1
|
Nowatzky J, Manches O. Generation of Human Regulatory T Cell Clones. J Vis Exp 2020. [PMID: 32478733 DOI: 10.3791/61075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Human regulatory T cells (Treg) are notoriously difficult to isolate in high purity given the current methods of Treg enrichment. These methods are based on the identification of Treg through several activation-dependent cellular surface markers with varying expression levels in different physiologic and pathologic conditions. Populations isolated as "Treg" therefore often contain considerable numbers of non-Treg effector cells (i.e., Teff) which hamper the precise phenotypic and functional characterization of these cells, their genomic and proteomic characterization, their reliable enumeration in different states of health and disease, as well as their isolation and expansion for therapeutic purposes. The latter, in particular, remains a major hurdle, as the inadvertent expansion of effector cells homing in Treg-relevant cellular compartments (e.g., CD4+CD25+ T cells) may render Treg-based immunotherapy ineffective, or even harmful. This work presents a method that circumvents the problems associated with population-based isolation and expansion of Treg and shows that the generation of Treg candidate clones with the subsequent selection, culture, and expansion of only carefully vetted, monoclonal cells, enables the generation of an ultrapure Treg cell product that can be kept in culture for many months, enabling downstream investigation of these cells, including for possible therapeutic applications.
Collapse
Affiliation(s)
- Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, New York University School of Medicine;
| | - Olivier Manches
- Immunobiology and Immunotherapy in Chronic Diseases, Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209/CNRS UMR 5309; Etablissement Français du Sang Auvergne-Rhône-Alpes
| |
Collapse
|
2
|
Umeda M, Koga T, Ichinose K, Igawa T, Sato T, Takatani A, Shimizu T, Fukui S, Nishino A, Horai Y, Hirai Y, Kawashiri SY, Iwamoto N, Aramaki T, Tamai M, Nakamura H, Yamamoto K, Abiru N, Origuchi T, Ueki Y, Kawakami A. CD4 + CD52 lo T-cell expression contributes to the development of systemic lupus erythematosus. Clin Immunol 2017; 187:50-57. [PMID: 29031579 DOI: 10.1016/j.clim.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022]
Abstract
The cell-surface glycoprotein CD52 is widely expressed in lymphocytes. CD4+CD52hi T cells are functioning suppressor CD4+T cells. We investigated the role of the immune regulation of CD4+CD52 T cells in systemic lupus erythematosus (SLE). CD4+CD52lo T cells were increased in SLE patients, in positive correlation with SLEDAI, anti-ds-DNA antibody, and IgG concentration. Circulating follicular helper-like T cells (Tfh-like cells) were also increased in SLE, in positive correlation with CD4+CD52lo T cells. Chemokine receptor 8 (CCR8) expression in CD4+CD52lo T cells was increased. In vitro experiments using CD4 T cells of SLE patients showed that thymus and activation-regulated chemokine (TARC), a ligand of CCR8, contributed to the development of CD4+CD52hi T cells into CD4+CD52lo T cells. Our findings suggest that CD4+CD52lo T-cell upregulation is involved in the production of pathogens by autoantibodies, and TARC may contribute to the development of SLE through an aberrant induction of CD4+CD52lo T cells.
