1
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
2
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People's Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Li YJ, Chen Z. Cell-based therapies for rheumatoid arthritis: opportunities and challenges. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100294. [PMID: 35634355 PMCID: PMC9131381 DOI: 10.1177/1759720x221100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common immune-mediated inflammatory disease characterized by chronic synovitis that hardly resolves spontaneously. The current treatment of RA consists of nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, conventional disease-modifying antirheumatic drugs (cDMARDs), biologic and targeted synthetic DMARDs. Although the treat-to-target strategy has been intensively applied in the past decade, clinical unmet needs still exist since a substantial proportion of patients are refractory or even develop severe adverse effects to current therapies. In recent years, with the deeper understanding of immunopathogenesis of the disease, cell-based therapies have exhibited effective and promising interventions to RA. Several cell-based therapies, such as mesenchymal stem cells (MSC), adoptive transfer of regulatory T cells (Treg), and chimeric antigen receptor (CAR)-T cell therapy as well as their beneficial effects have been documented and verified so far. In this review, we summarize the current evidence and discuss the prospect as well as challenges for these three types of cellular therapies in RA.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Second Clinical Medical School, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | | |
Collapse
|
5
|
Ridley ML, Fleskens V, Roberts CA, Lalnunhlimi S, Alnesf A, O'Byrne AM, Steel KJA, Povoleri GAM, Sumner J, Lavender P, Taams LS. IKZF3/Aiolos Is Associated with but Not Sufficient for the Expression of IL-10 by CD4 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2940-2948. [PMID: 32321757 PMCID: PMC7231851 DOI: 10.4049/jimmunol.1901283] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/01/2020] [Indexed: 01/10/2023]
Abstract
The expression of anti-inflammatory IL-10 by CD4+ T cells is indispensable for immune homeostasis, as it allows T cells to moderate their effector function. We previously showed that TNF-α blockade during T cell stimulation in CD4+ T cell/monocyte cocultures resulted in maintenance of IL-10-producing T cells and identified IKZF3 as a putative regulator of IL-10. In this study, we tested the hypothesis that IKZF3 is a transcriptional regulator of IL-10 using a human CD4+ T cell-only culture system. IL-10+ CD4+ T cells expressed the highest levels of IKZF3 both ex vivo and after activation compared with IL-10-CD4+ T cells. Pharmacological targeting of IKZF3 with the drug lenalidomide showed that IKZF3 is required for anti-CD3/CD28 mAb-mediated induction of IL-10 but is dispensable for ex vivo IL-10 expression. However, overexpression of IKZF3 was unable to upregulate IL-10 at the mRNA or protein level in CD4+ T cells and did not drive the transcription of the IL10 promoter or putative local enhancer constructs. Collectively, these data indicate that IKZF3 is associated with but not sufficient for IL-10 expression in CD4+ T cells.
Collapse
Affiliation(s)
- Michael L Ridley
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Veerle Fleskens
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Ceri A Roberts
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Sylvine Lalnunhlimi
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Aldana Alnesf
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Aoife M O'Byrne
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Kathryn J A Steel
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni A M Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom
| | - Jonathan Sumner
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom; and
| | - Paul Lavender
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, United Kingdom;
| |
Collapse
|
6
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Ammari M, Presumey J, Ponsolles C, Roussignol G, Roubert C, Escriou V, Toupet K, Mausset-Bonnefont AL, Cren M, Robin M, Georgel P, Nehmar R, Taams L, Grün J, Grützkau A, Häupl T, Pers YM, Jorgensen C, Duroux-Richard I, Courties G, Apparailly F. Delivery of miR-146a to Ly6C high Monocytes Inhibits Pathogenic Bone Erosion in Inflammatory Arthritis. Am J Cancer Res 2018; 8:5972-5985. [PMID: 30613275 PMCID: PMC6299444 DOI: 10.7150/thno.29313] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Rationale: Monocytes play critical roles in the pathogenesis of arthritis by contributing to the inflammatory response and bone erosion. Among genes involved in regulating monocyte functions, miR-146a negatively regulates the inflammatory response and osteoclast differentiation of monocytes. It is also the only miRNA reported to differentially regulate the cytokine response of the two classical Ly6Chigh and non-classical Ly6Clow monocyte subsets upon bacterial challenge. Although miR-146a is overexpressed in many tissues of arthritic patients, its specific role in monocyte subsets under arthritic conditions remains to be explored. Methods: We analyzed the monocyte subsets during collagen-induced arthritis (CIA) development by flow cytometry. We quantified the expression of miR-146a in classical and non-classical monocytes sorted from healthy and CIA mice, as well as patients with rheumatoid arthritis (RA). We monitored arthritis features in miR-146a-/- mice and assessed in vivo the therapeutic potential of miR-146a mimics delivery to Ly6Chigh monocytes. We performed transcriptomic and pathway enrichment analyses on both monocyte subsets sorted from wild type and miR-146a-/- mice. Results: We showed that the expression of miR-146a is reduced in the Ly6Chigh subset of CIA mice and in the analogous monocyte subset (CD14+CD16-) in humans with RA as compared with healthy controls. The ablation of miR-146a in mice worsened arthritis severity, increased osteoclast differentiation in vitro and bone erosion in vivo. In vivo delivery of miR-146a to Ly6Chigh monocytes, and not to Ly6Clow monocytes, rescues bone erosion in miR-146a-/- arthritic mice and reduces osteoclast differentiation and pathogenic bone erosion in CIA joints of miR-146a+/+ mice, with no effect on inflammation. Silencing of the non-canonical NF-κB family member RelB in miR-146a-/- Ly6Chigh monocytes uncovers a role for miR-146a as a key regulator of the differentiation of Ly6Chigh, and not Ly6Clow, monocytes into osteoclasts under arthritic conditions. Conclusion: Our results show that classical monocytes play a critical role in arthritis bone erosion. They demonstrate the theranostics potential of manipulating miR-146a expression in Ly6Chigh monocytes to prevent joint destruction while sparing inflammation in arthritis.
