1
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Li YQ, Xin L, Zhao YC, Li SQ, Li YN. Role of vascular endothelial growth factor B in nonalcoholic fatty liver disease and its potential value. World J Hepatol 2023; 15:786-796. [PMID: 37397934 PMCID: PMC10308292 DOI: 10.4254/wjh.v15.i6.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 06/25/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to fatty liver disease caused by liver injury factors other than alcohol. The disease is characterized by diffuse fat infiltration, including simple steatosis (no inflammatory fat deposition), nonalcoholic fatty hepatitis, liver fibrosis, and so on, which may cause liver cirrhosis, liver failure, and even liver cancer in the later stage of disease progression. At present, the pathogenesis of NAFLD is still being studied. The "two-hit" theory, represented by lipid metabolism disorder and inflammatory reactions, is gradually enriched by the "multiple-hit" theory, which includes multiple factors, such as insulin resistance and adipocyte dysfunction. In recent years, vascular endothelial growth factor B (VEGFB) has been reported to have the potential to regulate lipid metabolism and is expected to become a novel target for ameliorating metabolic diseases, such as obesity and type 2 diabetes. This review summarizes the regulatory role of VEGFB in the onset and development of NAFLD and illustrates its underlying molecular mechanism. In conclusion, the signaling pathway mediated by VEGFB in the liver may provide an innovative approach to the diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Yu-Qi Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| | - Lei Xin
- Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Yu-Chi Zhao
- Department of Surgery, Yantaishan Hospital, Yantai 264000, Shandong Province, China
| | - Shang-Qi Li
- The First School of Clinical Medicine, Binzhou Medical University, Yantai 264000, Shandong, China, Yantai 264000, Shandong Province, China
| | - Ya-Nuo Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai 264000, Shandong Province, China
| |
Collapse
|
3
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Zheng L, Lu X, Yang S, Zou Y, Zeng F, Xiong S, Cao Y, Zhou W. The anti-inflammatory activity of GABA-enriched Moringa oleifera leaves produced by fermentation with Lactobacillus plantarum LK-1. Front Nutr 2023; 10:1093036. [PMID: 36969807 PMCID: PMC10034114 DOI: 10.3389/fnut.2023.1093036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionGamma-aminobutyric acid (GABA), one of the main active components in Moringa oleifera leaves, can be widely used to treat multiple diseases including inflammation.MethodsIn this study, the anti-inflammatory activity and the underlying anti-inflammatory mechanism of the GABA-enriched Moringa oleifera leaves fermentation broth (MLFB) were investigated on lipopolysaccharide (LPS)-induced RAW 264.7 cells model. The key active components changes like total flavonoids, total polyphenols and organic acid in the fermentation broth after fermentation was also analyzed.ResultsELISA, RT-qPCR and Western blot results indicated that MLFB could dose-dependently inhibit the secretions and intracellular expression levels of pro-inflammatory cytokines like 1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α). Furthermore, MLFB also suppressed the expressions of prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS). Moreover, the mRNA expressions of the key molecules like Toll-like receptor 4 (TLR-4) and nuclear factor (NF)-κB in the NF-κB signaling pathway were also restrained by MLFB in a dose-dependent manner. Besides, the key active components analysis result showed that the GABA, total polyphenols, and most organic acids like pyruvic acid, lactic acid as well as acetic acid were increased obviously after fermentation. The total flavonoids content in MLFB was still remained to be 32 mg/L though a downtrend was presented after fermentation.DiscussionOur results indicated that the MLFB could effectively alleviate LPS-induced inflammatory response by inhibiting the secretions of pro-inflammatory cytokines and its underlying mechanism might be associated with the inhibition of TLR-4/NF-κB inflammatory signaling pathway activation. The anti-inflammatory activity of MLFB might related to the relative high contents of GABA as well as other active constituents such as flavonoids, phenolics and organic acids in MLFB. Our study provides the theoretical basis for applying GABA-enriched Moringa oleifera leaves as a functional food ingredient in the precaution and treatment of chronic inflammatory diseases.