Collapse
Affiliation(s)
- Masataka Umeda
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Takashi Igawa
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohito Sato
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayuko Takatani
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoichi Fukui
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ayako Nishino
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiro Horai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Rheumatology, Clinical Research Center, National Hospital Organization Nagasaki Medical Center
| | - Yasuko Hirai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin-Ya Kawashiri
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Mami Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Nakamura
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoki Origuchi
- Department of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukitaka Ueki
- Department of Rheumatology, Sasebo Chuo Hospital, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
3
|
1,25-dihydroxyvitamin D 3 down-modulates the production of proinflammatory cytokines and nitric oxide and enhances the phosphorylation of monocyte-expressed STAT6 at the recent-onset type 1 diabetes. Immunol Lett 2016; 179:122-130. [PMID: 27717877 DOI: 10.1016/j.imlet.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/30/2016] [Accepted: 10/02/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Type 1 diabetes (T1D) is associated with an imbalance between inflammation and repair. Recently, the biologically active form of vitamin D3, i.e. 1,25(OH)2D3, has been reported to have potent immunomodulatory effects on both innate and adaptive immune cells, as well as on the production of their specific cytokines. METHODS We examined the effect of 1,25(OH)2D3 on the production of proinflammatory Th1/Th17 and anti-inflammatory Th2/Treg related cytokines, as well as on the phosphorylation of monocyte-expressed STAT4 and STAT6 at the recent-onset human T1D. RESULTS The levels of IFN-γ, IL-17 and nitric oxide (NO) production were significantly increased in peripheral blood mononuclear cells (PBMCs) from patients with T1D compared to controls. Similarly, STAT4 tyrosine phosphorylation (p-STAT4, Tyr693) levels were significantly increased in monocytes from patients when compared to controls. Conversely, the levels of IL-4, IL-10 and p-STAT6 (Tyr641) were significantly decreased in type 1 diabetic patients than in controls. Treatment with 1,25(OH)2D3 resulted in significant up-regulation of IL-4, IL-10, arginase activity, and p-STAT6 and, conversely, down-regulation of IFN-γ, IL-17 and NO production levels, as well as p-STAT4. Additionally, 1,25(OH)2D3 significantly enhanced Treg-to-Th17 ratio, and induced a significant decrease in Th1-to-Th2, NO production-to-arginase activity and p-STAT4-to-p-STAT6 ratios. CONCLUSIONS Our study suggests that the biologically active form of vitamin D can reverse the activation of inflammatory pathways at the onset of T1D. Additionally, its immunomodulation properties may vary depending on the overall patterns of cytokines. From a therapeutic point of view, vitamin D may potentially be suggested as an immunological adjuvant and a potential anti-inflammatory agent in individuals at risk of T1D.
Collapse
|
4
|
Sindberg GM, Lindborg BA, Wang Q, Clarkson C, Graham M, Donahue R, Hering BJ, Verfaillie CM, Bansal-Pakala P, O'Brien TD. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts. J Med Primatol 2014; 43:231-241. [PMID: 24825538 DOI: 10.1111/jmp.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4(+) and CD8(+) lymphocyte populations have not been reported. METHODS We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. RESULTS AND CONCLUSIONS Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable.
Collapse
Affiliation(s)
- Gregory M Sindberg
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Beth A Lindborg
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA.,Stem Cell Institute, University of Minnesota, St. Paul, MN, USA
| | - Qi Wang
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, St. Paul, MN, USA
| | - Christina Clarkson
- Stem Cell Institute, University of Minnesota, St. Paul, MN, USA.,Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, MN, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Robert Donahue
- Hematology Branch, National Heart Lung Blood Institute, Rockville, MD, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Pratima Bansal-Pakala
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA.,Stem Cell Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
5
|
Abstract