Collapse
|
8
|
Chen SY, Hsu WT, Chen YL, Chien CH, Chiang BL. Lymphocyte-activation gene 3(+) (LAG3(+)) forkhead box protein 3(-) (FOXP3(-)) regulatory T cells induced by B cells alleviates joint inflammation in collagen-induced arthritis. J Autoimmun 2016; 68:75-85. [PMID: 26908164 DOI: 10.1016/j.jaut.2016.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease in which dysregulated immune cells primarily target synovial joints. Despite recent advances in the treatment of RA, including the introduction of biologic therapies and employment of combination disease-modifying antirheumatic drug strategies, remission rates remain suboptimal. Previous studies have demonstrated that the adoptive transfer of induced regulatory T cells (iTregs) was effective in treating a murine model of collagen-induced arthritis (CIA). The objective of this study was to develop optimal potential iTreg-based therapy for CIA by adoptively transferring LAG3(+) Treg-of-B cells. B-cell-induced Treg-of-B cells expressed LAG3 but not Foxp3 (designated LAG3(+) Treg-of-B), and secreted IL-4, IL-10, and TGF-β. Furthermore, LAG3(+) Treg-of-B cells suppressed the proliferation of CD4(+)CD25(-) responder T cells through both LAG3 and IL-10 production. In the murine CIA model, adoptive transfer of LAG3(+) Treg-of-B cells alleviated the joint severity as well as local and systemic inflammation. Treatment with LAG3(+) Treg-of-B cells also promoted IL-10 production in lymphocytes isolated from the spleen and draining lymph nodes. Moreover, mice receiving LAG3(+) Treg-of-B cell treatment showed significantly less pronounced osteolysis in the hind footpads, which correlated with the downregulation of tartrate-resistant acid phosphatase expression. In conclusion, we identified a novel subset of Tregs for CIA treatment. This insight may facilitate exploring novel regulatory T-cell-based therapies for human autoimmune diseases.
Collapse
Affiliation(s)
- Szu-Ying Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Tseng Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Lien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Chien
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Felcenloben I, Piasecki T, Miller J, Rossowska J, Bańcyr E, Atamaniuk W, Nowak M, Świerkot J, Ratajczak K, Chełmońska-Soyta A. Adoptively transferred Tregs accumulate in a site-specific manner and ameliorate signs of less advanced collagen-induced arthritis progress in rats. Immunotherapy 2016; 7:215-28. [PMID: 25804475 DOI: 10.2217/imt.14.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of the study was to assess the therapeutic effect and migration of adoptively transferred Tregs in the course of collagen-induced arthritis (CIA) in rats. METHODS Sorted CD4(+)CD25(+) cells were cultured in the presence of 17-β-estradiol, stained with CellTracker and then administered into the articular capsule of ankle joint of animals in different stages of CIA progression. RESULTS Tregs diminished CIA signs only in animals with less advanced disease progress. Moreover, migration of transferred cells into the LN in the near proximity of the injection site and with distal location was almost completely stopped in animals with fully developed CIA. CONCLUSION Disease progression-related differences in migratory potential of in vitro induced Tregs may be responsible for the failure of cellular therapy during the advanced stages of CIA.
