1
|
Bortel P, Piga I, Koenig C, Gerner C, Martinez-Val A, Olsen JV. Systematic Optimization of Automated Phosphopeptide Enrichment for High-Sensitivity Phosphoproteomics. Mol Cell Proteomics 2024; 23:100754. [PMID: 38548019 PMCID: PMC11087715 DOI: 10.1016/j.mcpro.2024.100754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 μg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).
Collapse
Affiliation(s)
- Patricia Bortel
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Ilaria Piga
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Claire Koenig
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria; Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ana Martinez-Val
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper V Olsen
- Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Marzban G, Sulaj E. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry. Methods Mol Biol 2024; 2787:293-303. [PMID: 38656498 DOI: 10.1007/978-1-0716-3778-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phosphopeptide enrichment is the main bottleneck of every phosphorylation study. Therefore, in this chapter, a general workflow tries to overbridge the hurdles of plant sample handling from sample collection to protein extraction, protein solubilization, enzymatic digestion, and enrichment step prior to mass spectrometry. The workflow provides information to perform global proteomics as well as phosphoproteomics enabling the researcher to use the protocol in both fields.
Collapse
Affiliation(s)
- Gorji Marzban
- Institute for Bioprocess Science and Engineering (IBSE), Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Eldi Sulaj
- Institute of Animal Cell Technology and Systems Biology (IACTSB), Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
3
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
He M, Wang J, Herold S, Xi L, Schulze WX. A Rapid and Universal Workflow for Label-Free-Quantitation-Based Proteomic and Phosphoproteomic Studies in Cereals. Curr Protoc 2022; 2:e425. [PMID: 35674286 DOI: 10.1002/cpz1.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Proteomics and phosphoproteomics are robust tools to analyze dynamics of post-transcriptional processes during growth and development. A variety of experimental methods and workflows have been published, but most of them were developed for model plants and have not been adapted to high-throughput platforms. Here, we describe an experimental workflow for proteome and phosphoproteome studies tailored to cereal crop tissues. The workflow consists of two parallel parts that are suitable for analyzing protein/phosphoprotein from total proteins and the microsomal membrane fraction. We present phosphoproteomic data regarding quantification coverage and analytical reproducibility for example preparations from maize root and shoot, wheat leaf, and a microsomal protein preparation from maize leaf. To enable users to adjust for tissue specific requirements, we provide two different methods of protein clean-up: traditional ethanol precipitation (PC) and a recently developed technology termed single-pot, solid-phase-enhanced sample preparation (SP3). Both the PC and SP3 methods are effective in the removal of unwanted substances in total protein crude extracts. In addition, two different methods of phosphopeptide enrichment are presented: a TiO2 -based method and Fe(III)-NTA cartridges on a robotized platform. Although the overall number of phosphopeptides is stable across protein clean-up and phosphopeptide enrichment methods, there are differences in the preferred phosphopeptides in each enrichment method. The preferred protocol depends on laboratory capabilities and research objective. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Total protein crude extraction Basic Protocol 2: Total protein clean-up with ethanol precipitation Alternate Protocol 1: Total protein clean-up with SP3 method Basic Protocol 3: Microsomal fraction protein extraction Basic Protocol 4: Protein concentration determination by Bradford assay Basic Protocol 5: In-solution digestion with trypsin Basic Protocol 6: Phosphopeptide enrichment with TiO2 Alternate Protocol 2: Phosphopeptide enrichment with Fe(III)-NTA cartridges Basic Protocol 7: Peptide desalting with C18 material Basic Protocol 8: LC-MS/MS analysis of (phospho)peptides and spectrum matching.