The initiation and perpetuation of autoimmunity recognize numerous checkpoints, from the genomic susceptibility to the breakdown of tolerance. This latter phenomenon includes the loss of B cell anergy and T regulatory cell failure, as well as the production of autoantibodies and autoreactive T cells. These mechanisms ultimately lead to tissue injury via different mechanisms that span from the production of proinflammatory cytokines to the chemotaxis of immune cells to the target sites. The pathways to autoimmunity have been widely investigated over the past year and resulted in a number of articles in peer-reviewed journals that has increased by nearly 10 % compared to 2011. We herein follow on the attempt to provide a brief discussion of the majority of articles on autoimmune diseases that were published in the major immunology journals in the previous solar year. The selection is necessarily arbitrary and may thus not be seen as comprehensive but reflects current research trends. Indeed, 2012 articles were mostly dedicated to define new and old mechanisms with potential therapeutic implications in autoimmunity in general, though based on specific clinical conditions or animal models. As paradigmatic examples, the environmental influence on autoimmunity, Th17 changes modulating the autoimmune response, serum autoantibodies and B cell changes as biomarkers and therapeutic targets were major issues addressed by experimental articles in 2012. Further, a growing number of studies investigated the sex bias of autoimmunity and supported different working hypotheses to explain the female predominance, including sex chromosome changes and reproductive life factors. In conclusion, the resulting scenario illustrates that common factors may underlie different autoimmune diseases and this is well represented by the observed alterations in interferon-α and TGFβ or by the shared signaling pathways.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,
| |
Collapse
|
6
|
Samten B. CD52 as both a marker and an effector molecule of T cells with regulatory action: Identification of novel regulatory T cells. Cell Mol Immunol 2013; 10:456-8. [PMID: 24037183 DOI: 10.1038/cmi.2013.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/14/2013] [Indexed: 11/09/2022] Open
|
7
|
Eric Gershwin M, Shoenfeld Y. Abul Abbas: An epitome of scholarship. J Autoimmun 2013; 45:1-6. [DOI: 10.1016/j.jaut.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022]
|
8
|
Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C. The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab 2013; 15 Suppl 3:89-97. [PMID: 24003925 DOI: 10.1111/dom.12159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/08/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on genes that control β-cell targeting in autoimmune, type 1-dependent, diabetes (T1D) and on insulin as the major autoantigen recognized by T lymphocytes throughout the disease process. T1D associates with multiple gene variants. Beyond genes that predispose to general failure of immune tolerance to self, loci identified by the analysis of crosses between non-obese diabetic (NOD) and conventional mouse strains harbour genes that control β-cell targeting or the deviation of autoimmunity towards other tissues. We report here the role of genes encoding co-activation molecules involved in the activation of T lymphocytes, ICOS and ICOS ligand (B7RP1). NOD mice which are deficient in either of these two molecules are protected from diabetes, but instead develop a neuromuscular autoimmune disease. We also report the characterization in humans of T lymphocytes that are specific for major β-cell autoantigens, especially insulin. This opens the way towards new bioassays in the diagnosis of autoimmunity and towards autoantigen-specific immunotherapy in T1D. In order to develop a new preclinical model of T1D that would allow testing insulin epitopes to induce immune tolerance in vivo, we developed a mouse that is deficient in endogenous major histocompatibility complex class I and class II genes and deficient for the two murine insulin genes and that express human class I, class II and insulin genes.
Collapse
Affiliation(s)
- S Luce
- INSERM, UMR1016, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Schneider DA, Kretowicz AM, von Herrath MG. Emerging immune therapies in type 1 diabetes and pancreatic islet transplantation. Diabetes Obes Metab 2013. [PMID: 23194064 DOI: 10.1111/dom.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In type 1 diabetes (T1D) the immune system attacks insulin-producing pancreatic β-cells. Unfortunately, our ability to curb this pathogenic autoimmune response in a disease- and organ-specific manner is still very limited due to the inchoate understanding of the exact nature and the kinetics of the immunological pathomechanisms that lead to T1D. None of the clinical immune interventions thus far, which focused primarily on new-onset disease, were successful in producing lasting remission or curbing recurrent autoimmunity. However, these studies do provide us access to a tremendous amount of clinical data and specimens, which will aid us in revising our therapeutical approaches and defining the highly needed paradigm shift in T1D immunotherapy. Analysing the foundation and the results of the most current T1D immunotherapeutic trials, this article gives an outlook for future directions of the field.