Collapse
Affiliation(s)
- Isaura Felcenloben
- Wroclaw University of Environmental & Life Science, Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology & Prevention Veterinary, Norwida 31, 50-375 Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vicente R, Quentin J, Mausset-Bonnefont AL, Chuchana P, Martire D, Cren M, Jorgensen C, Louis-Plence P. Nonclassical CD4+CD49b+ Regulatory T Cells as a Better Alternative to Conventional CD4+CD25+ T Cells To Dampen Arthritis Severity. THE JOURNAL OF IMMUNOLOGY 2015; 196:298-309. [DOI: 10.4049/jimmunol.1501069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/24/2015] [Indexed: 01/21/2023]
|
11
|
Araujo-Pires AC, Vieira AE, Francisconi CF, Biguetti CC, Glowacki A, Yoshizawa S, Campanelli AP, Trombone APF, Sfeir CS, Little SR, Garlet GP. IL-4/CCL22/CCR4 axis controls regulatory T-cell migration that suppresses inflammatory bone loss in murine experimental periodontitis. J Bone Miner Res 2015; 30:412-22. [PMID: 25264308 PMCID: PMC4542048 DOI: 10.1002/jbmr.2376] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Abstract
Inflammatory bone resorption is a hallmark of periodontitis, and Tregs and Th2 cells are independently associated with disease progression attenuation. In this study, we employed an infection-triggered inflammatory osteolysis model to investigate the mechanisms underlying Treg and Th2 cell migration and the impact on disease outcome. Aggregatibacter actinomycetemcomitans-infected C57Bl/6 (wild-type [WT]) mice develop an intense inflammatory reaction and alveolar bone resorption, and Treg and Th2 cell migration is temporally associated with disease progression attenuation. Tregs extracted from the lesions preferentially express CCR4 and CCR8, whereas Th2 cells express CCR3, CCR4, and CCR8. The absence of CCR5 and CCR8 did not significantly impact the migration of Tregs and Th2 cells or affect the disease outcome. CCR4KO mice presented a minor reduction in Th2 cells in parallel with major impairment of Treg migration, which was associated with increased inflammatory bone loss and higher proinflammatory and osteoclastogenic cytokine levels. The blockade of the CCR4 ligand CCL22 in WT mice resulted in an increased inflammatory bone loss phenotype similar to that in the CCR4KO strain. Adoptive transfer of CCR4(+) Tregs to the CCR4KO strain revert the increased disease phenotype to WT mice-like levels; also, the in situ production of CCL22 in the lesions is mandatory for Tregs migration and the consequent bone loss arrest. The local release of exogenous CCL22 provided by poly(lactic-co-glycolic acid) (PLGA) microparticles promotes migration of Tregs and disease arrest in the absence of endogenous CCL22 in the IL-4KO strain, characterized by the lack of endogenous CCL22 production, defective migration of Tregs, and exacerbated bone loss. In summary, our results show that the IL-4/CCL22/CCR4 axis is involved in the migration of Tregs to osteolytic lesion sites, and attenuates development of lesions by inhibiting inflammatory migration and the production of proinflammatory and osteoclastogenic mediators.
Collapse
Affiliation(s)
- Ana Claudia Araujo-Pires
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| | - Andreia Espindola Vieira
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| | - Carolina Favaro Francisconi
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| | - Claudia Cristina Biguetti
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| | - Andrew Glowacki
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sayuri Yoshizawa
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana Paula Campanelli
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| | | | - Charles S. Sfeir
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, Sao Paulo University (FOB/USP), Bauru, SP, Brazil
| |
Collapse
|
12
|
Asnagli H, Martire D, Belmonte N, Quentin J, Bastian H, Boucard-Jourdin M, Fall PB, Mausset-Bonnefont AL, Mantello-Moreau A, Rouquier S, Marchetti I, Jorgensen C, Foussat A, Louis-Plence P. Type 1 regulatory T cells specific for collagen type II as an efficient cell-based therapy in arthritis. Arthritis Res Ther 2014; 16:R115. [PMID: 24886976 PMCID: PMC4075412 DOI: 10.1186/ar4567] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Regulatory T (Treg) cells play a crucial role in preventing autoimmune diseases and are an ideal target for the development of therapies designed to suppress inflammation in an antigen-specific manner. Type 1 regulatory T (Tr1) cells are defined by their capacity to produce high levels of interleukin 10 (IL-10), which contributes to their ability to suppress pathological immune responses in several settings. The aim of this study was to evaluate the therapeutic potential of collagen type II–specific Tr1 (Col-Treg) cells in two models of rheumatoid arthritis (RA) in mice. Methods Col-Treg clones were isolated and expanded from collagen-specific TCR transgenic mice. Their cytokine secretion profile and phenotype characterization were studied. The therapeutic potential of Col-Treg cells was evaluated after adoptive transfer in collagen-antibody– and collagen-induced arthritis models. The in vivo suppressive mechanism of Col-Treg clones on effector T-cell proliferation was also investigated. Results Col-Treg clones are characterized by their specific cytokine profile (IL-10highIL-4negIFN-γint) and mediate contact-independent immune suppression. They also share with natural Tregs high expression of GITR, CD39 and granzyme B. A single infusion of Col-Treg cells reduced the incidence and clinical symptoms of arthritis in both preventive and curative settings, with a significant impact on collagen type II antibodies. Importantly, injection of antigen-specific Tr1 cells decreased the proliferation of antigen-specific effector T cells in vivo significantly. Conclusions Our results demonstrate the therapeutic potential of Col-Treg cells in two models of RA, providing evidence that Col-Treg could be an efficient cell-based therapy for RA patients whose disease is refractory to current treatments.