Collapse
Affiliation(s)
- Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Jiahui Wang
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Sandra Herold
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Dziomba S, Pawelec A, Ciura K, Dolegowska M, Klimowska A, Rodzaj W, Guerrouache M, Carbonnier B, Wielgomas B. Low-cost and green dispersive solid phase extraction of hydrophilic compounds using titanium dioxide nanoparticles. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Thawornpan P, Thanapongpichat S, Tun AW, Phongdara A, de Jong L, Buncherd H. Fly-ash as a low-cost material for isolation of phosphoproteins. CHEMOSPHERE 2018; 213:124-132. [PMID: 30216812 DOI: 10.1016/j.chemosphere.2018.08.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Metal oxide affinity chromatography (MOAC) is one of the most commonly used techniques for selective isolation phosphoproteins and phosphopeptides. This technique is capable of capturing the phosphorylated biomolecules through the affinity of the phosphoryl group for metal oxides/hydroxides. Fly-ash (FA), a by-product of coal-combustion power plants, is primarily composed of oxides of silicon and metals, among which iron and titanium. A number of studies have demonstrated the potential of these metal oxides for phosphoprotein and phosphopeptide enrichment. FA is annually produced over hundred million tons worldwide and generally considered as hazardous waste. It is thus of great importance to enhance its utilization. Here we present the first demonstration of the utility of FA as a low-cost MOAC material for the enrichment of phosphoproteins. With an FA-microcolumn, phosphoproteins can be successfully sequestered from other proteins. FA-microcolumns are shown to be simple, cheap and selective devices for phosphoprotein enrichment from a small volume of mixtures.
Collapse
Affiliation(s)
- Pongsakorn Thawornpan
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | - Aung Win Tun
- Faculty of Graduate Studies, Mahidol University, Thailand
| | - Amornrat Phongdara
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand; Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Luitzen de Jong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, the Netherlands
| | - Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
7
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
8
|
Zhong G, James MO, Smeltz MG, Jahn SC, Langaee T, Simpson P, Stacpoole PW. Age-Related Changes in Expression and Activity of Human Hepatic Mitochondrial Glutathione Transferase Zeta1. Drug Metab Dispos 2018; 46:1118-1128. [PMID: 29853471 DOI: 10.1124/dmd.118.081810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Glutathione transferase zeta1 (GSTZ1) catalyzes glutathione (GSH)-dependent dechlorination of dichloroacetate (DCA), an investigational drug with therapeutic potential in metabolic disorders and cancer. GSTZ1 is expressed in both hepatic cytosol and mitochondria. Here, we examined the ontogeny and characterized the properties of human mitochondrial GSTZ1. GSTZ1 expression and activity with DCA were determined in 103 human hepatic mitochondrial samples prepared from livers of donors aged 1 day to 84 years. DNA from each sample was genotyped for three common GSTZ1 functional single nucleotide polymorphisms. Expression of mitochondrial GSTZ1 protein increased in an age-dependent manner to a plateau after age 21 years. Activity with DCA correlated with expression, after taking into account the somewhat higher activity of samples that were homo- or heterozygous for GSTZ1A. In samples from livers with the GSTZ1C variant, apparent enzyme kinetic constants for DCA and GSH were similar for mitochondria and cytosol after correcting for the loss of GSH observed in mitochondrial incubations. In the presence of 38 mM chloride, mitochondrial GSTZ1 exhibited shorter half-lives of inactivation compared with the cytosolic enzyme (P = 0.017). GSTZ1 protein isolated from mitochondria was shown by mass spectrometry to be identical to cytosolic GSTZ1 protein in the covered primary protein sequence. In summary, we report age-related development in the expression and activity of human hepatic mitochondrial GSTZ1 does not have the same pattern as that reported for cytosolic GSTZ1. Some properties of cytosolic and mitochondrial GSTZ1 differed, but these were not related to differences in amino acid sequence or post-translationally modified residues.