Collapse
Affiliation(s)
- D A Schneider
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
10
|
Brehm MA, Powers AC, Shultz LD, Greiner DL. Advancing animal models of human type 1 diabetes by engraftment of functional human tissues in immunodeficient mice. Cold Spring Harb Perspect Med 2013; 2:a007757. [PMID: 22553498 DOI: 10.1101/cshperspect.a007757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite decades of studying rodent models of type 1 diabetes (T1D), no therapy capable of preventing or curing T1D has successfully been translated from rodents to humans. This inability to translate otherwise promising therapies to clinical settings likely resides, to a major degree, from significant species-specific differences between rodent and human immune systems as well as species-related variances in islets in terms of their cellular composition, function, and gene expression. Indeed, taken collectively, these differences underscore the need to define interactions between the human immune system with human β cells. Immunodeficient mice engrafted with human immune systems and human β cells represent an interesting and promising opportunity to study these components in vivo. To meet this need, years of effort have been extended to develop mice depleted of undesirable components while at the same time, allowing the introduction of constituents necessary to recapitulate physiological settings as near as possible to human T1D. With this, these so-called "humanized mice" are currently being used as a preclinical bridge to facilitate identification and translation of novel discoveries to clinical settings.
Collapse
Affiliation(s)
- Michael A Brehm
- University of Massachusetts Medical School, Program in Molecular Medicine, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
11
|
Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J, Böhmer RM, Harrison LC. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol 2013; 14:741-8. [PMID: 23685786 DOI: 10.1038/ni.2610] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022]
Abstract
Functionally diverse T cell populations interact to maintain homeostasis of the immune system. We found that human and mouse antigen-activated T cells with high expression of the lymphocyte surface marker CD52 suppressed other T cells. CD52(hi)CD4(+) T cells were distinct from CD4(+)CD25(+)Foxp3(+) regulatory T cells. Their suppression was mediated by soluble CD52 released by phospholipase C. Soluble CD52 bound to the inhibitory receptor Siglec-10 and impaired phosphorylation of the T cell receptor-associated kinases Lck and Zap70 and T cell activation. Humans with type 1 diabetes had a lower frequency and diminished function of CD52(hi)CD4(+) T cells responsive to the autoantigen GAD65. In diabetes-prone mice of the nonobese diabetic (NOD) strain, transfer of lymphocyte populations depleted of CD52(hi) cells resulted in a substantially accelerated onset of diabetes. Our studies identify a ligand-receptor mechanism of T cell regulation that may protect humans and mice from autoimmune disease.
Collapse
|
12
|
Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications. Int Immunopharmacol 2013; 16:371-5. [PMID: 23428908 DOI: 10.1016/j.intimp.2013.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/01/2013] [Indexed: 11/22/2022]
Abstract
Promising results of initial studies applying ex-vivo expanded regulatory T cell (Treg) as a clinical intervention have increased interest in this type of the cellular therapy and several new clinical trials involving Tregs are currently on the way. Methods of isolation and expansion of Tregs have been studied and optimized to the extent that such therapy is feasible, and allows obtaining sufficient numbers of Tregs in the laboratory following Good Manufacturing Practice (GMP) guidelines. Nevertheless, Treg therapy could even more rapidly evolve if Tregs could be efficiently cryopreserved and stored for future infusion or expansions rather than utilization of only freshly isolated and expanded cells as it is preferred now. Currently, our knowledge regarding the impact of cryopreservation on Treg recovery, viability, and functionality is still limited. Based on experience with cryopreserved peripheral blood mononuclear cells (PBMCs), cryopreservation may have a detrimental effect on Tregs, can decrease Treg viability, cause abnormal cytokine secretion, and compromise expression of surface markers essential for proper Treg function and processing. Therefore, optimal strategies and conditions for Treg cryopreservation in conjunction with cell culture, expansion, and processing for clinical application still need to be investigated and defined.
Collapse
|
13
|
Abstract
Insulin is the hormone produced by pancreatic β-cells, with a central role in carbohydrate and fat metabolism. Together with its precursors preproinsulin and proinsulin, insulin is also a key target antigen (Ag) of the autoimmune islet destruction leading to type 1 diabetes. Being recognized by both autoantibodies (aAbs) and autoreactive T cells, insulin plays a triggering role, at least in rodent models, in diabetes pathogenesis. It is expressed not only by β-cells but also in the thymus, where it plays a major role in central tolerance mechanisms. We will summarize current knowledge concerning insulin, its role in β-cell autoimmunity as initial target Ag, its recognition by aAbs and autoreactive T cells, and the detection of these immune responses to provide biomarkers for clinical trials employing insulin as an immune modulatory agent.