Collapse
|
5
|
The Roles of TRAF3 in Immune Responses. DISEASE MARKERS 2023; 2023:7787803. [PMID: 36845015 PMCID: PMC9949957 DOI: 10.1155/2023/7787803] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/18/2023]
Abstract
Seven tumor necrosis factor receptor- (TNFR-) associated factors (TRAFs) have been found in mammals, which are primarily involved in the signal translation of the TNFR superfamily, the Toll-like receptor (TLR) family, and the retinoic acid-inducible gene I- (RIG-I-) like receptor (RLR) family. TRAF3 is one of the most diverse members of the TRAF family. It can positively regulate type I interferon production while negatively regulating signaling pathways of classical nuclear factor-κB, nonclassical nuclear factor-κB, and mitogen-activated protein kinase (MAPK). This review summarizes the roles of TRAF3 signaling and the related immune receptors (e.g., TLRs) in several preclinical and clinical diseases and focuses on the roles of TRAF3 in immune responses, the regulatory mechanisms, and its role in disease.
Collapse
|
6
|
Garantziotis P, Nikolakis D, Doumas S, Frangou E, Sentis G, Filia A, Fanouriakis A, Bertsias G, Boumpas DT. Molecular Taxonomy of Systemic Lupus Erythematosus Through Data-Driven Patient Stratification: Molecular Endotypes and Cluster-Tailored Drugs. Front Immunol 2022; 13:860726. [PMID: 35615355 PMCID: PMC9125979 DOI: 10.3389/fimmu.2022.860726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Treatment of Systemic Lupus Erythematosus (SLE) is characterized by a largely empirical approach and relative paucity of novel compound development. We sought to stratify SLE patients based on their molecular phenotype and identify putative therapeutic compounds for each molecular fingerprint. Methods By the use of whole blood RNA-seq data from 120 SLE patients, and in a data-driven, clinically unbiased manner, we established modules of commonly regulated genes (molecular endotypes) and re-stratified patients through hierarchical clustering. Disease activity and severity were assessed using SLEDAI-2K and Lupus Severity Index, respectively. Through an in silico drug prediction pipeline, we investigated drugs currently in use, tested in lupus clinical trials, and listed in the iLINCS prediction databases, for their ability to reverse the gene expression signatures in each molecular endotype. Drug repurposing analysis was also performed to identify perturbagens that counteract group-specific SLE signatures. Results Molecular taxonomy identified five lupus endotypes, each characterized by a unique gene module enrichment pattern. Neutrophilic signature group consisted primarily of patients with active lupus nephritis, while the B-cell expression group included patients with constitutional features. Patients with moderate severity and serologic activity exhibited a signature enriched for metabolic processes. Mild disease was distributed in two groups, exhibiting enhanced basic cellular functions, myelopoiesis, and autophagy. Bortezomib was predicted to reverse disturbances in the "neutrophilic" cluster, azathioprine and ixazomib in the "B-cell" cluster, and fostamatinib in the "metabolic" patient subgroup. Conclusion The clinical spectrum of SLE encompasses distinct molecular endotypes, each defined by unique pathophysiologic aberrancies potentially reversible by distinct compounds.
Collapse
Affiliation(s)
- Panagiotis Garantziotis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Nikolakis
- Department of Gastroenterology, Academic Medical Center, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, Netherlands.,Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Stavros Doumas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Eleni Frangou
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Nephrology, Limassol General Hospital, Limassol, Cyprus
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Rheumatology Unit, First Department of Propaedeutic and Internal Medicine, National Kapodistrian University of Athens Medical School, Athens, Greece.,4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece.,Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,4th Department of Internal Medicine, "Attikon" University Hospital, Athens, Greece.,Joint Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Chalmers SA, Ayilam Ramachandran R, Garcia SJ, Der E, Herlitz L, Ampudia J, Chu D, Jordan N, Zhang T, Parodis I, Gunnarsson I, Ding H, Shen N, Petri M, Mok CC, Saxena R, Polu KR, Connelly S, Ng CT, Mohan C, Putterman C. The CD6/ALCAM pathway promotes lupus nephritis via T cell-mediated responses. J Clin Invest 2022; 132:e147334. [PMID: 34981775 PMCID: PMC8718154 DOI: 10.1172/jci147334] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Samantha A. Chalmers
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Sayra J. Garcia
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Evan Der