Collapse
Affiliation(s)
- Guo Zhong
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Margaret O James
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Marci G Smeltz
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Stephan C Jahn
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Taimour Langaee
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Pippa Simpson
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| | - Peter W Stacpoole
- Department of Medicinal Chemistry (G.Z., M.O.J., M.G.S., S.C.J.), Department of Pharmacotherapy and Translational Research (T.L.), Center for Pharmacogenomics (T.L.), and Departments of Medicine and Biochemistry and Molecular Biology (P.W.S.), University of Florida, Gainesville, Florida; and Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin (P.S.)
| |
Collapse
|
9
|
Kurylo I, Hamdi A, Addad A, Boukherroub R, Coffinier Y. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection. NANOMATERIALS 2017; 7:nano7090272. [PMID: 28914806 PMCID: PMC5618383 DOI: 10.3390/nano7090272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/04/2017] [Accepted: 09/09/2017] [Indexed: 01/15/2023]
Abstract
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum.
Collapse
Affiliation(s)
- Ievgen Kurylo
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Abderrahmane Hamdi
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
- Laboratory of Semi-Conductors, Nano-Structures and Advanced Technologies, Research and Technology Centre of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia.
- Faculty of Science of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia.
| | - Ahmed Addad
- Unité Matériaux et Transformations (UMET), UMR CNRS 8207, Université Lille1, Cité Scientifique, 59655 Villeneuve d'Ascq, France.
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| | - Yannick Coffinier
- University Lille, CNRS, Centrale Lille, ISEN, University Valenciennes, IEMN, UMR CNRS 8520, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
10
|
Abstract
Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates. The in vitro activity of BnSnRK2.4-1C requires the presence of manganese (Mn2+). Phosphorylation sites of autophosphorylated BnSnRK2.4-1C were mapped, including serine and threonine residues in the activation loop. In vitro BnSnRK2.4-1C autophosphorylation activity was inhibited by oxidants such as H2O2 and recovered by active thioredoxin isoforms, indicating redox regulation of BnSnRK2.4-1C. Thiol-specific isotope tagging followed by mass spectrometry analysis revealed specific cysteine residues responsive to oxidant treatments. The in vivo activity of BnSnRK2.4-1C is inhibited by 15 min of H2O2 treatment. Taken together, these data indicate that BnSnRK2.4-1C, an SnRK preferentially expressed in guard cells, is redox-regulated with potential roles in guard cell signal transduction.
Collapse
|
11
|
Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. mBio 2016; 7:mBio.00379-16. [PMID: 27190215 PMCID: PMC4895103 DOI: 10.1128/mbio.00379-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis.
Collapse
|
12
|
Wang H, Duan Y, Zhong W. ZrO2 Nanofiber as a Versatile Tool for Protein Analysis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26414-20. [PMID: 26571083 DOI: 10.1021/acsami.5b09348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphorylation is one of the most important post-translational modifications in proteins. Their essential roles in the regulation of cellular processes and alteration of protein-protein interaction networks have been actively studied. However, phosphorylated proteins are present at low abundance in cells, and ionization of the modified peptides is often suppressed by the more abundant species in mass spectrometry. Effective enrichment techniques are needed to remove the unmodified peptides and concentrate the phosphorylated ones before their identification and quantification. Herein, we prepared ZrO2 nanofibers by electrospinning, a straightforward and easy fabrication technique, and applied them to enrich phosphorylated peptides and proteins. The fibers showed good size homogeneity and porosity and could specifically bind to the phosphorylated peptides and proteins, allowing their separation from the unmodified analogues when present in either simple protein digests or highly complex cell lysates. The enrichment performance was superior to that of the commercially available nanoparticles. Moreover, modifying the solution pH could lead to selective adsorption of proteins with different pI values, suggesting the fibers' potential applicability in charge-based protein fractionation. Our results support that the electrospun ZrO2 nanofibers can serve as a versatile tool for protein analysis with great ease in preparation and handling.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, University of California , Riverside, California, United States
| | - Yaokai Duan
- Department of Chemistry, University of California , Riverside, California, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California , Riverside, California, United States
| |
Collapse
|
13
|