Collapse
Affiliation(s)
- Sloboda Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 Avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | |
Collapse
|
14
|
Abstract
The mechanisms leading to the onset and perpetuation of systemic and tissue-specific autoimmune diseases are complex, and numerous hypotheses have been proposed or confirmed over the past 12 months. It is particularly of note that the number of articles published during 2011 in the major immunology and autoimmunity journals increased by 3 % compared to the previous year. The present article is dedicated to a brief review of the reported data and, albeit not comprehensive of all articles, is aimed at identifying common and future themes. First, clinical researchers were particularly dedicated to defining refractory forms of diseases and to discuss the use and switch of therapeutic monoclonal antibodies in everyday practice. Second, following the plethora of genome-wide association studies reported in most multifactorial diseases, it became clear that genomics cannot fully explain the individual susceptibility and additional environmental or epigenetic factors are necessary. Both these components were widely investigated, both in organ-specific (i.e., type 1 diabetes) and systemic (i.e., systemic lupus erythematosus) diseases. Third, a large number of 2011 works published in the autoimmunity area are dedicated to dissect pathogenetic mechanisms of tolerance breakdown in general or in specific conditions. While our understanding of T regulatory and Th17 cells has significantly increased in 2011, it is of note that most of the proposed lines of evidence identify potential targets for future treatments and should not be overlooked.
Collapse
|
15
|
Abstract
Type 1 diabetes (T1D) represents 10 to 15% of all forms of diabetes. Its incidence shows a consistent rise in all countries under survey. Evidence for autoimmunity in human T1D relies on the detection of insulitis, of islet cell antibodies, of activated β-cell-specific T lymphocytes and on the association of T1D with a restricted set of class II major histocompatibility complex (MHC) alleles. However, mechanisms that initiate the failure of immune tolerance to β-cell autoantigens remain elusive in common forms of T1D. T1D commonly develop as a multifactorial disease in which environmental factors concur with a highly multigenic background. The disease is driven by the activation of T-lymphocytes against pancreatic β-cells. Several years elapse between initial triggering of the autoimmune response to β cells, as evidenced by the appearance or islet cell autoantibodies, and the onset of clinical diabetes, defining a prediabetes stage. Active mechanisms hold back autoreactive effector T-cells in prediabetes, in particular a subset of CD4+ T-cells (T(reg)) and other regulatory T-cells, such as invariant NKT cells. There is evidence in experimental models that systemic or local infections can trigger autoimmune reactions to β-cells. However, epidemiological observations that have accumulated over years have failed to identify undisputable environmental factors that trigger T1D. Moreover, multiple environmental factors may intervene in the disease evolution and protective as weel as triggering environmental factors may be involved. Available models also indicate that local signals within the islets are required for full-blown diabetes to develop. Many autoantigens that are expressed by β-cells but also by the other endocrine islet cells and by neurons are recognized by lymphocytes along the development of T1D. The immune image of β-cells is that of native components of the β-cell membrane, as seen by B-lymphocytes, and of fragments of intracellular β-cell proteins in the form of peptides loaded onto class I MHC molecules on the β-cell surface and class I and class II molecules onto professional antigen presenting cells. Given the key role of T lymphocytes in T1D, the cartography of autoantigen-derived peptides that are presented to class I-restricted CD8(+) T-cells and class II-restricted CD4(+) T-cells is of outmost importance and is a necessary step in the development of diagnostic T-cell assays and of immunotherapy of T1D.