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Nicole Jordan
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Huihua Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Chaim Putterman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
8
|
Zhang C, Han X, Sun L, Yang S, Peng J, Chen Y, Jin Y, Xu F, Liu Z, Zhou Q. OUP accepted manuscript. Clin Kidney J 2022; 15:2027-2038. [PMID: 36325013 PMCID: PMC9613433 DOI: 10.1093/ckj/sfac130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heterozygous loss-of-function mutations in the tumour necrosis factor alpha induced protein 3 (TNFAIP3) gene cause an early-onset auto-inflammatory disease named haploinsufficiency of A20 (HA20). Here we describe three unrelated patients with autoimmune lupus nephritis (LN) phenotypes carrying three novel mutations in the TNFAIP3 gene. Methods Whole-exome sequencing (WES) was used to identify the causative mutations in three biopsy-proven LN patients. Sanger sequencing and quantitative polymerase chain reaction (qPCR) were used to validate the mutations identified by WES. RNA sequencing, qPCR and cytometric bead array was used to detect inflammatory signatures in the patients. Results The patients predominantly presented with an autoimmune phenotype, including autoimmune haemolytic anaemia, multipositive autoantibodies and LN. Additionally, novel phenotypes of allergy and pericardial effusion were first reported. WES identified three novel heterozygous mutations in the TNFAIP3 gene, including a novel splicing mutation located in the canonical splicing site (c.634+2T>C) resulting in an intron 4 insertion containing a premature stop codon, a de novo novel copy number variation (exon 7–8 deletion) and a novel nonsense mutation c.1300_1301delinsTA causing a premature stop codon. We further identified hyperactivation signatures of nuclear factor- kappa B and type I IFN signalling and overproduction of pro-inflammatory cytokines in the blood. This report expanded the phenotype to a later age, as two girls were diagnosed at age 3 years and one man at age 29 years. Conclusions Kidney involvement may be the main feature of the clinical spectrum of HA20, even in adults. Genetic screening should be considered for early-onset LN patients.
Collapse
Affiliation(s)
| | | | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, First Hospital, Jilin University, Changchun, China
| | - Jiahui Peng
- Kidney Diseases Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghua Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Ying Jin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | - Feng Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing, China
| | | | - Qing Zhou
- Correspondence to: Qing Zhou; E-mail:
| |
Collapse
|
9
|
Cai W, Cheng J, Zong S, Yu Y, Wang Y, Song Y, He R, Yuan S, Chen T, Hu M, Pan Y, Ma R, Liu H, Wei F. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol Immunol 2021; 140:186-195. [PMID: 34735867 DOI: 10.1016/j.molimm.2021.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
Macrophages are highly plastic cells critical for the development of rheumatoid arthritis (RA). Macrophages exhibit a high degree of pro-inflammatory plasticity in RA, accompanied by a metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis. 2-deoxyglucose (2-DG), a glycolysis inhibitor, has previously been shown to exhibit anti-inflammatory and anti-arthritic properties. However, the specific mechanisms of inflammatory modulation by 2-DG remain unclear. This study used 2-DG to treat rats with adjuvant arthritis (AA) and investigated its specific anti-arthritic mechanisms in the murine-derived macrophage cell line RAW264.7 in vitro. 2-DG reduced the arthritis index as well as alleviated cellular infiltration, synovial hyperplasia, and bone erosion in AA rats. Moreover, 2-DG treatment modulated peritoneal macrophage polarization, increasing levels of the arginase1 (Arg1) and decreasing expression of the inducible nitric oxide synthase (iNOS). 2-DG activated AMP-activated protein kinase (AMPK) via phosphorylation and reduced activation of the nuclear factor κB (NF-κB) in peritoneal macrophages of AA rats. In vitro, we verified that 2-DG promoted macrophage transition from M1 to M2-type by upregulating the expression of p-AMPKα and suppressing NF-κB activation in LPS-stimulated RAW264.7 cells. LPS-induced macrophages exhibited a metabolic shift from glycolysis to OXPHOS following 2-DG treatment, as observed by reduced extracellular acidification rate (ECAR), lactate export, glucose consumption, as well as an elevated oxygen consumption rate (OCR) and intracellular ATP concentration. Importantly, changes in polarization and metabolism in response to 2-DG were dampened after AMPKα knockdown. These findings indicate that the anti-arthritic 2-DG effect is mediated by a modulation of macrophage polarization in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Weiwei Cai