Silva-Sanchez C, Li H, Chen S. Recent advances and challenges in plant phosphoproteomics. Proteomics 2015; 15:1127-41. [PMID: 25429768 DOI: 10.1002/pmic.201400410] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Plants are sessile organisms that need to respond to environmental changes quickly and efficiently. They can accomplish this by triggering specialized signaling pathways often mediated by protein phosphorylation and dephosphorylation. Phosphorylation is a fast response that can switch on or off a myriad of biological pathways and processes. Proteomics and MS are the main tools employed in the study of protein phosphorylation. Advances in the technologies allow simultaneous identification and quantification of thousands of phosphopeptides and proteins that are essential to understanding the sophisticated biological systems and regulations. In this review, we summarize the advances in phosphopeptide enrichment and quantitation, MS for phosphorylation site mapping and new data acquisition methods, databases and informatics, interpretation of biological insights and crosstalk with other PTMs, as well as future directions and challenges in the field of phosphoproteomics.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
14
|
Li J, Silva-Sanchez C, Zhang T, Chen S, Li H. Phosphoproteomics technologies and applications in plant biology research. FRONTIERS IN PLANT SCIENCE 2015; 6:430. [PMID: 26136758 PMCID: PMC4468387 DOI: 10.3389/fpls.2015.00430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation has long been recognized as an essential mechanism to regulate many important processes of plant life. However, studies on phosphorylation mediated signaling events in plants are challenged with low stoichiometry and dynamic nature of phosphorylated proteins. Significant advances in mass spectrometry based phosphoproteomics have taken place in recent decade, including phosphoprotein/phosphopeptide enrichment, detection and quantification, and phosphorylation site localization. This review describes a variety of separation and enrichment methods for phosphoproteins and phosphopeptides, the applications of technological innovations in plant phosphoproteomics, and highlights significant achievement of phosphoproteomics in the areas of plant signal transduction, growth and development.
Collapse
Affiliation(s)
- Jinna Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
| | - Cecilia Silva-Sanchez
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Haiying Li
- College of Life Sciences, Heilongjiang UniversityHarbin, China
- *Correspondence: Haiying Li, College of Life Sciences, Heilongjiang University, 74 Xuefu Rd, Harbin 150080, China
| |
Collapse
|
15
|
Huang X, Wang J, Liu C, Guo T, Wang S. A novel rGR–TiO2–ZrO2 composite nanosheet for capturing phosphopeptides from biosamples. J Mater Chem B 2015; 3:2505-2515. [DOI: 10.1039/c4tb01899k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel rGR–TiO2–ZrO2 composite nanosheet was synthesized and applied to selectively capture phosphopeptides from complex biosamples.
Collapse
Affiliation(s)
- Xuan Huang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Cuicui Liu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Ting Guo
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science and Technology
- Tianjin 300457
| |
Collapse
|
16
|
Mitulović G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goran Mitulović
- a Clinical Institute of Laboratory Medicine and Proteomics Core Facility , Medical University of Vienna , Wien , Austria
| |
Collapse
|
17
|
Venne AS, Zahedi RP. The potential of fractional diagonal chromatography strategies for the enrichment of post-translational modifications. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Lanucara F, Chi Hoo Lee D, Eyers CE. Unblocking the sink: improved CID-based analysis of phosphorylated peptides by enzymatic removal of the basic C-terminal residue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:214-25. [PMID: 24297471 PMCID: PMC3899453 DOI: 10.1007/s13361-013-0770-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.
Collapse
Affiliation(s)
- Francesco Lanucara
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Dave Chi Hoo Lee
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
| | - Claire E. Eyers
- Manchester Institute of Biotechnology, Michael Barber Centre for Mass Spectrometry, School of Chemistry, University of Manchester, Manchester, M1 7DN UK
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| |
Collapse
|
19
|
Lichti CF, Wildburger NC, Emmett MR, Mostovenko E, Shavkunov AS, Strain SK, Nilsson CL. Post-translational Modifications in the Human Proteome. TRANSLATIONAL BIOINFORMATICS 2014. [DOI: 10.1007/978-94-017-9202-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Silva AMN, Vitorino R, Domingues MRM, Spickett CM, Domingues P. Post-translational modifications and mass spectrometry detection. Free Radic Biol Med 2013; 65:925-941. [PMID: 24002012 DOI: 10.1016/j.freeradbiomed.2013.08.184] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
Abstract
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.