Collapse
|
13
|
CD49b, a major marker of regulatory T-cells type 1, predicts the response to antiviral therapy of recurrent hepatitis C after liver transplantation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:290878. [PMID: 24575405 PMCID: PMC3915765 DOI: 10.1155/2014/290878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 01/22/2023]
Abstract
The TRANSPEG study was a prospective study to assess the efficacy of antiviral therapy in patients with a recurrent hepatitis C virus (HCV) after liver transplantation. The influence of regulatory T-cells (Tregs) on the response to antiviral therapy was analyzed. Patients were considered as a function of their sustained virological response (SVR) at 18 months after treatment initiation. A transcriptomic analysis was performed to assess Treg markers (Tr1 and FoxP3+) in serum, PBMC, and liver biopsies. 100 patients had been included in the TRANSPEG study. Data from 27 of these patients were available. The results showed that the expression of CD49b (a predominant marker of Tr1) before the introduction of antiviral therapy was significantly associated with SVR. Responders displayed lower serum levels of CD49b than nonresponders (P < 0.02). These findings were confirmed in PBMC and liver biopsies even if in a nonsignificant manner for the limited number of samples. The assessment of CD49b levels is thus predictive of the response to antiviral therapy. This data suggests that CD49b may be a marker of the failure of the immune response and antiviral therapy during HCV recurrence. The assessment of CD49b could help to select patients who require earlier and more intensive antiviral therapy.
Collapse
|
14
|
Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr Top Microbiol Immunol 2014; 380:39-68. [PMID: 25004813 DOI: 10.1007/978-3-662-43492-5_3] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
T regulatory Type 1 (Tr1) cells are adaptive T regulatory cells characterized by the ability to secrete high levels of IL-10 and minimal amounts of IL-4 and IL-17. Recently, CD49b and LAG-3 have been identified as Tr1-cell-specific biomarkers in mice and humans. Tr1 cells suppress T-cell- and antigen-presenting cell- (APC) responses primarily via the secretion of IL-10 and TGF-β. In addition, Tr1 cells release granzyme B and perforin and kill myeloid cells. Tr1 cells inhibit T cell responses also via cell-contact dependent mechanisms mediated by CTLA-4 or PD-1, and by disrupting the metabolic state of T effector cells via the production of the ectoenzymes CD39 and CD73. Tr1 cells were first described in peripheral blood of patients who developed tolerance after HLA-mismatched fetal liver hematopoietic stem cell transplant. Since their discovery, Tr1 cells have been proven to be important in maintaining immunological homeostasis and preventing T-cell-mediated diseases. Furthermore, the possibility to generate and expand Tr1 cells in vitro has led to their utilization as cellular therapy in humans. In this chapter we summarize the unique and distinctive biological properties of Tr1 cells, the well-known and newly discovered Tr1-cell biomarkers, and the different methods to induce Tr1 cells in vitro and in vivo. We also address the role of Tr1 cells in infectious diseases, autoimmunity, and transplant rejection in different pre-clinical disease models and in patients. Finally, we highlight the pathological settings in which Tr1 cells can be beneficial to prevent or to cure the disease.