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Jingwen Cheng
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shiye Zong
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yining Song
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Rui He
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Siqi Yuan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Tao Chen
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Mengru Hu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yousheng Pan
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ran Ma
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No.2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
10
|
Treatment of Lupus Nephritis from Iranian Traditional Medicine and Modern Medicine Points of View: A Comparative Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6645319. [PMID: 34795786 PMCID: PMC8595000 DOI: 10.1155/2021/6645319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/14/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Objective Nephritis or kidney inflammation is characterized as one of the most common renal disorders leading to serious damage to the kidneys. Nephritis, especially lupus nephritis (LN), has remained as the main cause of chronic renal failure which needs serious therapeutic approaches such as dialysis and kidney transplant. Heredity, infection, high blood pressure, inflammatory diseases such as lupus erythematosus and inflammatory bowel disease, and drug-related side effects are known as the main causes of the disease. According to Iranian traditional medicine (ITM), infectious diseases and fever are the main reasons of nephritis, which is called “Varam-e-Kolye” (VK). Results There are various plant-based remedies recommended by ITM for the treatment of nephritis, as discussed herein, comparing with those available in the modern medicine. There is no definite cure for the treatment of nephritis, and immunosuppressive drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, antibiotics, diuretics, analgesics, and finally dialysis and kidney transplantation are usually used. Based on the efficacy of medicinal plants, jujube (Ziziphus jujuba), almond (Prunus amygdalus), pumpkin seeds (Cucurbita pepo), purslane (Portulaca oleracea), and fig (Ficus carica) were found to be effective for the treatment of kidney inflammation in ITM. Conclusion Considering the fact that there is no efficient strategy for the treatment of nephritis, use of herbal medicine, particularly based on the fruits or nuts that have been safely used for several years can be considered as a versatile supplement along with other therapeutic methods.
Collapse
|
11
|
Zhang F, Zhang B, Tang R, Jiang H, Ji Z, Chen Y, Feng H. The occurrence of lupus nephritis is regulated by USP7-mediated JMJD3 stabilization. Immunol Lett 2021; 235:41-50. [PMID: 33895173 DOI: 10.1016/j.imlet.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Ubiquitin-specific peptidases7 (USP7) participates in the regulation of various metabolic and immune disorders. However, the role of USP7 in lupus nephritis (LN) remains unknown. The current study set out to elucidate the regulatory role of USP7 in LN together with JMJD3 and NF-κB. SLE MRL/LPR mice and mouse glomerular mesangial cells SV40 MES 13 cells were employed for in vivo or vitro experiments. USP7, JMJD3 and NF-κB expression in MRL/LPR mice were detected, followed by investigation of their functions in the proliferation of mesangial cells and mesangial matrix. Subsequently, the interaction among USP7, JMJD3 and NF-κB was determined by means of ChIP and co-immunoprecipitation assay. The results indicated that USP7, JMJD3, p-NF-κB p65 were all highly-expressed in MRL/LPR mice. USP7 promoted the proliferation of mesangial cells and mesangial matrix, and stabilized the JMJD3 protein via deubiquitination in SV40 MES 13 cells. Meanwhile, silencing of JMJD3 inhibited the promotive effect of USP7 on the proliferation of mesangial cells and mesangial matrix. Furthermore, JMJD3 increased the expression of NF-κB p65 through demethylation, whereas silencing JMJD3 alleviated the proliferation of mesangial cells and mesangial matrix. Lastly, NF-κB p65 was proved to aggravate LN pathogenesis. Altogether, our findings highlighted that USP7 promoted the occurrence of LN by regulating the NF-κB p65 signaling pathway via stabilization of JMJD3.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Baoguo Zhang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Rong Tang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Haiping Jiang
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Zhimin Ji
- Department of Nephrotoxicity, Yongzhou Central Hospital (North Hospital), Yongzhou 425000, P.R. China
| | - Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410000, P.R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410000, P.R. China.