Collapse
Affiliation(s)
- André M N Silva
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Vitorino
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7 ET, United Kingdom
| | - Pedro Domingues
- Mass Spectrometry Centre, QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
21
|
Vilasi A, Fiume I, Pace P, Rossi M, Pocsfalvi G. Enrichment specificity of micro and nano-sized titanium and zirconium dioxides particles in phosphopeptide mapping. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1188-1198. [PMID: 24259207 DOI: 10.1002/jms.3254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/18/2013] [Accepted: 07/11/2013] [Indexed: 06/02/2023]
Abstract
Owning to their anion-exchange properties, titanium and zirconium dioxides are widely used in phosphopeptide enrichment and purification protocols. The physical and chemical characteristics of the particles can significantly influence the loading capacity, the capture efficiency and phosphopeptide specificity and thus the outcome of the analyses. Although there are a number of protocols and commercial kits available for phosphopeptide purification, little data are found in the literature on the choice of the enrichment media. Here, we studied the influence of particle size on the affinity capture of phosphopeptides by TiO2 and ZrO2. Bovine milk casein derived phosphopeptides were enriched by micro and nanoparticles using a single-tube in-solution protocol at different peptide-to-beads ratio ranging from 1 : 1 to 1 : 200. Unsupervised hierarchical cluster analysis based on the whole set of Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectra of the phosphopeptide enriched samples revealed 62 clustered peptide peaks and shows that nanoparticles have considerably higher enrichment capacity than bulk microparticles. Moreover, ZrO2 particles have higher enrichment capacity than TiO2. The selectivity and specificity of the enrichment was studied by monitoring the ion abundances of monophosphorylated, multiphosphorylated and non-phosphorylated casein-derived peptide peaks at different peptide-to-beads ratios. Comparison of the resulting plots enabled the determination of the optimal peptide-to-beads ratios for the different beads studied and showed that nano-TiO2 have higher selectivity for phosphopeptides than nano-ZrO2 particles.
Collapse
Affiliation(s)
- Annalisa Vilasi
- Mass Spectrometry and Proteomics, Institute of Protein Biochemistry, National Research Council of Italy, Napoli, Italy
| | | | | | | | | |
Collapse
|
22
|
Sun Z, Hamilton KL, Reardon KF. Evaluation of quantitative performance of sequential immobilized metal affinity chromatographic enrichment for phosphopeptides. Anal Biochem 2013; 445:30-7. [PMID: 24096195 DOI: 10.1016/j.ab.2013.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. Although our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semiquantitative method when used in large-scale phosphoproteomics studies in complex backgrounds.
Collapse
Affiliation(s)
- Zeyu Sun
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
23
|
Salovska B, Tichy A, Fabrik I, Rezacova M, Vavrova J. Comparison of Resins for Metal Oxide Affinity Chromatography with Mass Spectrometry Detection for the Determination of Phosphopeptides. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.773437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Yalak G, Vogel V. Extracellular phosphorylation and phosphorylated proteins: not just curiosities but physiologically important. Sci Signal 2012; 5:re7. [PMID: 23250399 DOI: 10.1126/scisignal.2003273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mining of the literature and high-throughput mass spectrometry data from both healthy and diseased tissues and from body fluids reveals evidence that various extracellular proteins can exist in phosphorylated states. Extracellular kinases and phosphatases (ectokinases and ectophosphatases) are active in extracellular spaces during times of sufficiently high concentrations of adenosine triphosphate. There is evidence for a role of extracellular phosphorylation in various physiological functions, including blood coagulation, immune cell activation, and the formation of neuronal networks. Ectokinase activity is increased in some diseases, including cancer, Alzheimer's disease, and some microbial infections. We summarize the literature supporting the physiological and pathological roles of extracellularly localized protein kinases, protein phosphatases, and phosphorylated proteins and provide an analysis of the available mass spectrometry data to annotate potential extracellular phosphorylated proteins.