Collapse
|
15
|
el Bannoudi H, Han WGH, Stoop JN, Louis-Plence P, Huizinga TWJ, Toes REM. DX5+ CD4+ T cells modulate CD4+ T-cell response via inhibition of IL-12 production by DCs. Eur J Immunol 2013; 43:439-46. [PMID: 23169063 DOI: 10.1002/eji.201242796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/28/2012] [Accepted: 09/15/2012] [Indexed: 11/09/2022]
Abstract
DX5(+) CD4(+) T cells have been shown to dampen collagen-induced arthritis and delayed-type hypersensitivity reactions in mice. These cells are also potent modulators of T-helper cell responses through direct effects on CD4(+) T cells in an IL-4 dependent manner. To further characterize this T-cell population, we studied their effect on DCs and the potential consequences on T-cell activation. Here, we show that mouse DX5(+) CD4(+) T cells modulate DCs by robustly inhibiting IL-12 production. This modulation is IL-10 dependent and does not require cell contact. Furthermore, DX5(+) CD4(+) T cells modulate the surface phenotype of LPS-matured DCs. DCs modulated by DX5(+) CD4(+) T-cell supernatant express high levels of the co-inhibitor molecules PDL-1 and PDL-2. OVA-specific CD4(+) T cells primed with DCs exposed to DX5(+) CD4(+) T-cell supernatant produce less IFN-γ than CD4(+) T cells primed by DCs exposed to either medium or DX5(-) CD4(+) T-cell supernatant. The addition of IL-12 to the co-culture with DX5(+) DCs restores IFN-γ production. When IL-10 present in the DX5(+) CD4(+) T-cell supernatant is blocked, DCs re-establish their ability to produce IL-12 and to efficiently prime CD4(+) T cells. These data show that DX5(+) CD4(+) T cells can indirectly affect the outcome of the T-cell response by inducing DCs that have poor Th1 stimulatory function.
Collapse
Affiliation(s)
- Hanane el Bannoudi
- Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Sarkar S, Zhou X, Justa S, Bommireddy SR. Interleukin-22 reduces the severity of collagen-induced arthritis in association with increased levels of interleukin-10. ARTHRITIS AND RHEUMATISM 2013; 65:960-71. [PMID: 23334981 PMCID: PMC3618496 DOI: 10.1002/art.37849] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/27/2012] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The mechanism of action of interleukin- 22 (IL-22) in inflammatory arthritis remains unknown. IL-22-deficient mice exhibit an intact humoral and cellular immune response to collagen and yet have a reduced incidence of collagen-induced arthritis (CIA). Further, administration of anti-IL-22 does not reduce the severity of clinical arthritis but rather improves only certain aspects of joint inflammation as assessed histologically. This study was undertaken to investigate the mechanism of action and role of systemic IL-22 in modulating target organ inflammation. METHODS CIA was induced in DBA mice by immunization with collagen and Freund's complete adjuvant. Expression of IL-22 and its receptor (IL-22R) in lymphoid organ and target tissues was determined during various phases of arthritis. The effector functions of IL-22 on induction/regulation of various cytokines in in vitro restimulation cultures were analyzed by enzyme-linked immunosorbent assay (ELISA). Recombinant IL-22 with or without anti-IL-10 antibody was administered to mice following immunization with collagen and prior to the onset of arthritis, and the severity of arthritis was evaluated by clinical scoring and histopathologic assessment. Anticollagen antibodies in mouse sera were analyzed by ELISA. RESULTS IL-22 and IL-22R were up-regulated in lymphoid organs and joints during the course of arthritis. IL-22 augmented IL-10, IL-17, and IL-6 in lymphoid tissues in vitro. Administration of recombinant IL-22 was associated with an increase in IL-10 levels in vivo and a significant reduction in the progression of arthritis severity. Anti-IL-10 antibody treatment was associated with the abrogation of this protective effect of IL-22. CONCLUSION Our data demonstrate, for the first time, that IL-22 has a protective role in inflammatory arthritis.
Collapse
Affiliation(s)
- Sujata Sarkar
- Department of Medicine, Arizona Arthritis Center, University of Arizona, 1501 North Campbell Avenue, AHSC Rm 6309, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
17
|
Thomas R. Dendritic cells and the promise of antigen-specific therapy in rheumatoid arthritis. Arthritis Res Ther 2013; 15:204. [PMID: 23374912 PMCID: PMC3672739 DOI: 10.1186/ar4130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease resulting from an autoimmune response to self-antigens, leading to inflammation of synovial tissue of joints and subsequent cartilage and bone erosion. Current disease-modifying anti-rheumatic drugs and biologic inhibitors of TNF, IL-6, T cells and B cells block inflammation nonspecifically, which may lead to adverse effects, including infection. They do not generally induce long-term drug-free remission or restoration of immune tolerance to self-antigens, and lifelong treatment is usual. The development of antigen-specific strategies in RA has so far been limited by insufficient knowledge of autoantigens, of the autoimmune pathogenesis of RA and of the mechanisms of immune tolerance in man. Effective tolerance-inducing antigen-specific immunotherapeutic strategies hold promise of greater specificity, of lower toxicity and of a longer-term solution for controlling or even preventing RA. This paper reviews current understanding of autoantigens and their relationship to immunopathogenesis of RA, and emerging therapeutics that aim to leverage normal tolerance mechanisms for implementation of antigen-specific therapy in RA.