Collapse
|
16
|
Abstract
The immune system is tasked with defending the host from a wide array of pathogens and environmental insults. When uncontrolled, this endeavor may lead to off-target reactivity to self-tissues resulting in multiple autoimmune diseases including type 1 diabetes (T1D). This multifactorial disease process involves over 40 susceptibility genes and is influenced by poorly characterized environmental factors. While many questions regarding the pathogenesis of the disease process remain, it has become increasingly clear that the progression to disease results from a breakdown in the processes that maintain peripheral immune tolerance. The end result of this process is localized tissue inflammation, islet dysfunction, and ultimately the destruction of pancreatic β cells due to concomitant defects in innate and adaptive immune responses. A number of immunomodulatory intervention trials have now been conducted in patients at risk for or with recent onset T1D, often with the goal of restoring immune tolerance by inducing regulatory T cells (Tregs). Unfortunately, many of these trials have fallen short of inducing persistent immune regulation. This shortfall has led to additional efforts to more directly shift the balance from destructive effector T cell (Teff) responses to favor Tregs, including the use of autologous Treg cell therapy. In this review we will discuss key concepts related to the use of autologous Treg cell therapy for the treatment of T1D. Among these topics, we will discuss the notions of genetic control of Treg activity, Treg cellular plasticity, and requirements for antigen-specificity.
Collapse
Affiliation(s)
- James A Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
17
|
Kaas A, Andersen MLM, Fredheim S, Hougaard P, Buschard K, Petersen JS, de Beaufort C, Robertson KJ, Hansen L, Mortensen HB, Nielsen LB. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes. Pediatr Diabetes 2012; 13:51-8. [PMID: 22118630 DOI: 10.1111/j.1399-5448.2011.00812.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Proinsulin is a marker of beta-cell distress and dysfunction in type 2 diabetes and transplanted islets. Proinsulin levels are elevated in patients newly diagnosed with type 1 diabetes. Our aim was to assess the relationship between proinsulin, insulin dose-adjusted haemoglobin A1c (IDAA1C), glucagon-like peptide-1 (GLP-1), glucagon, and remission status the first year after diagnosis of type 1 diabetes. METHODS Juvenile patients (n = 275) were followed 1, 6, and 12 months after diagnosis. At each visit, partial remission was defined as IDAA1C ≤ 9%. The patients had a liquid meal test at the 1-, 6-, and 12-month visits, which included measurement of C-peptide, proinsulin, GLP-1, glucagon, and insulin antibodies (IA). RESULTS Patients in remission at 6 and 12 months had significantly higher levels of proinsulin compared to non-remitting patients (p < 0.0001, p = 0.0002). An inverse association between proinsulin and IDAA1C was found at 1 and 6 months (p = 0.0008, p = 0.0022). Proinsulin was positively associated with C-peptide (p < 0.0001) and IA (p = 0.0024, p = 0.0068, p < 0.0001) at 1, 6, and 12 months. Glucagon (p < 0.0001 and p < 0.02) as well as GLP-1 (p = 0.0001 and p = 0.002) were significantly lower in remitters than in non-remitters at 6 and 12 months. Proinsulin associated positively with GLP-1 at 1 month (p = 0.004) and negatively at 6 (p = 0.002) and 12 months (p = 0.0002). CONCLUSIONS In type 1 diabetes, patients in partial remission have higher levels of proinsulin together with lower levels of GLP-1 and glucagon compared to patients not in remission. In new onset type 1 diabetes proinsulin level may be a sign of better residual beta-cell function.
