report a simple instrumentation method to improve the performance of ESI in negative ion mode based on capillary vibrating sharp-edge spray ionization. By attaching a fused silica capillary emitter to a vibrating glass slide, improved signal quality is achieved for various analytes in aqueous solutions over applying ESI alone. Compared to commercial ESI sources using nebulization gas to reduce discharge, 10-100-fold enhancement in signal intensity and 3-10-fold improvement in S/N are achieved for various kinds of molecules including DNA, peptides, proteins, and oligosaccharides. Finally, the new method demonstrates utility for native mass spectrometry analysis of proteins and G-quadruplex DNA. The present method is expected to have great potential to be adopted by the scientific community because of its improved analytical performance, simplicity, and low cost.
Collapse
Affiliation(s)
- Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Ranganathan N, Li C, Suder T, Karanji AK, Li X, He Z, Valentine SJ, Li P. Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI) for Voltage-Free Liquid Chromatography-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:824-831. [PMID: 30793264 PMCID: PMC6560627 DOI: 10.1007/s13361-019-02147-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 05/11/2023]
Abstract
Here, we report a continuous flow-based ionization method, capillary vibrating sharp-edge spray ionization (cVSSI), that nebulizes liquid sample directly at the outlet of a capillary without using high-speed nebulization gas or a high electrical field. cVSSI is built upon the recently reported VSSI principle which nebulizes bulk liquid using vibrating sharp-edges. By attaching a short piece of fused silica capillary on top of the vibrating glass slide in VSSI, liquid is nebulized at the outlet of the capillary as the result of the vibration. Utilizing standard 360-μm OD/100-μm ID capillary, cVSSI works with a wide range of flow rates from 1 μL/min to 1 mL/min. The power consumption is as low as 130 mW. ESI-like MS spectra are obtained for small molecules, peptides, and proteins. Five orders of magnitude linear response for acetaminophen solution is achieved with a limit of detection (LOD) of 3 nM. cVSSI is also demonstrated to be compatible with LC-MS analysis. Two LC-MS applications are demonstrated with cVSSI: (1) separation and detection of a mixture of small molecules and (2) bottom-up proteomics using a protein digest. A mixture of nine common metabolites was appropriately separated and detected using LC-cVSSI-MS. In the bottom-up experiment, 78 peptides were detected using LC-cVSSI-MS/MS with a protein coverage of 100% for cytochrome c, which is comparable with the coverage obtained using LC-ESI-MS. cVSSI offers a means of interfacing LC or other continuous flow-based applications to mass spectrometers with the salient features of voltage-free, flexibility, small footprint, and low power consumption.
Collapse
Affiliation(s)
- Nandhini Ranganathan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Ahmad K Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
6
|
Forbes TP, Brewer TM, Gillen G. Desorption electro-flow focusing ionization of explosives and narcotics for ambient pressure mass spectrometry. Analyst 2013; 138:5665-73. [DOI: 10.1039/c3an01164j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Forbes TP, Degertekin FL, Fedorov AG. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2011; 23:12104. [PMID: 21301636 PMCID: PMC3033869 DOI: 10.1063/1.3541818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Collapse
|
8
|
Forbes TP, Degertekin FL, Fedorov AG. Regime transition in electromechanical fluid atomization and implications to analyte ionization for mass spectrometric analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1900-1905. [PMID: 20729096 PMCID: PMC4451205 DOI: 10.1016/j.jasms.2010.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
The physical processes governing the transition from purely mechanical ejection to electromechanical ejection to electrospraying are investigated through complementary scaling analysis and optical visualization. Experimental characterization and visualization are performed with the ultrasonically-driven array of micromachined ultrasonic electrospray (AMUSE) ion source to decouple the electrical and mechanical fields. A new dimensionless parameter, the Fenn number, is introduced to define a transition between the spray regimes, in terms of its dependence on the characteristic Strouhal number for the ejection process. A fundamental relationship between the Fenn and Strouhal numbers is theoretically derived and confirmed experimentally in spraying liquid electrolytes of different ionic strength subjected to a varying magnitude electric field. This relationship and the basic understanding of the charged droplet generation physics have direct implications on the optimal ionization efficiency and mass spectrometric response for different types of analytes.
Collapse
Affiliation(s)
- Thomas P Forbes
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
9
|
Forbes TP, Degertekin FL, Fedorov AG. Electrochemical Ionization and Analyte Charging in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source. J Electroanal Chem (Lausanne) 2010; 645:167-173. [PMID: 20607111 DOI: 10.1016/j.jelechem.2010.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions.
Collapse
Affiliation(s)
- Thomas P Forbes
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | | |
Collapse
|
10
|
Forbes TP, Degertekin FL, Fedorov AG. Electrohydrodynamics of charge separation in droplet-based ion sources with time-varying electrical and mechanical actuation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:501-510. [PMID: 20149681 PMCID: PMC2847640 DOI: 10.1016/j.jasms.2009.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/28/2009] [Accepted: 12/31/2009] [Indexed: 05/27/2023]
Abstract
Charge transport and separation in mechanically-driven, droplet-based ion sources are investigated using computational analysis and supporting experiments. A first-principles model of electrohydrodynamics (EHD) and charge migration is formulated and implemented using FLUENT CFD software for jet/droplet formation. For validation, classical experiments of electrospraying from a thin capillary are simulated, specifically, the transient EHD cone-jet formation of a fluid with finite electrical conductivity, and the Taylor cone formation in a perfectly electrically-conducting fluid. The model is also used to investigate the microscopic physics of droplet charging in mechanically-driven droplet-based ion sources, such as array of micromachined ultrasonic electrospray (AMUSE). Here, AMUSE is subject to DC and AC electric fields of varying amplitude and phase, with respect to a time-varying mechanical force driving the droplet formation. For the DC-charging case, a linear relationship is demonstrated between the charge carried by each droplet and an applied electric field magnitude, in agreement with previously reported experiments. For the AC-charging case, a judiciously-chosen phase-shift in the time-varying mechanical (driving ejection) and electrical (driving charge transport) signals allows for a significantly increased amount of charge, of desired polarity, to be pumped into a droplet upon ejection. Complementary experimental measurements of electrospray electrical current and charge-per-droplet, produced by the AMUSE ion source, are performed and support theoretical predictions for both DC- and AC-charging cases. The theoretical model and simulation tools provide a versatile and general analytical framework for fundamental investigations of coupled electrohydrodynamics and charge transport. The model also allows for the exploration of different configurations and operating modes to optimize charge separation in atmospheric pressure electrohydrodynamic ion sources under static and dynamic electrical and mechanical fields.
Collapse
Affiliation(s)
- Thomas P. Forbes
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - F. Levent Degertekin
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Andrei G. Fedorov
- G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|