Collapse
|
18
|
Présumey J, Courties G, Louis-Plence P, Escriou V, Scherman D, Pers YM, Yssel H, Pène J, Kyburz D, Gay S, Jorgensen C, Apparailly F. Nicotinamide phosphoribosyltransferase/visfatin expression by inflammatory monocytes mediates arthritis pathogenesis. Ann Rheum Dis 2013; 72:1717-24. [DOI: 10.1136/annrheumdis-2012-202403] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Fernandez L, Salinas GF, Rocha C, Carvalho-Pinto CE, Yeremenko N, Papon L, Medema JP, Combe B, Morel J, Baeten D, Hahne M. The TNF family member APRIL dampens collagen-induced arthritis. Ann Rheum Dis 2012. [DOI: 10.1136/annrheumdis-2012-202382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Abstract
There is now growing evidence that autoimmunity is the common trait connecting multiple clinical phenotypes albeit differences in tissue specificity, pathogenetic mechanisms, and therapeutic approaches cannot be overlooked. Over the past years we witnessed a constant growth of the number of publications related to autoimmune diseases in peer-reviewed journals of the immunology area. Original data referred to factors from common injury pathways (i.e. T helper 17 cells, serum autoantibodies, or vitamin D) and specific diseases such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. As an example, the issue of a latitudinal gradient in the prevalence and incidence rates has been proposed for all autoimmune diseases and was recently coined as geoepidemiology to suggest new environmental triggers for tolerance breakdown. The present article is aimed at reviewing the articles that were published over the past year in the major autoimmunity and immunology journals.
Collapse
Affiliation(s)
- Carlo Selmi
- Autoimmunity and Metabolism Unit, Department of Medicine, IRCCS Istituto Clinico Humanitas, Italy.
| |
Collapse
|
21
|
Brun V, Neveu V, Pers YM, Fabre S, Quatannens B, Bastian H, Clerget-Chossat N, Jorgensen C, Foussat A. Isolation of functional autologous collagen-II specific IL-10 producing Tr1 cell clones from rheumatoid arthritis blood. Int Immunopharmacol 2011; 11:1074-8. [PMID: 21406270 DOI: 10.1016/j.intimp.2011.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/18/2022]
Abstract
IL-10 producing regulatory type 1 (Tr1) cells represents a subpopulation of CD4+ regulatory cells able to prevent in vitro bystander T-cell proliferation and to inhibit a wide range of inflammatory diseases in mice. Our aim was to evaluate the frequency and function of joint specific Tr1 cells in the peripheral blood of severe Rheumatoid Arthritis (RA) patients. The collagen II protein was chosen to isolate Tr1 cells specific for a joint antigen. We successfully isolated Tr1 clones from 9 out of 11 RA patients. We showed that cells from patients display the same phenotype and surface marker regulation as previously shown for human Tr1 cells, characterized by expression of markers of regulation (FoxP3, CD25) at the activated but not at the resting state. Importantly, cells from patients showed Tr1 cytokine secretion (IL-10 and IFN-γ) and immunosuppressive action on bystander T cell proliferation. Based on these results, we demonstrated that collagen II specific Tr1 cells can be isolated from the blood of severe refractory patients and that these cells are not altered in their phenotype and function.
Collapse
Affiliation(s)
- Valérie Brun
- TxCell, SA, Allée de la Nertière, 06560 Valbonne Sophia-Antipolis, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Courties G, Baron M, Presumey J, Escriou V, van Lent P, Scherman D, Cantagrel A, van den Berg WB, Jorgensen C, Apparailly F, Davignon JL. Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis. ACTA ACUST UNITED AC 2011; 63:681-90. [DOI: 10.1002/art.30174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Han WGH, van der Voort EIH, el Bannoudi H, Louis-Plence P, Huizinga TWJ, Toes REM. DX5(+)CD4(+) T cells modulate cytokine production by CD4(+) T cells towards IL-10 via the production of IL-4. Eur J Immunol 2010; 40:2731-40. [PMID: 20812238 DOI: 10.1002/eji.201040574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CD4(+) Th cells play a critical role in orchestrating the adaptive immune response. Uncontrolled Th1 responses are implicated in the pathogenesis of autoimmune diseases. T cells with immune-modulatory properties are beneficial for inhibiting such inflammatory responses. Previously we demonstrated that repetitive injections of immature DC induce expansion of DX5(+)CD4(+) T cells, which upon adoptive transfer show potent regulatory properties in murine collagen-induced arthritis as well as in delayed-hypersensitivity models. However, their regulatory mechanism remains to be defined. Here, we analyzed the effect of DX5(+)CD4(+) T cells on other CD4(+) T cells in vitro. Although proliferation of naïve CD4(+) T cells upon antigenic triggering was not altered in the presence of DX5(+)CD4(+) T cells, there was a striking difference in cytokine production. In the presence of DX5(+)CD4(+) T cells, an IL-10-producing CD4(+) T-cell response was induced instead of a predominant IFN-γ-producing Th1 response. This modulation did not require cell-cell contact. Instead, IL-4 produced by DX5(+)CD4(+) T cells was primarily involved in the inhibition of IFN-γ and promotion of IL-10 production by CD4(+) T cells. Together, our data indicate that DX5(+)CD4(+) T cells modulate the outcome of Th-responses by diverting Th1-induction into Th responses characterized by the production of IL-10.