Collapse
Affiliation(s)
- Anne Kaas
- Department of Paediatrics, Glostrup/Herlev University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lian G, Arimochi H, Kitamura A, Nishida J, Li S, Kishihara K, Maekawa Y, Yasutomo K. Manipulation of CD98 resolves type 1 diabetes in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:2227-34. [PMID: 22291182 DOI: 10.4049/jimmunol.1102586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gaojian Lian
- Department of Immunology and Parasitology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hinke SA. Inverse vaccination with islet autoantigens to halt progression of autoimmune diabetes. Drug Dev Res 2011. [DOI: 10.1002/ddr.20488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Li CR, Baaten BJG, Bradley LM. Harnessing memory adaptive regulatory T cells to control autoimmunity in type 1 diabetes. J Mol Cell Biol 2011; 4:38-47. [PMID: 22116888 DOI: 10.1093/jmcb/mjr040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing β-cells in the pancreatic islets. There is an immediate need to restore both β-cell function and immune tolerance to control disease progression and ultimately cure T1D. Currently, there is no effective treatment strategy to restore glucose regulation in patients with T1D. FoxP3-expressing CD4(+) regulatory T cells (Tregs) are potential candidates to control autoimmunity because they play a central role in maintaining self-tolerance. However, deficiencies in either naturally occurring Tregs (nTregs) themselves and/or their ability to control pathogenic effector T cells have been associated with T1D. Here, we hypothesize that nTregs can be replaced by FoxP3(+) adaptive Tregs (aTregs), which are uniquely equipped to combat autoreactivity in T1D. Unlike nTregs, aTregs are stable and provide long-lived protection. In this review, we summarize the current understanding of aTregs and their potential for use as an immunological intervention to treat T1D.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
21
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
22
|
T cell recognition of autoantigens in human type 1 diabetes: clinical perspectives. Clin Dev Immunol 2011; 2011:513210. [PMID: 21785617 PMCID: PMC3140193 DOI: 10.1155/2011/513210] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/18/2011] [Indexed: 12/20/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease driven by the activation of lymphocytes against pancreatic β-cells. Among β-cell autoantigens, preproinsulin has been ascribed a key role in the T1D process. The successive steps that control the activation of autoreactive lymphocytes have been extensively studied in animal models of T1D, but remains ill defined in man. In man, T lymphocytes, especially CD8+ T cells, are predominant within insulitis. Developing T-cell assays in diabetes autoimmunity is, thus, a major challenge. It is expected to help defining autoantigens and epitopes that drive the disease process, to pinpoint key functional features of epitope-specific T lymphocytes along the natural history of diabetes and to pave the way towards therapeutic strategies to induce immune tolerance to β-cells. New T-cell technologies will allow defining autoreactive T-cell differentiation programs and characterizing autoimmune responses in comparison with physiologically appropriate immune responses. This may prove instrumental in the discovery of immune correlates of efficacy in clinical trials.
Collapse
|
23
|
Li CR, Deiro MF, Godebu E, Bradley LM. IL-7 uniquely maintains FoxP3(+) adaptive Treg cells that reverse diabetes in NOD mice via integrin-β7-dependent localization. J Autoimmun 2011; 37:217-27. [PMID: 21745722 DOI: 10.1016/j.jaut.2011.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/04/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022]
Abstract
Type 1 diabetes (T1D) develops as a consequence of a progressive autoimmune response that destroys insulin-producing β-cells in pancreatic islets. Because of their role(s) in controlling immune responses, considerable effort has been directed toward resolving whether regulatory T cells (Tregs) offer a clinical treatment to restore tolerance in T1D. We previously reported that in vitro-induced adaptive Treg cells (aTregs) can reverse T1D and persist as protective memory cells in the NOD mouse model. In the current study, we investigated mechanisms that regulate aTregs. We found that these FoxP3(+) aTregs expressed high levels of the IL-7 receptor, IL-7Rα, without the high affinity receptor for IL-2, CD25, which is found on natural Treg cells (nTregs). IL-7Rα expression was mirrored by the dependency of aTregs on IL-7 for persistence. IL-10 and TGF-β, effector cytokines of aTregs, were not essential for their maintenance at the level of systemic antibody blocking. Nevertheless, IL-10 modulated cytokine production by aTregs and TGF-β was critical for protection. aTregs were found to infiltrate islets and the expression of integrin-β7 was required for their localization in the pancreas. Furthermore, blocking aTreg entry into the pancreas prevented their control of diabetogenic effector T cells, implying the need for local control of the autoimmune response. The distinct homeostatic regulation of aTregs independently of a response to IL-2, which is defective in T1D patients, suggests that these cells represent a translatable candidate to control the autoimmune response.
