1
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
2
|
Ribaudo G, Ongaro A, Oselladore E, Memo M, Gianoncelli A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J Med Chem 2021; 64:13174-13190. [PMID: 34510895 PMCID: PMC8474113 DOI: 10.1021/acs.jmedchem.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Guanine-rich sequences
forming G-quadruplexes (GQs) are present
in several genomes, ranging from viral to human. Given their peculiar
localization, the induction of GQ formation or GQ stabilization with
small molecules represents a strategy for interfering with crucial
biological functions. Investigating the recognition event at the molecular
level, with the aim of fully understanding the triggered pharmacological
effects, is challenging. Native electrospray ionization mass spectrometry
(ESI-MS) is being optimized to study these noncovalent assemblies.
Quantitative parameters retrieved from ESI-MS studies, such as binding
affinity, the equilibrium binding constant, and sequence selectivity,
will be overviewed. Computational experiments supporting the ESI-MS
investigation and boosting its efficiency in the search for GQ ligands
will also be discussed with practical examples. The combination of
ESI-MS and in silico techniques in a hybrid high-throughput-screening
workflow represents a valuable tool for the medicinal chemist, providing
data on the quantitative and structural aspects of ligand–GQ
interactions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
3
|
Mishra SK, Tawani A, Mishra A, Kumar A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci Rep 2016; 6:38144. [PMID: 27905517 PMCID: PMC5131279 DOI: 10.1038/srep38144] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/04/2016] [Indexed: 02/01/2023] Open
Abstract
Nucleic acid G-quadruplex structure (G4) Interacting Proteins DataBase (G4IPDB) is an important database that contains detailed information about proteins interacting with nucleic acids that forms G-quadruplex structures. G4IPDB is the first database that provides comprehensive information about this interaction at a single platform. This database contains more than 200 entries with details of interaction such as interacting protein name and their synonyms, their UniProt-ID, source organism, target name and its sequences, ∆Tm, binding/dissociation constants, protein gene name, protein FASTA sequence, interacting residue in protein, related PDB entries, interaction ID, graphical view, PMID, author's name and techniques that were used to detect their interactions. G4IPDB also provides an efficient web-based "G-quadruplex predictor tool" that searches putative G-quadruplex forming sequences simultaneously in both sense and anti-sense strands of the query nucleotide sequence and provides the predicted G score. Studying the interaction between proteins and nucleic acids forming G-quadruplex structures could be of therapeutic significance for various diseases including cancer and neurological disease, therefore, having detail information about their interactions on a single platform would be helpful for the discovery and development of novel therapeutics. G4IPDB can be routinely updated (twice in year) and freely available on http://bsbe.iiti.ac.in/bsbe/ipdb/index.php.
Collapse
Affiliation(s)
- Subodh Kumar Mishra
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Arpita Tawani
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342011, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
4
|
DNA and RNA quadruplex-binding proteins. Int J Mol Sci 2014; 15:17493-517. [PMID: 25268620 PMCID: PMC4227175 DOI: 10.3390/ijms151017493] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023] Open
Abstract
Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc.), the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGG)n, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2) and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.
Collapse
|
5
|
Sun H, Xiang J, Shi Y, Yang Q, Guan A, Li Q, Yu L, Shang Q, Zhang H, Tang Y, Xu G. A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim Biophys Acta Gen Subj 2014; 1840:3052-7. [PMID: 25086254 DOI: 10.1016/j.bbagen.2014.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND A new G-quadruplex structure located in the B-cell CLL/lymphoma 2 (Bcl-2) P1 promoter and its physiological function related to Bcl-2 transcription have been studied to find a potential anticancer therapeutic target. METHODS Absorption, polyacrylamide gel electrophoresis, fluorescence, circular dichroism, and nuclear magnetic resonance spectra have been employed to determine G-quadruplex structure and the interaction between G-quadruplex and phenanthrolin-dicarboxylate. Real time polymerase chain reaction and luciferase assay were done to assess the physiological function of the G-quadruplex structure. RESULTS The UV-melting and polyacrylamide gel electrophoresis studies show that the p32 DNA sequence forms an intramolecular G-quadruplex structure. Circular dichroism and nuclear magnetic resonance spectra indicate that the G-quadruplex is a hybrid-type structure with four G-tetrads. Fluorescence spectra show that a phenanthroline derivative has a higher binding affinity for p32 G-quadruplex than duplex. Further circular dichroism and nuclear magnetic resonance studies indicate that the phenanthroline derivative can regulate p32 G-quadruplex conformation. Real time polymerase chain reaction and luciferase assays show that the phenanthroline derivative has down-modulated Bcl-2 transcription activity in a concentration-dependent manner. However, no such effect was observed when p32 G-quadruplex was denatured through base mutation. CONCLUSION The newly identified G-quadruplex located in the P1 promoter of Bcl-2 oncogene is intimately related with Bcl-2 transcription activity, which may be a promising anticancer therapeutic target. GENERAL SIGNIFICANCE The newly identified G-quadruplex in the Bcl-2 P1 promoter may be a novel anticancer therapeutic target.