Collapse
Affiliation(s)
- Garif Yalak
- Department of Health Sciences and Technology, ETH Zurich, Wolfgang Pauli Strasse 10, HCI F443, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
25
|
Choi YS. Reaching for the deep proteome: recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome. Arch Pharm Res 2012; 35:1861-70. [PMID: 23212627 DOI: 10.1007/s12272-012-1102-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
In the last decade, there has been a dramatic progress in separation techniques, mass spectrometry, and bioinformatics, and this progress has significantly improved the techniques on protein analysis. However, the analysis of low-abundance proteins is still challenging because of the limited performance in the method of choice compared to the complexity and the vast dynamic range of biological samples. Since this issue is a big obstacle in most proteomics investigations, great interest has been paid recently to various techniques, such as multi-dimensional analysis, specific peptide selection, high-abundance protein depletion, ligand library treatment, to address this challenge. Therefore, here, the author reviews recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome, mainly focusing on their methods and perspectives.
Collapse
Affiliation(s)
- Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan 330-714, Korea.
| |
Collapse
|
26
|
Beltran L, Cutillas PR. Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 2012; 43:1009-24. [PMID: 22821267 DOI: 10.1007/s00726-012-1288-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/03/2012] [Indexed: 12/27/2022]
Abstract
Phosphoproteomics is increasingly used to address a wide range of biological questions. However, despite some success, techniques for phosphoproteomics are not without challenges. Phosphoproteins are present in cells in low abundance relative to their unphosphorylated counterparts; therefore phosphorylated proteins (or phosphopeptides after protein digestion) are rarely detected in standard shotgun proteomics experiments. Thus, extraction of phosphorylated polypeptides from complex mixtures is a critical step in the success of phosphoproteomics experiments. Intense research over the last decade has resulted in the development of powerful techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Here, we review how the development of IMAC, MOAC, chemical derivatization and antibody affinity purification and chromatography is contributing to the evolution of phosphoproteomics techniques. Although further developments are needed for the technology to reach maturity, current state-of-the-art techniques can already be used as powerful tools for biological research.
Collapse
Affiliation(s)
- Luisa Beltran
- Analytical Signalling Group, Centre for Cell Signalling, Barts Cancer Institute-CR-UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, UK
| | | |
Collapse
|
27
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
28
|
Zhang L, Liang Z, Yang K, Xia S, Wu Q, Zhang L, Zhang Y. Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria. Anal Chim Acta 2012; 729:26-35. [PMID: 22595430 DOI: 10.1016/j.aca.2012.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/26/2022]
Abstract
The enrichment of low abundance phosphopeptides before MS analysis is a critical step for in-depth phosphoproteome research. In this study, mesoporous titanium dioxide (TiO(2)) aerogel was prepared by precipitation and supercritical drying. The specific surface area up to 490.7 m(2) g(-1) is achieved by TiO(2) aerogel, much higher than those obtained by commercial TiO(2) nanoparticles and by the latest reported mesoporous TiO(2) spheres. Due to the large specific surface area and the mesoporous structure of the aerogel, the binding capacity for phosphopeptides is six times higher than that of conventional TiO(2) microparticles (173 vs 28 μmol g(-1)). Because of the good compatibility of enrichment procedure with MALDI-TOF-MS and the large binding capacity of TiO(2) aerogel, a detection limit as low as 30 amol for analyzing phosphopeptides in β-casein digest was achieved. TiO(2) aerogel was further applied to enrich phosphopeptides from rat liver mitochondria, and 266 unique phosphopeptides with 340 phosphorylation sites, corresponding to 216 phosphoprotein groups, were identified by triplicate nanoRPLC-ESI-MS/MS runs, with false-positive rate less than 1% at the peptide level. These results demonstrate that TiO(2) aerogel is a kind of promising material for sample pretreatment in the large-scale phosphoproteome study.