| |
Collapse
|
12
|
Eo HJ, Shin H, Song JH, Park GH. Immuno-enhancing effects of fruit of Actinidia polygama in macrophages. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1982868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Hanna Shin
- Special Forest Resources Division, National Institute of Forest Science, Suwon, Republic of Korea
| | - Jeong Ho Song
- Research planning and coordination Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| |
Collapse
|
13
|
Chalmers SA, Garcia SJ, Webb D, Herlitz L, Fine J, Klein E, Ramanujam M, Putterman C. BTK inhibition modulates multiple immune cell populations involved in the pathogenesis of immune mediated nephritis. Clin Immunol 2020; 223:108640. [PMID: 33296718 DOI: 10.1016/j.clim.2020.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Lupus nephritis (LN) is a serious end organ complication of systemic lupus erythematosus. Nephrotoxic serum nephritis (NTN) is an inducible model of LN, which utilizes passive transfer of pre-formed nephrotoxic antibodies to initiate disease. In previous studies, we demonstrated that the Bruton's tyrosine kinase inhibitor, BI-BTK-1, prevents the development of nephritis in NTN when treatment was started prior to nephrotoxic serum transfer, and reverses established proteinuria as well. We manipulated the initiation and duration of BI-BTK-1 therapy in NTN to study its delayed therapeutic effects when treatment is given later in the disease course, as well as to further understand what effect BI-BTK-1 is having to prevent initiation of nephritis with early treatment. Early treatment and remission induction each correlated with decreased inflammatory macrophages, CD4+ and CD8+ T cells, and decreased B220+ B cells. Additionally, an increased proportion of resident macrophages within the CD45+ population favored a delay of disease onset and remission induction. We also studied the cellular processes involved in reactivation of nephritis by withdrawing BI-BTK-1 treatment at different time points. Treatment cessation led to either early or later onset of renal flares inversely dependent on the initial duration of BTK inhibition, as assessed by increased proteinuria and BUN levels and worse renal pathology. These flares were associated with an increase in kidney CD45+ infiltrates, including myeloid cell populations. IL-6, CD14, and CCL2 were also increased in mice developing late flares. These analyses point to the role of macrophages as an important contributor to the pathogenesis of immune mediated nephritis, and further support the therapeutic potential of BTK inhibition in this disease and related conditions.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Department of Microbiology and Immunology, Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sayra J Garcia
- Department of Microbiology and Immunology, Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Deborah Webb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States of America
| | - Leal Herlitz
- Cleveland Clinic, Cleveland, OH, United States of America
| | - Jay Fine
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States of America
| | - Elliott Klein
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States of America
| | - Meera Ramanujam
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, United States of America
| | - Chaim Putterman
- Department of Microbiology and Immunology, Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
14
|
Xu WD, Su LC, Liu XY, Wang JM, Yuan ZC, Qin Z, Zhou XP, Huang AF. IL-38: A novel cytokine in systemic lupus erythematosus pathogenesis. J Cell Mol Med 2020; 24:12379-12389. [PMID: 33079487 PMCID: PMC7686966 DOI: 10.1111/jcmm.15737] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
IL‐38 is a newly identified cytokine that belongs to the IL‐1 family. In our previous study, we found elevated plasma levels of IL‐38 in patients with systemic lupus erythematosus (SLE). However, the clear relationship of IL‐38 expression in plasma, peripheral blood mononuclear cells (PBMCs) and clinical and laboratory features needs elucidation. Additionally, we evaluated the possible role of IL‐38 in regulating production of inflammatory cytokines in PBMCs in vitro. A pristane‐induced murine lupus model was used to further demonstrate the effects of IL‐38 on cytokines in vivo and discuss the significance of IL‐38 in lupus development. The results showed that mRNA expression of IL‐38 in PBMCs of patients with SLE was elevated compared with volunteers, and expression of IL‐38 in both plasma and PBMCs was strongly related to clinical features, such as haematuria and proteinuria, and correlated with a SLEDAI score. Plasma levels of TNF‐α, IL‐1β, IL‐6 and IL‐23 were elevated in patients with SLE and were related to plasma levels of IL‐38. In vitro, PBMCs of patients with SLE stimulated with IL‐38 showed a decreased expression of the four inflammatory cytokines compared with PBMCs of patients without treatment. Interestingly, IL‐38 administration in lupus mice significantly reduced the development of lupus, such as reduced proteinuria, improved histological examinations of the kidneys and down‐regulated inflammatory cytokines. In conclusion, IL‐38 may suppress synthesis of pro‐inflammatory cytokines and therefore regulate lupus pathogenesis.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Lin-Chong Su
- Department of Rheumatology and Immunology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Jia-Min Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Zhi-Chao Yuan
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Zhen Qin
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi-Ping Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
IFN- γ Mediates the Development of Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7176515. [PMID: 33123584 PMCID: PMC7586164 DOI: 10.1155/2020/7176515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Objective Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect all organs in the body. It is characterized by overexpression of antibodies against autoantigen. Although previous bioinformatics analyses have identified several genetic factors underlying SLE, they did not discriminate between naive and individuals exposed to anti-SLE drugs. Here, we evaluated specific genes and pathways in active and recently diagnosed SLE population. Methods GSE46907 matrix downloaded from Gene Expression Omnibus (GEO) was analyzed using R, Metascape, STRING, and Cytoscape to identify differentially expressed genes (DEGs), enrichment pathways, protein-protein interaction (PPI), and hub genes between naive SLE individuals and healthy controls. Results A total of 134 DEGs were identified, in which 29 were downregulated, whereas 105 were upregulated in active and newly diagnosed SLE cases. GO term analysis revealed that transcriptional induction of the DEGs was particularly enhanced in response to secretion of interferon-γ and interferon-α and regulation of cytokine production innate immune responses among others. KEGG pathway analysis showed that the expression of DEGs was particularly enhanced in interferon signaling, IFN antiviral responses by activated genes, class I major histocompatibility complex (MHC-I) mediated antigen processing and presentation, and amyloid fiber formation. STAT1, IRF7, MX1, OASL, ISG15, IFIT3, IFIH1, IFIT1, OAS2, and GBP1 were the top 10 DEGs. Conclusions Our findings suggest that interferon-related gene expression and pathways are common features for SLE pathogenesis, and IFN-γ and IFN-γ-inducible GBP1 gene in naive SLE were emphasized. Together, the identified genes and cellular pathways have expanded our understanding on the mechanism underlying development of SLE. They have also opened a new frontier on potential biomarkers for diagnosis, biotherapy, and prognosis for SLE.