Collapse
Affiliation(s)
- Wanda G H Han
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
In vivo RNAi-mediated silencing of TAK1 decreases inflammatory Th1 and Th17 cells through targeting of myeloid cells. Blood 2010; 116:3505-16. [DOI: 10.1182/blood-2010-02-269605] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abstract
Cells from the mononuclear phagocyte system (MPS) act as systemic and local amplifiers that contribute to the progression of chronic inflammatory disorders. Transforming growth factor-β–activated kinase 1 (TAK1) is a pivotal upstream mitogen-activated protein kinase-kinase-kinase acting as a mediator of cytokine expression. It remains critical to determine in vivo the implication of TAK1 in controlling the innate immune system. Here, we describe a vehicle tailored to selectively deliver siRNAs into MPS cells after intravenous administration, and validate in vivo the potential of the RNAi-mediated TAK1 knock down for immunomodulation. In a mouse model of immune-mediated inflammatory disorder, we show that anti-TAK1 siRNA lipoplexes efficiently alleviate inflammation, severely impair the downstream c-Jun N-terminal kinase and nuclear factor-κB signaling pathways, and decrease the expression of proinflammatory mediators. Importantly, the systemic TAK1 gene silencing decreases the frequency of Th1 and Th17 cells, both mediating autoimmunity in experimental arthritis, demonstrating the immunomodulatory potential of TAK1. Finally, in vitro inhibition of TAK1 in myeloid cells decreases interferon-γ–producing T cells, suggesting that a delivery sys-tem able to target MPS cells and to silence TAK1 impacts on pathogenic T effector cells in autoimmunity.
Collapse
|
25
|
Abstract
Rheumatoid arthritis is characterised by persistent synovitis, systemic inflammation, and autoantibodies (particularly to rheumatoid factor and citrullinated peptide). 50% of the risk for development of rheumatoid arthritis is attributable to genetic factors. Smoking is the main environmental risk. In industrialised countries, rheumatoid arthritis affects 0·5-1·0% of adults, with 5-50 per 100 000 new cases annually. The disorder is most typical in women and elderly people. Uncontrolled active rheumatoid arthritis causes joint damage, disability, decreased quality of life, and cardiovascular and other comorbidities. Disease-modifying antirheumatic drugs (DMARDs), the key therapeutic agents, reduce synovitis and systemic inflammation and improve function. The leading DMARD is methotrexate, which can be combined with other drugs of this type. Biological agents are used when arthritis is uncontrolled or toxic effects arise with DMARDs. Tumour necrosis factor inhibitors were the first biological agents, followed by abatacept, rituximab, and tocilizumab. Infections and high costs restrict prescription of biological agents. Long-term remission induced by intensive, short-term treatment selected by biomarker profiles is the ultimate goal.
Collapse
MESH Headings
- Antirheumatic Agents/therapeutic use
- Arthritis, Juvenile
- Arthritis, Rheumatoid/classification
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/physiopathology
- Arthritis, Rheumatoid/therapy
- Autoantibodies/blood
- Biomarkers/blood
- Cartilage/pathology
- Cost-Benefit Analysis
- Critical Pathways
- Fibroblasts/pathology
- Glucocorticoids/therapeutic use
- Humans
- Incidence
- Inflammation/physiopathology
- Rheumatoid Factor/blood
- Risk Factors
- Still's Disease, Adult-Onset
- Synovial Membrane/pathology
- Treatment Outcome
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- David L Scott
- Department of Rheumatology, King's College London School of Medicine, London, UK.
| | | | | |
Collapse
|
26
|
Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. THE JOURNAL OF IMMUNOLOGY 2010; 184:7144-53. [PMID: 20483737 DOI: 10.4049/jimmunol.0902739] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-35 is produced by regulatory T cells, and this novel cytokine can downregulate Th17 cell development and inhibit autoimmune inflammation. In this work, an rIL-35, as a single-chain fusion between murine IL-12p35 and EBV-induced gene 3, was expressed in yeast. This rIL-35 inhibited OVA-specific cellular and Ab responses in OVA-challenged recipients of DO11.10 CD4+ T cells. Likewise, IL-35 inhibited clinical manifestation of collagen-induced arthritis or could cease further disease exacerbation upon initiation of IL-35 treatment. Exogenous IL-35 treatments suppressed Th1 and Th17 cells and promoted CD39 expression by CD4+ T cells. Sorted CD25-CD39+CD4+ T cells from IL-35-treated mice produced IL-10 and, upon adoptive transfer, were sufficiently potent to inhibit subsequent development of inflammation in mice with collagen-induced arthritis, whereas sorted CD25+CD39+CD4+ T cells showed reduced potency. IL-35 treatments of IL-10-/- mice failed to induce protective CD39+CD4+ T cells, demonstrating the effector role of IL-10 by IL-35 immunosuppression.