Collapse
Affiliation(s)
- Cheng-Rui Li
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Protection against autoimmune diabetes by silkworm-produced GFP-tagged CTB-insulin fusion protein. Clin Dev Immunol 2011; 2011:831704. [PMID: 21765853 PMCID: PMC3135140 DOI: 10.1155/2011/831704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/15/2011] [Accepted: 04/30/2011] [Indexed: 01/09/2023]
Abstract
In animals, oral administration of the cholera toxin B (CTB) subunit conjugated to the autoantigen insulin enhances the specific immune-unresponsive state. This is called oral tolerance and is capable of suppressing autoimmune type 1 diabetes (T1D). However, the process by which the CTB-insulin (CTB-INS) protein works as a therapy for T1D in vivo remains unclear. Here, we successfully expressed a green fluorescent protein- (GFP-) tagged CTB-Ins (CTB-Ins-GFP) fusion protein in silkworms in a pentameric form that retained the native ability to activate the mechanism. Oral administration of the CTB-Ins-GFP protein induced special tolerance, delayed the development of diabetic symptoms, and suppressed T1D onset in nonobese diabetic (NOD) mice. Moreover, it increased the numbers of CD4+CD25+Foxp3+ T regulatory (Treg) cells in peripheral lymph tissues and affected the biological activity of spleen cells. This study demonstrated that the CTB-Ins-GFP protein produced in silkworms acted as an oral protein vaccine, inducing immunological tolerance involving CD4+CD25+Foxp3+ Treg cells in treating T1D.
Collapse
|
25
|
Culina S, Boitard C, Mallone R. Antigen-based immune therapeutics for type 1 diabetes: magic bullets or ordinary blanks? Clin Dev Immunol 2011; 2011:286248. [PMID: 21647401 PMCID: PMC3102326 DOI: 10.1155/2011/286248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 12/03/2022]
Abstract
The ideal drug of modern medicine is the one that achieves its therapeutic target with minimal adverse effects. Immune therapy of Type 1 diabetes (T1D) is no exception, and knowledge of the antigens targeted by pathogenic T cells offers a unique opportunity towards this goal. Different antigen formulations are being considered, such as proteins or peptides, either in their native form or modified ad hoc, DNA plasmids, and cell-based agents. Translation from mouse to human should take into account important differences, particularly in the time scale of autoimmune progression, and intervention. Critical parameters such as administration route, dosing and interval remain largely empirical and need to be further dissected. T1D staging through immune surrogate markers before and after treatment will be key in understanding therapeutic actions and to finally turn ordinary blanks into magic bullets.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
| | - Christian Boitard
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
- Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, 75181 Paris, France
| | - Roberto Mallone
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
- Université Paris-Descartes, 75006 Paris, France
- Assistance Publique Hôpitaux de Paris, Hôtel Dieu, Service de Diabétologie, 75181 Paris, France
| |
Collapse
|
26
|
Sharma R, Fu SM, Ju ST. IL-2: a two-faced master regulator of autoimmunity. J Autoimmun 2011; 36:91-7. [PMID: 21282039 DOI: 10.1016/j.jaut.2011.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/07/2023]
Abstract
CD4(+) T-cell (Th) cytokines provide important regulatory and effector functions of T-cells. Among them, IL-2 plays a unique role. IL-2 is required for the generation and maintenance of regulatory T-cells (Treg) to provide lifelong protection from autoimmune disease. Whether IL-2 is also required for autoimmune disease development is less clear as Il2(-/)(-) mice themselves spontaneously develop multi-organ inflammation (MOI). In this communication, we discuss evidence that support the thesis that IL-2 is required for the development of autoimmune response, although some aspects of autoimmune response are not regulated by IL-2. Potential IL-2-dependent mechanisms operating at specific stages of the inflammation process are presented. The interplays among Treg, IL-2, autoimmune response and adaptive immunity are discussed. Overall, available information indicates that IL-2 is a two-faced master regulator of autoimmunity: one to prevent autoimmunity while the other promotes autoimmune response. The latter is an unfortunate consequence of IL-2 function that is used to promote the adaptive immune response against foreign antigens and pathogens.
Collapse
Affiliation(s)
- Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, VA, USA
| | | | | |
Collapse
|