Collapse
Affiliation(s)
- Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yunhua Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, PR China
| | - Qianfan Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Aijiao Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lijia Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, PR China
| | - Qian Shang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guangzhi Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
6
|
Timmer CM, Michmerhuizen NL, Witte AB, Van Winkle M, Zhou D, Sinniah K. An Isothermal Titration and Differential Scanning Calorimetry Study of the G-Quadruplex DNA–Insulin Interaction. J Phys Chem B 2014; 118:1784-90. [DOI: 10.1021/jp411293r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Christine M. Timmer
- Department
of Chemistry and Biochemistry, Calvin College, 3201 Burton Street Southeast, Grand Rapids, Michigan 49546, United States
| | - Nicole L. Michmerhuizen
- Department
of Chemistry and Biochemistry, Calvin College, 3201 Burton Street Southeast, Grand Rapids, Michigan 49546, United States
| | - Amanda B. Witte
- Department
of Chemistry and Biochemistry, Calvin College, 3201 Burton Street Southeast, Grand Rapids, Michigan 49546, United States
| | - Margaret Van Winkle
- Department
of Chemistry and Biochemistry, Calvin College, 3201 Burton Street Southeast, Grand Rapids, Michigan 49546, United States
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Kumar Sinniah
- Department
of Chemistry and Biochemistry, Calvin College, 3201 Burton Street Southeast, Grand Rapids, Michigan 49546, United States
| |
Collapse
|
7
|
Yoshida W, Saito T, Yokoyama T, Ferri S, Ikebukuro K. Aptamer selection based on G4-forming promoter region. PLoS One 2013; 8:e65497. [PMID: 23750264 PMCID: PMC3672139 DOI: 10.1371/journal.pone.0065497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (Kd) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Tomomi Yokoyama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Koganei, Tokyo, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Yuan G, Zhang Q, Zhou J, Li H. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. MASS SPECTROMETRY REVIEWS 2011; 30:1121-1142. [PMID: 21520218 DOI: 10.1002/mas.20315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 05/30/2023]
Abstract
G-quadruplexes are special secondary structures formed from G-rich sequences of DNA, and have proven to play important roles in a number of biological systems, including the regulation of gene transcription and translation. The highly distinctive nature of G-quadruplex structures and their functions suggest that G-quadruplexes can act as novel targets for drug development. As a highly sensitive analytical tool, mass spectrometry has been widely used for the analysis of G-quadruplex structures. Electrospray-ionization mass spectrometry, in particular, has found captivating applications to probe interactions between small molecules and G-quadruplex DNA. In this review, we will discuss: (1) mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; (2) stabilization and collision-dissociation behavior of G-quadruplex DNA; (3) the exploration of the equilibrium transfer between a G-quadruplex and duplex DNA; and (4) the ESI-MS analysis of the conversion of intramolecular and intermolecular G-quadruplexes. Finally, we will also introduce the application of new techniques in the analysis of G-quadruplex conformation, such as ion-mobility and infrared multiphoton-dissociation mass spectrometry. We believe that, with the new technical developments, mass spectrometry will play an unparalleled role in the analysis of the G-quadruplex structures.
