1
|
Marusina AI, Ji-Xu A, Le ST, Toussi A, Tsoi LC, Li Q, Luxardi G, Nava J, Downing L, Leal AR, Kuzminykh NY, Kruglinskaya O, Brüggen MC, Adamopoulos IE, Merleev AA, Gudjonsson JE, Maverakis E. Cell-Specific and Variant-Linked Alterations in Expression of ERAP1, ERAP2, and LNPEP Aminopeptidases in Psoriasis. J Invest Dermatol 2023; 143:1157-1167.e10. [PMID: 36716917 DOI: 10.1016/j.jid.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/29/2023]
Abstract
ERAP1, ERAP2, and LNPEP are aminopeptidases implicated in autoimmune pathophysiology. In this study, we show that ERAP2 is upregulated and ERAP1 is downregulated in patients with psoriasis who are homozygous for autoimmune-linked variants of ERAP. We also demonstrate that aminopeptidase expression is not uniform in the skin. Specifically, the intracellular antigen-processing aminopeptidases ERAP1 and ERAP2 are strongly expressed in basal and early spinous layer keratinocytes, whereas granular layer keratinocytes expressed predominantly LNPEP, an aminopeptidase specialized in the processing of extracellular antigens for presentation to T cells. In psoriasis, basal keratinocytes also expressed the T-cell- and monocyte-attracting chemokine, CCL2, and the T-cell-supporting cytokine, IL-15. In contrast, TGF-β1 was the major cytokine expressed by healthy control basal keratinocytes. SFRP2-high dermal fibroblasts were also noted to have an ERAP2-high expression phenotype and elevated HLA-C. In psoriasis, the SFRP2-high fibroblast subpopulation also expressed elevated CXCL14. From these results, we postulate that (i) an increased ERAP2/ERAP1 ratio results in altered antigen processing, a potential mechanism by which ERAP risk alleles predispose individuals to autoimmunity; (ii) ERAP2-high expressing cells display a unique major histocompatibility complex-bound peptidome generated from intracellular antigens; and (iii) the granular layer peptidome is skewed toward extracellular antigens.
Collapse
Affiliation(s)
- Alina I Marusina
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Antonio Ji-Xu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Stephanie T Le
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Qinyuan Li
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Guillaume Luxardi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Jordan Nava
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Lauren Downing
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Annie R Leal
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Nikolay Y Kuzminykh
- Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | | | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Swiss Institute for Allergy Research, Davos, Switzerland
| | - Iannis E Adamopoulos
- Division of Rheumatology and Clinical Immunology, Harvard Medical School, Beth Israel Medical Deaconess Center, Boston, Massachusetts, USA
| | - Alexander A Merleev
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | | | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.
| |
Collapse
|
2
|
Roy BM, Zhukov DV, Maynard JA. Flanking residues are central to DO11.10 T cell hybridoma stimulation by ovalbumin 323-339. PLoS One 2012; 7:e47585. [PMID: 23110081 PMCID: PMC3479146 DOI: 10.1371/journal.pone.0047585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/18/2012] [Indexed: 11/30/2022] Open
Abstract
T cell activation requires formation of a tri-molecular interaction between a major histocompatibility complex (MHC), peptide, and T cell receptor. In a common model system, the ovalbumin epitope 323–339 binds the murine class II MHC, I-Ad, in at least three distinct registers. The DO11.10 T cell recognizes the least stable of these, as determined by peptide-MHC dissociation rates. Using exogenous peptides and peptide insertions into a carrier protein in combination with IL-2 secretion assays, we show that the alternate registers do not competitively inhibit display of the active register four. In contrast, this weakly binding register is stabilized by the presence of n-terminal flanking residues active in MHC binding. The DO11.10 hybridoma is sensitive to the presence of specific wild-type residues extending to at least the P-3 peptide position. Transfer of the P-4 to P-2 flanking residues to a hen egg lysozyme epitope also presented by I-Ad increases the activity of that epitope substantially. These results illustrate the inherent complexity in delineating the interaction of multiple registers based on traditional thermodynamic measurements and demonstrate the potential of flanking residue modification for increasing the activity of weakly bound epitopes. The latter technique represents an alternative to substitution of anchor residues within a weakly bound register, which we show can significantly decrease the activity of the epitope to a responding T cell.