Collapse
|
16
|
Yoo JH, Lee YS, Ku S, Lee HJ. Phellinus baumii enhances the immune response in cyclophosphamide-induced immunosuppressed mice. Nutr Res 2019; 75:15-31. [PMID: 31955012 DOI: 10.1016/j.nutres.2019.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/17/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Phellinus species is a mushroom used as traditional medicine in Eastern Asia. Research on Phellinus baumii (PB) is relatively limited; however, it has been reported to have antioxidant, DNA damage-protecting, immunostimulating, and antidiabetic activities. In our previous study on anti-inflammatory properties in lipopolysaccharide-stimulated RAW 264.7 cells and the various bioactive components of PB, we propose that PB could exert immune enhancing effects. Therefore, our current study aimed to investigate the immune-enhancing effect on immunosuppressed mice. Different concentrations of PB extract (0, 50, 100, 200, and 400 mg/kg body weight) were given to mice via oral gavage for 6 weeks accompanied by intraperitoneal cyclophosphamide administration to induce immunosuppression. A bone marrow micronucleus test was performed in mice to screen for potential genotoxic compounds. Splenocyte viability and proliferation, splenic and peritoneal natural killer cell activities, and hematological markers were then measured. Cytokines in the spleen and serum, as well as splenic mRNA levels of nuclear factor-κB; interferon-γ; tumor necrosis factor-α; and interleukin (IL)-1β, IL-6, and IL-12, were determined in mice. As a result, PB ameliorated T- and B-lymphocyte proliferation, splenic and peritoneal NK cell activities, bone marrow cells, hematological markers, cytokine levels, and T-lymphocyte numbers. Moreover, serum and spleen cytokine levels and mRNA expression were elevated in the PB groups compared to controls. Our results suggest that the PB extract can be used as a potent immunomodulator under immunosuppressive conditions. Thus, PB may be used as a potent biofunctional and pharmaceutical material to potentially enhance human immunity.
Collapse
Affiliation(s)
- Jeong-Hyun Yoo
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| | - You-Suk Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| | - SaeKwang Ku
- Department of Korean Medicine, Daegu Haany University, 1, Hanuidae-ro, Gyeongsan-si, Gyeongsanbuk-do, 38610, Republic of Korea
| | - Hae-Jeung Lee
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do, 13120, Republic of Korea; Department of Food and Nutrition, Gachon University, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
17
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Pereira PG, Rabelo K, da Silva JFR, Ciambarella BT, Argento JGC, Nascimento ALR, Vieira AB, de Carvalho JJ. Aliskiren improves renal morphophysiology and inflammation in Wistar rats with 2K1C renovascular hypertension. Histol Histopathol 2019; 35:609-621. [PMID: 31625581 DOI: 10.14670/hh-18-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypertension is characterized by persistent elevated blood pressure levels, one of the leading causes of death in the world. Renovascular hypertension represents the most common cause of secondary hypertension, and its progress is associated with overactivation of the renin angiotensin aldosterone system (RAAS), causing systemic and local changes. Aliskiren is a renin-inhibiting drug that optimizes RAAS suppression. In this sense, the objective of the present study was to analyze the morphophysiology of the left kidney in Wistar rats with renovascular hypertension after treatment with Aliskiren. Parameters such as systolic blood pressure, urinary creatinine and protein excretion, renal cortex structure and ultrastructure, fibrosis and tissue inflammation were analyzed. Our results showed that the hypertensive animals treated with Aliskiren presented a reestablishment of blood pressure, expression of renin, and renal function, as well as a remodeling of morphological alterations through the reduction of fibrosis. The treatment regulated the laminin expression and decreased pro-inflammatory cytokines, restoring the integrity of the glomerular filtration barrier. Therefore, our findings suggest that Aliskiren has a renoprotective effect acting on the improvement of the morphology, physiology and pathology of the renal cortex of animals with renovascular hypertension.