Collapse
Affiliation(s)
- Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
9
|
Sissi C, Gatto B, Palumbo M. The evolving world of protein-G-quadruplex recognition: a medicinal chemist's perspective. Biochimie 2011; 93:1219-30. [PMID: 21549174 PMCID: PMC7126356 DOI: 10.1016/j.biochi.2011.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/20/2011] [Indexed: 01/02/2023]
Abstract
The physiological and pharmacological role of nucleic acids structures folded into the non canonical G-quadruplex conformation have recently emerged. Their activities are targeted at vital cellular processes including telomere maintenance, regulation of transcription and processing of the pre-messenger or telomeric RNA. In addition, severe conditions like cancer, fragile X syndrome, Bloom syndrome, Werner syndrome and Fanconi anemia J are related to genomic defects that involve G-quadruplex forming sequences. In this connection G-quadruplex recognition and processing by nucleic acid directed proteins and enzymes represents a key event to activate or deactivate physiological or pathological pathways. In this review we examine protein-G-quadruplex recognition in physiologically significant conditions and discuss how to possibly exploit the interactions' selectivity for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, Padua, Italy
| | | | | |
Collapse
|
10
|
Paritala H, Firestine SM. Characterization of insulin ILPR sequences for their ability to adopt a G-quadruplex structure. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:81-90. [PMID: 20391195 DOI: 10.1080/15257771003597691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A major genetic factor linked to the progression of type 1 diabetes occurs in the insulin-linked polymorphic repeat region (ILPR) located 363 bp upstream of the human insulin gene. Genetic studies have shown that individuals with class I repeats (30-60) are predisposed to the development of type 1 diabetes while individuals with longer repeats are protected. Previous research has suggested that some sequences found within the ILPR can adopt a G-quadruplex structure, and this finding has lead to speculation that G-quadruplexes may control insulin expression in certain circumstances. Unfortunately, relatively little study has been done on whether sequences found in the ILPR can adopt a quadruplex fold. In this study, we have utilized circular dichroism, thermal difference spectroscopy and ultraviolet (UV) melting studies to examine the first seven common repeat sequences (A-G) found in the ILPR. We find that sequences A-E adopt a quadruplex fold while sequences F and G likely do not. Examination of sequence B and a single nucleotide variant, B2, revealed that both folded into a G-quadruplex. This result casts doubt on previous studies suggesting that the formation of a quadruplex was related to the ability of ILPR sequences to regulate transcription.
Collapse
Affiliation(s)
- Hanumantharao Paritala
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
11
|
Abstract
Alternate DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by sequences that are widely distributed throughout the human genome. G-quadruplex secondary structures, formed by the stacking of planar quartets composed of four guanines that interact by Hoogsteen hydrogen bonding, can affect cellular DNA replication and transcription, and influence genomic stability. The unique metabolism of G-rich chromosomal regions that potentially form quadruplexes may influence a number of biological processes including immunoglobulin gene rearrangements, promoter activation and telomere maintenance. A number of human diseases are characterized by telomere defects, and it is proposed that G-quadruplex structures which form at telomere ends play an important role in telomere stability. Evidence from cellular studies and model organisms suggests that diseases with known defects in G4 DNA helicases are likely to be perturbed in telomere maintenance and cellular DNA replication. In this minireview, we discuss the connections of G-quadruplex nucleic acids to human genetic diseases and cancer based on the recent literature.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | | |
Collapse
|
12
|
Wang Y, Zhang H, Ligon LA, McGown LB. Association of insulin-like growth factor 2 with the insulin-linked polymorphic region in cultured fetal thymus cells. Biochemistry 2009; 48:8189-94. [PMID: 19588890 DOI: 10.1021/bi900958x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The insulin-linked polymorphic region (ILPR) is a regulatory sequence in the promoter region upstream of the human insulin gene and is widely recognized as a locus of type 1 diabetes susceptibility. Polymorphism of the ILPR sequence can affect expression of both insulin and the adjacent insulin-like growth factor 2 (IGF-2) gene. Several ILPR variants form G-quadruplex DNA structures in vitro that exhibit affinity binding to insulin and IGF-2. It has been suggested that the ILPR may form G-quadruplexes in vivo as well, raising the possibility that insulin and IGF-2 may bind to these structures in the ILPR in chromatin of live cells. This work establishes the presence of IGF-2 in the nucleus of cells cultured from human fetal thymus and its association with the ILPR in the chromatin of these cells. In vitro experiments support the involvement of G-quadruplex DNA in the binding interaction.
Collapse
Affiliation(s)
- Yuexi Wang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | |
Collapse
|