Collapse
Affiliation(s)
- Benjamin M. Roy
- Department of Chemical Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
| | - Dmitriy V. Zhukov
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
| | - Jennifer A. Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Maverakis E, Goodarzi H, Wehrli LN, Ono Y, Garcia MS. The etiology of paraneoplastic autoimmunity. Clin Rev Allergy Immunol 2012; 42:135-44. [PMID: 21246308 DOI: 10.1007/s12016-010-8248-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although they may sometimes appear similar, paraneoplastic autoimmunity has a unique pathogenesis, different from the classical autoimmune diseases not associated with cancer. When distinguished clinically, paraneoplastic autoimmunity is more severe and often presents with a broader range of clinical signs and symptoms. Management of these patients is difficult and is usually centered in part on treatment of the underlying malignancy. Self-antigens recognized in the setting of paraneoplastic autoimmunity can be diverse, and the number of determinants recognized within a single antigen can be numerous. This review uses prototypic examples of paraneoplastic immune-mediated diseases and their associated malignancies to describe the mechanisms by which immune dysregulation can occur in the setting of cancer. Specific diseases covered include paraneoplastic pemphigus, Sweet's syndrome, pyoderma gangrenosum, thymoma-associated multiorgan autoimmunity, myasthenia gravis, autoimmune hemolytic anemia, immune thrombocytopenia, and the paraneoplastic neurological syndromes. The malignancies discussed include thymoma, non-Hodgkin's lymphoma, and chronic lymphocytic leukemia, among others. The mechanisms by which cancers induce autoimmunity are broken down into the following categories: disruption of central tolerance, peripheral immune dysregulation, and alteration of self-antigens. For each category, examples of paraneoplastic autoimmune diseases and their associated malignancies are discussed. Finally, mechanisms by which cancer treatment can lead to autoimmunity and examples of polymorphisms that are linked to both cancer and autoimmunity are discussed.
Collapse
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California-Davis, 3301 C Street, Sacramento, CA, 95816, USA.
| | | | | | | | | |
Collapse
|
4
|
Maverakis E. Sercarzian immunology--In memoriam. Eli E. Sercarz, 1934-2009. Cell Immunol 2012; 273:99-108. [PMID: 22285103 DOI: 10.1016/j.cellimm.2011.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
During his long career as a principal investigator and educator, Eli Sercarz trained over 100 scientists. He is best known for developing hen egg white lysozyme (HEL) as a model antigen for immunologic studies. Working in his model system Eli furthered our understanding of antigen processing and immunologic tolerance. His work established important concepts of how the immune system recognizes antigenic determinants processed from whole protein antigens; specifically he developed the concepts of immunodominance and crypticity. Later in his career he focused more on autoimmunity using a variety of established animal models to develop theories on how T cells can circumvent tolerance induction and how an autoreactive immune response can evolve over time. His theory of "determinant spreading" is one of the cornerstones of our modern understanding of autoimmunity. This review covers Eli's entire scientific career outlining his many seminal discoveries.
Collapse
Affiliation(s)
- Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, 95817, United States.
| |
Collapse
|
5
|
Abstract
Multiple sclerosis is believed to be mediated by T cells specific for myelin antigens that circulate harmlessly in the periphery of healthy individuals until they are erroneously activated by an environmental stimulus. Upon activation, the T cells enter the central nervous system and orchestrate an immune response against myelin. To understand the initial steps in the pathogenesis of multiple sclerosis, it is important to identify the mechanisms that maintain T-cell tolerance to myelin antigens and to understand how some myelin-specific T cells escape tolerance and what conditions lead to their activation. Central tolerance strongly shapes the peripheral repertoire of myelin-specific T cells, as most myelin-specific T cells are eliminated by clonal deletion in the thymus. Self-reactive T cells that escape central tolerance are generally capable only of low-avidity interactions with antigen-presenting cells. Despite the low avidity of these interactions, peripheral tolerance mechanisms are required to prevent spontaneous autoimmunity. Multiple peripheral tolerance mechanisms for myelin-specific T cells have been identified, the most important of which appears to be regulatory T cells. While most studies have focused on CD4(+) myelin-specific T cells, interesting differences in tolerance mechanisms and the conditions that abrogate these mechanisms have recently been described for CD8(+) myelin-specific T cells.
Collapse
Affiliation(s)
- Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
6
|
Pettigrew HD, Selmi CF, Teuber SS, Gershwin ME. Mold and human health: separating the wheat from the chaff. Clin Rev Allergy Immunol 2010; 38:148-55. [PMID: 19714500 DOI: 10.1007/s12016-009-8175-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The term "mold" is utilized to define the ubiquitous fungal species commonly found in household dust and observed as visible multicellular filaments. Several well-defined human diseases are known to be caused or exacerbated by mold or by exposure to their byproducts. Among these, a solid connection has been established with infections, allergic bronchopulmonary aspergillosis, allergic fungal rhinosinusitis, hypersensitivity pneumonitis, and asthma. In the past decades, other less-defined and generally false conditions have also been ascribed to mold. We will herein review and critically discuss the available evidence on the influence of mold on human health.
Collapse
Affiliation(s)
- H David Pettigrew
- Division of Rheumatology, University of California at Davis School of Medicine, Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA
| | | | | | | |
Collapse
|