Collapse
Affiliation(s)
- Irina Kochetkova
- Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
27
|
Association of polymorphisms in the human IL-10 and IL-18 genes with rheumatoid arthritis. Mol Biol Rep 2010; 38:379-85. [PMID: 20424918 DOI: 10.1007/s11033-010-0119-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/17/2010] [Indexed: 02/05/2023]
Abstract
The decrease of anti-inflammatory cytokine and increase of pro-inflammatory cytokine was observed in rheumatoid arthritis (RA). Interleukin-10 (IL-10), a potent anti-inflammatory cytokine, has been demonstrated to suppress joint swelling and deformation in RA animal model. Interleukin-18 (IL-18), a widely distributed pro-inflammatory cytokine, induces the production of IFN-γ, activate NK cells, and promote inflammation. Recent studies demonstrated that the serum IL-10 and IL-18 levels may be influenced by genetics and related to susceptibility to several autoimmune diseases. In the present study, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing techniques, we analyzed the genotype and allele distributions of two single nucleotide polymorphisms (SNP) loci in the promoter region of IL-10 and IL-18 genes (IL-10-592 A/C and IL-18-607 A/C loci, respectively). Our results indicated that IL-10-592 allelic and genotypic frequencies were significantly different between the RA patients and normal subjects (P<0.05). In addition, significant differences of IL-10-592 allelic and genotypic frequencies were also detected between the patients with or without anti-cyclic citrullinated peptide antibody (anti-CCP) (P<0.05). In contrast, allelic and genotypic frequencies of IL-18-607 did not show significant difference between RA patients and normal subjects (P>0.05) or between anti-CCP-positive and anti-CCP-negative RA patients (P>0.05). Furthermore, ELISA detection of IL-10 and IL-18 serum levels revealed that the genotype of IL-10-592 was associated with IL-10 serum level (P<0.05), but the genotype and allele frequency of IL-18-607 was not associated with IL-18 serum level (P>0.05). Taken together, our findings provide new insight for the polymorphism of IL-10 gene in the pathogenesis of RA.
Collapse
|
28
|
Haque R, Lei F, Xiong X, Wu Y, Song J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther 2010; 12:R66. [PMID: 20384988 PMCID: PMC2888221 DOI: 10.1186/ar2983] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/16/2010] [Accepted: 04/12/2010] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Forkhead box p3 (FoxP3)-expressing regulatory T cells (Tregs) have been clearly implicated in the control of autoimmune disease in murine models. In addition, ectopic expression of FoxP3 conveys a Treg phenotype to CD4(+) T cells, lending itself to therapeutic use in the prevention of rheumatoid arthritis (RA). In this study, we generated therapeutically active Tregs with an increased life span and hence greater therapeutic potential. METHODS We used retrovirus-mediated transduction to introduce FoxP3 or FoxP3 with anti-apoptotic Bcl-2 family molecule Bcl-xL linked by a 2A picornavirus self-cleaving peptide into CD4(+) T cells to generate Tregs. In addition, by using in vitro functional analyses and adoptive immunotherapy in a murine model of RA, we demonstrated that these Tregs were highly reactive. RESULTS We found that CD4(+) T cells expressing both FoxP3 and Bcl-xL were able to differentiate into functional Tregs, which have a long-term survival advantage over cells transduced with FoxP3 alone. In an in vivo murine model, adoptive transfer of Tregs expressing both FoxP3 and Bcl-xL demonstrated more effective suppression of RA than CD4(+) T cells expressing FoxP3 alone. CONCLUSIONS FoxP3 and Bcl-xL can cooperatively promote the differentiation and persistence of Tregs, with the capacity to prevent arthritis. Our results provide a novel approach for generating highly reactive Tregs for augmenting cellular immunotherapy for autoimmune disease.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/prevention & control
- Forkhead Transcription Factors/genetics
- Immunotherapy, Adoptive
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transduction, Genetic
- bcl-X Protein/genetics
Collapse
Affiliation(s)
- Rizwanul Haque
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Fengyang Lei
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Xiaofang Xiong
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Yuzhang Wu
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | - Jianxun Song
- Department of Microbiology & Immunology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Institute of Immunology, The Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| |
Collapse
|