Collapse
Affiliation(s)
- Priscila G Pereira
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Kíssila Rabelo
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Jemima F R da Silva
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Bianca T Ciambarella
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Juliana G C Argento
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Ana L R Nascimento
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil
| | - Aline B Vieira
- Ross University School of Veterinary Medicine, Biomedical Department, Basseterre, Saint Kitts
| | - Jorge J de Carvalho
- Laboratory of Ultrastructure and Tecidual Biology, Institute of Biology, State University of Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Bhargava A, Shukla A, Bunkar N, Shandilya R, Lodhi L, Kumari R, Gupta PK, Rahman A, Chaudhury K, Tiwari R, Goryacheva IY, Mishra PK. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:39-50. [PMID: 31146237 DOI: 10.1016/j.envpol.2019.05.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ultrafine particulate matter (PM0.1) is positively associated with the etiology of different acute and chronic disorders; however, the in-depth biological imprints that link these submicron particles with the disturbances in the epigenomic machinery are not well defined. Earlier, we showed that exposure to these particles causes significant disturbances in the mitochondrial machinery and triggers PI-3-kinase mediated DNA damage responses. In the present study, we aimed to further understand the epigenomic insights of the ultrafine PM exposure. The higher levels of intracellular reactive oxygen species and depleted Nrf-2 in ultrafine PM exposed cells reconfirmed its potential to induce oxidative stress. Importantly, the observed increase in the levels of NF-κβ and associated cytokines among exposed cells suggested the activation of NF-κβ mediated inflammatory loop which potentially serves as a platform for initiating epigenetic insinuations. This fact was strongly supported by the altered miRNA expression profile of the ultrafine PM exposed cells. These NF-κβ induced miRNA alterations were also found to be associated with other epigenetic targets as the exposed cells showed higher expression levels of DNA methyltransferases which positively corresponded with the global changes in DNA methylation levels. Upon further analysis, significant alterations in histone code were also reported in ultrafine PM exposed cells. Conclusively our results suggested that NF-κβ acts as an inflammatory switch that possesses the potential to induce genome-wide epigenetic modification upon ultrafine PM exposure.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Lalit Lodhi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Akhlaqur Rahman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
20
|
NLRP3 Inflammasome Modulation by Melatonin Supplementation in Chronic Pristane-Induced Lupus Nephritis. Int J Mol Sci 2019; 20:ijms20143466. [PMID: 31311094 PMCID: PMC6678949 DOI: 10.3390/ijms20143466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Lupus nephritis (LN) is a kidney inflammatory disease caused by systemic lupus erythematosus (SLE). NLRP3 inflammasome activation is implicated in LN pathogenesis, suggesting its potential targets for LN treatment. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule that has been reported to have anti-inflammatory effects by inhibiting nuclear factor-kappa B (NF-κB)-mediated inflammatory responses in vivo. This molecule has also protective effects against the activation of the inflammasomes and, in particular, the NLRP3 inflammasome. Thus, this work evaluated the effect of melatonin on morphological alteration and NLRP3 inflammasome activation in LN pristane mouse models. To evaluate the melatonin effects in these mice, we studied the renal cytoarchitecture by means of morphological analyses and immunohistochemical expression of specific markers related to oxidative stress, inflammation and inflammasome activation. Our results showed that melatonin attenuates pristane-induced LN through restoring of morphology and attenuation of oxidative stress and inflammation through a pathway that inhibited activation of NLRP3 inflammasome signaling. Our data clearly demonstrate that melatonin has protective activity on lupus nephritis in these mice that is highly associated with its effect on enhancing the Nrf2 antioxidant signaling pathway and decreasing renal NLRP3 inflammasome activation.
Collapse
|