Collapse
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Carol L Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-0617, United States.
| |
Collapse
|
30
|
Tichy A, Salovska B, Rehulka P, Klimentova J, Vavrova J, Stulik J, Hernychova L. Phosphoproteomics: Searching for a needle in a haystack. J Proteomics 2011; 74:2786-97. [DOI: 10.1016/j.jprot.2011.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 11/27/2022]
|
31
|
Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2011; 43:1025-47. [PMID: 22002794 PMCID: PMC3418503 DOI: 10.1007/s00726-011-1111-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
Rapid changes of protein phosphorylation play a crucial role in the regulation of many cellular processes. Being post-translationally modified, phosphoproteins are often present in quite low abundance and tend to co-exist with their unphosphorylated isoform within the cell. To make their identification more practicable, the use of enrichment protocols is often required. The enrichment strategies can be performed either at the level of phosphoproteins or at the level of phosphopeptides. Both approaches have their advantages and disadvantages. Most enriching strategies are based on chemical modifications, affinity chromatography to capture peptides and proteins containing negatively charged phosphate groups onto a positively charged matrix, or immunoprecipitation by phospho-specific antibodies. In this article, the most up-to-date enrichment techniques are discussed, taking into account their optimization, and highlighting their advantages and disadvantages. Moreover, these methods are compared to each other, revealing their complementary nature in providing comprehensive coverage of the phosphoproteome.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, Czech Republic
| | | |
Collapse
|
32
|
Kumazawa T, Hasegawa C, Uchigasaki S, Lee XP, Suzuki O, Sato K. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry. J Chromatogr A 2011; 1218:2521-7. [DOI: 10.1016/j.chroma.2011.02.070] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
33
|
Eickner T, Mikkat S, Lorenz P, Sklorz M, Zimmermann R, Thiesen HJ, Glocker MO. EJMS protocol: systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based phosphopeptide stability estimations? EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:507-523. [PMID: 22173543 DOI: 10.1255/ejms.1134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There have been many successful efforts to enrich phosphopeptides in complex protein mixtures by the use of immobilized metal affinity chromatography (IMAC) and/or metal oxide affinity chromatography (MOAC) with which mass spectrometric analysis of phosphopeptides has become state of the art in specialized laboratories, mostly applying nanoLC electrospray ionization mass spectrometry-based investigations. However, widespread use of these powerful techniques is still not achieved. In this study, we present a ready-to-use phosphopeptide enrichment procedure using commercially available TiO(2)-loaded pipette tips in combination with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses. Using α-casein as a model protein and citric acid as additive during sample loading, a similar enrichment success can be achieved as compared to applying 2,5- dihydroxy benzoic acid (DHB) for this task. But the DHB-inherited drawbacks are eliminated. In addition, we show that combining DHB and 2,4,6-trihydroxy acetophenone (THAP) as matrix for MALDI-MS measurements retains the sensitivity of DHB for phosphopeptide analysis but adds the homogenous crystallization properties of THAP, enabling preparation of evenly distributed matrix surfaces on MALDI-MS anchor targets, a prerequisite for automated MALDI- MS analyses. Tripartite motif-containing protein 28 and stathmin are two examples for which successful phosphopeptide enrichment of either sodium dodecyl sulfate polyacrylamide gel electrophoresis or two-dimensional gel electrophoresis-separated proteins is shown. Finally, high resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry after phosphopeptide enrichment suggests that chemical dephosphorylation may occur as a side reaction during basic elution of phosphopeptides bound to MOAC surfaces, suggesting that proteome-wide phosphopeptide analyses ought to be interpreted with caution. In contrast, in-depth analysis of phosphopeptide/non-phosphorylated peptide siblings may be used to estimate stability differences of phosphorylation sites in individual proteins, possibly adding valuable information on biological regulation processes.
Collapse
Affiliation(s)
- Thomas Eickner
- Proteome Center Rostock, Medical Faculty, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|